

Introduction to Mechanics Kinematic Quantities

Lana Sheridan

De Anza College

Jan 13, 2020

Last time

- significant figures
- unit conversions (non-SI units)
- order of magnitude calculations

Overview

- introducing 1-D kinematics
- quantities of motion
 - position, displacement, and distance
 - speed and velocity

Order of magnitude exercise What is the radius of the Earth?

Figure from https://www.antonine-education.co.uk, edited.

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross?

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross? Answer: 3.

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross? Answer: 3.

What is the average distance across the US?

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross? Answer: 3.

What is the average distance across the US? Answer: about 3000 miles.

On average, there are about **1000 miles** of distance traveled per time zone.

How many time zones are around the Earth?

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross? Answer: 3.

What is the average distance across the US? Answer: about 3000 miles.

On average, there are about **1000 miles** of distance traveled per time zone.

How many time zones are around the Earth?

There must be **24** time zones around the earth in all since there are 24 hours in the day.

What is the circumference of the Earth?

¹maa.org

What is the circumference of the Earth? Answer: about 24,000 miles.

The circumference of a circle is $c=2\pi r$ where r is the radius. Take $2\pi\approx 6$. The radius of the Earth:

$$r = \frac{c}{2\pi} \approx \frac{24,000 \text{ mi}}{6} = 4,000 \text{ mi}$$

¹maa.org

What is the circumference of the Earth? Answer: about 24,000 miles.

The circumference of a circle is $c=2\pi r$ where r is the radius. Take $2\pi\approx 6$. The radius of the Earth:

$$r = \frac{c}{2\pi} \approx \frac{24,000 \text{ mi}}{6} = 4,000 \text{ mi}$$

 $1 \text{ mi} \approx 1.6 \text{ km}$ Radius of the Earth in meters:

4,000 mi × 1600 m/mi = 6,400,000 m =
$$6.4 \times 10^6$$
 m

¹maa.org

What is the circumference of the Earth? Answer: about 24,000 miles.

The circumference of a circle is $c=2\pi r$ where r is the radius. Take $2\pi\approx 6$. The radius of the Earth:

$$r = \frac{c}{2\pi} \approx \frac{24,000 \text{ mi}}{6} = 4,000 \text{ mi}$$

 $1 \text{ mi} \approx 1.6 \text{ km}$ Radius of the Earth in meters:

4,000 mi × 1600 m/mi = 6,400,000 m =
$$6.4 \times 10^6$$
 m

Actual answer: 6.37×10^6 m Pretty close!

¹maa.org

Kinematics in 1-dimension

We begin by studying motion along a single line.

This will encompass situations like

- cars traveling along straight roads
- objects falling straight down under gravity

Vectors and Scalars

scalar

A scalar quantity indicates an amount. It is represented by a real number. (Assuming it is a physical quantity.)

Vectors and Scalars

scalar

A scalar quantity indicates an amount. It is represented by a real number. (Assuming it is a physical quantity.)

vector

A vector quantity indicates both an amount (magnitude) and a direction. It is represented by a real number for each possible direction, or a real number and (an) angle(s).

Notation for Vectors

In the lecture notes vector variables are represented using **bold** variables with over arrows. This is to match the textbook.

Example:

k is a scalar

 \vec{x} (or x) is a vector

In handwriting, just write an arrow or "harpoon" over the variable to indicate it is a vector.

The magnitude of a vector, $\overrightarrow{\mathbf{v}}$ is written:

$$|\overrightarrow{\mathbf{v}}| = v$$

Unit Vectors

Unit vectors are one-unit-long vectors that just give a direction.

Unit Vectors

Unit vectors are one-unit-long vectors that just give a direction.

Since we are only considering 1-dimension right now, we only need one so far: $\hat{\mathbf{i}}$

It is written with a "carrot" over the letter to indicate it is a unit vector.

 $\hat{\mathbf{i}}$ is a unit vector pointing in the +x direction. In the textbook, $\hat{\mathbf{x}}$ is used for this.

Examples of Scalars and Vectors

Some physical quantities that are scalars are

- temperature
- mass
- pressure

Some physical quantities that are **vectors** are

- velocity
- force

Distance vs Displacement

How far are two points from one another?

Distance is the length of a path that connects the two points.

Displacement is the length together with the direction of a straight line that connects the starting position to the final position.

Displacement is a vector.

Position

Quantities

position
$$\overrightarrow{\mathbf{x}}$$
 or $\overrightarrow{\mathbf{r}}$ displacement $\overrightarrow{\Delta \mathbf{x}} = \overrightarrow{\mathbf{x}}_f - \overrightarrow{\mathbf{x}}_i$ (or $\overrightarrow{\Delta \mathbf{r}}$) distance d

Position and displacement are vector quantities.

Position and displacement can be positive or negative numbers.

Distance is a scalar. It is always a positive number.

Position

Quantities

position
$$\overrightarrow{\mathbf{x}}$$
 or $\overrightarrow{\mathbf{r}}$ displacement $\overrightarrow{\Delta \mathbf{x}} = \overrightarrow{\mathbf{x}}_f - \overrightarrow{\mathbf{x}}_i$ (or $\overrightarrow{\Delta \mathbf{r}}$) distance d

Position and displacement are vector quantities.

Position and displacement can be positive or negative numbers.

Distance is a scalar. It is always a positive number.

Units: meters, m

The starting position of the car is $\vec{\mathbf{x}}_i = 30 \text{ m} \hat{\mathbf{i}}$, the final position is $\vec{\mathbf{x}}_f = 50 \text{ m} \hat{\mathbf{i}}$.

The distance the car travels is

The starting position of the car is $\vec{\mathbf{x}}_i = 30 \text{ m} \hat{\mathbf{i}}$, the final position is $\vec{\mathbf{x}}_f = 50 \text{ m} \hat{\mathbf{i}}$.

The distance the car travels is d = 50 m - 30 m = 20 m.

The starting position of the car is $\vec{\mathbf{x}}_i = 30 \text{ m} \hat{\mathbf{i}}$, the final position is $\vec{\mathbf{x}}_f = 50 \text{ m} \hat{\mathbf{i}}$.

The distance the car travels is d = 50 m - 30 m = 20 m.

The displacement of the car is

The starting position of the car is $\vec{\mathbf{x}}_i = 30 \text{ m} \hat{\mathbf{i}}$, the final position is $\vec{\mathbf{x}}_f = 50 \text{ m} \hat{\mathbf{i}}$.

The distance the car travels is d = 50 m - 30 m = 20 m.

Now, the starting position of the car is $\vec{\mathbf{x}}_i = 30$ m $\hat{\mathbf{i}}$, the final position is $\vec{\mathbf{x}}_f = -60$ m $\hat{\mathbf{i}}$.

Now, the starting position of the car is $\vec{\mathbf{x}}_i = 30$ m $\hat{\mathbf{i}}$, the final position is $\vec{\mathbf{x}}_f = -60$ m $\hat{\mathbf{i}}$.

The distance the car travels is d = |130 m|.

Now, the starting position of the car is $\vec{\mathbf{x}}_i = 30$ m $\hat{\mathbf{i}}$, the final position is $\vec{\mathbf{x}}_f = -60$ m $\hat{\mathbf{i}}$.

The distance the car travels is $d = \lfloor 130 \text{ m} \rfloor$.

The displacement of the car is

$$\overrightarrow{\Delta x} = \overrightarrow{x}_f - \overrightarrow{x}_i$$

$$= (-60 \hat{i}) - 30 \hat{i} \text{ m}$$

$$= \boxed{-90 \text{ m } \hat{i}}$$

Speed

We need a measure how fast objects move.

$$\mathsf{speed} = \frac{\mathsf{distance}}{\mathsf{time}}$$

If an object goes 100 m in 1 second, its speed is 100 m/s.

Speed

Speed can change with time.

For example, driving. Sometimes you are on the highway going fast, sometimes you wait at a stoplight.

Instantaneous speed is an object's speed at any given moment in time.

Speed

Speed can change with time.

For example, driving. Sometimes you are on the highway going fast, sometimes you wait at a stoplight.

Instantaneous speed is an object's speed at any given moment in time.

Average speed is the average of the object's speed over a period of time:

$$\text{average speed} = \frac{\text{total distance traveled}}{\text{time interval}}$$

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph.

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph.

There is a quantity that combines the speed and the direction of motion.

This is the **velocity**.

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph.

There is a quantity that combines the speed and the direction of motion.

This is the **velocity**.

Velocity is a vector quantity. Speed is a scalar quantity.

Driving East at 65 mph is not the same as driving West at 65 mph.

There is a quantity that combines the speed and the direction of motion.

This is the **velocity**.

Velocity is a vector quantity. Speed is a scalar quantity.

If a car drives in a circle, without speeding up or slowing down, is its speed constant?

Driving East at 65 mph is not the same as driving West at 65 mph.

There is a quantity that combines the speed and the direction of motion.

This is the **velocity**.

Velocity is a vector quantity. Speed is a scalar quantity.

If a car drives in a circle, without speeding up or slowing down, is its speed constant?

Is its velocity constant?

How position changes with time.

Quantities

velocity
$$\overrightarrow{\mathbf{v}} \ (= \frac{d\overrightarrow{\mathbf{x}}}{dt})$$
 average velocity $\overrightarrow{\mathbf{v}_{avg}} = \frac{\overrightarrow{\Delta x}}{\Delta t}$ instantaneous speed v or $|\overrightarrow{\mathbf{v}}|$ average speed $\frac{d}{\Delta t}$

How position changes with time.

Quantities

velocity
$$\vec{\mathbf{v}} \ (= \frac{d\vec{\mathbf{x}}}{dt})$$
 average velocity $\vec{\mathbf{v}_{avg}} = \frac{\overrightarrow{\Delta x}}{\Delta t}$ instantaneous speed $|\mathbf{v}|$ or $|\vec{\mathbf{v}}|$ average speed $|\mathbf{v}|$

Can velocity be negative?

How position changes with time.

Quantities

velocity
$$\vec{\mathbf{v}}$$
 $\left(= \frac{d\vec{x}}{dt} \right)$ average velocity $\vec{\mathbf{v}}_{avg} = \frac{\overrightarrow{\Delta x}}{\Delta t}$ instantaneous speed v or $|\vec{\mathbf{v}}|$ average speed $\frac{d}{\Delta t}$

Can velocity be negative?

Can speed be negative?

How position changes with time.

Quantities

velocity
$$\overrightarrow{\mathbf{v}}$$
 $\left(= \frac{d\overrightarrow{\mathbf{x}}}{dt} \right)$ average velocity $\overrightarrow{\mathbf{v}_{avg}} = \frac{\overrightarrow{\Delta x}}{\Delta t}$ instantaneous speed v or $|\overrightarrow{\mathbf{v}}|$ average speed $\frac{d}{\Delta t}$

Can velocity be negative?

Can speed be negative?

Units: meters per second, m/s

The displacement of the car is $\overrightarrow{\Delta x} = 20 \text{ m} \hat{\mathbf{i}}$.

The distance the car travels is d = 20 m.

The time for the car to move this far is **10** seconds.

What is the average velocity of the car? What is the average speed of the car?

The displacement of the car is $\overrightarrow{\Delta x} = 20 \text{ m} \hat{\mathbf{i}}$.

The distance the car travels is d = 20 m.

The time for the car to move this far is 10 seconds.

What is the average velocity of the car? What is the average speed of the car?

average speed $=\frac{d}{\Delta t}=\left|2\text{ m/s}\right|$ (same magnitude in this case)

The displacement of the car is $-90 \text{ m} \hat{\mathbf{i}}$.

The distance the car travels is d = 130 m.

The time for the car to move $A \rightarrow F$ is **50 seconds**.

The displacement of the car is $-90 \text{ m} \hat{\mathbf{i}}$.

The distance the car travels is d = 130 m.

The time for the car to move $A \rightarrow F$ is **50 seconds**.

average velocity
$$\vec{\mathbf{v}}_{\mathsf{avg}} = \frac{\overrightarrow{\Delta \mathbf{x}}}{\Delta t} = \boxed{-1.8 \; \mathsf{m/s} \; \hat{\mathbf{i}}}$$

average speed = $\frac{d}{\Delta t}$ = 2.6 m/s

Not the same!

Question

Quick Quiz 2.1^1 Under which of the following conditions is the magnitude of the average velocity of a particle moving in one dimension smaller than the average speed over some time interval?

- A A particle moves in the +x direction without reversing.
- **B** A particle moves in the -x direction without reversing.
- C A particle moves in the +x direction and then reverses the direction of its motion.
- D There are no conditions for which this is true.

¹Serway & Jewett, page 24.

Question

Quick Quiz 2.1^1 Under which of the following conditions is the magnitude of the average velocity of a particle moving in one dimension smaller than the average speed over some time interval?

- A A particle moves in the +x direction without reversing.
- **B** A particle moves in the -x direction without reversing.
- C A particle moves in the +x direction and then reverses the direction of its motion.
- D There are no conditions for which this is true.

¹Serway & Jewett, page 24.

Conceptual Question

1. If the average velocity of an object is zero in some time interval, what can you say about the displacement of the object for that interval?

¹Serway & Jewett, page 50.

Summary

- introducing kinematics
- position, displacement, and distance
- speed and velocity

Quiz tomorrow, in class.

Homework

unit conversion worksheet, due tomorrow.

Walker Physics:

• Ch 2, onward from page 47. Conc. Ques: 1, 3, 9; Probs: 1, 3, 5, 7, 9, 13 (can wait until tomorrow to do these)