Introduction to Mechanics Kinematic Quantities

Lana Sheridan

De Anza College

Jan 13, 2020

Last time

- significant figures
- unit conversions (non-SI units)
- order of magnitude calculations

Overview

- introducing 1-D kinematics
- quantities of motion
- position, displacement, and distance
- speed and velocity

Order of magnitude exercise

What is the radius of the Earth?

Figure from https://www.antonine-education.co.uk, edited.

Order of magnitude exercise

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross?

Order of magnitude exercise

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross? Answer: 3.

Order of magnitude exercise

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross? Answer: 3.

What is the average distance across the US?

Order of magnitude exercise

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross? Answer: 3.

What is the average distance across the US? Answer: about 3000 miles.

On average, there are about $\mathbf{1 0 0 0}$ miles of distance traveled per time zone.

How many time zones are around the Earth?

Order of magnitude exercise

What is the radius of the Earth?

If you fly across the United States, how many time zones do you cross? Answer: 3.

What is the average distance across the US? Answer: about 3000 miles.

On average, there are about $\mathbf{1 0 0 0}$ miles of distance traveled per time zone.

How many time zones are around the Earth?
There must be 24 time zones around the earth in all since there are 24 hours in the day.

Order of magnitude examples

What is the circumference of the Earth?
${ }^{1}$ maa.org

Order of magnitude examples

What is the circumference of the Earth? Answer: about 24,000 miles.

The circumference of a circle is $c=2 \pi r$ where r is the radius. Take $2 \pi \approx 6$. The radius of the Earth:

$$
r=\frac{c}{2 \pi} \approx \frac{24,000 \mathrm{mi}}{6}=4,000 \mathrm{mi}
$$

Order of magnitude examples

What is the circumference of the Earth? Answer: about 24,000 miles.

The circumference of a circle is $c=2 \pi r$ where r is the radius. Take $2 \pi \approx 6$. The radius of the Earth:

$$
r=\frac{c}{2 \pi} \approx \frac{24,000 \mathrm{mi}}{6}=4,000 \mathrm{mi}
$$

$1 \mathrm{mi} \approx 1.6 \mathrm{~km}$
Radius of the Earth in meters:

$$
4,000 \mathrm{mi} \times 1600 \mathrm{~m} / \mathrm{mi}=6,400,000 \mathrm{~m}=\underline{6.4 \times 10^{6} \mathrm{~m}}
$$

Order of magnitude examples

What is the circumference of the Earth? Answer: about 24,000 miles.

The circumference of a circle is $c=2 \pi r$ where r is the radius. Take $2 \pi \approx 6$. The radius of the Earth:

$$
r=\frac{c}{2 \pi} \approx \frac{24,000 \mathrm{mi}}{6}=4,000 \mathrm{mi}
$$

$1 \mathrm{mi} \approx 1.6 \mathrm{~km}$
Radius of the Earth in meters:

$$
4,000 \mathrm{mi} \times 1600 \mathrm{~m} / \mathrm{mi}=6,400,000 \mathrm{~m}=\underline{6.4 \times 10^{6} \mathrm{~m}}
$$

Actual answer: $6.37 \times 10^{6} \mathrm{~m} \quad$ Pretty close!

Kinematics in 1-dimension

We begin by studying motion along a single line.

This will encompass situations like

- cars traveling along straight roads
- objects falling straight down under gravity

Vectors and Scalars

scalar

A scalar quantity indicates an amount. It is represented by a real number. (Assuming it is a physical quantity.)

Vectors and Scalars

scalar

A scalar quantity indicates an amount. It is represented by a real number. (Assuming it is a physical quantity.)

vector

A vector quantity indicates both an amount (magnitude) and a direction. It is represented by a real number for each possible direction, or a real number and (an) angle(s).

Notation for Vectors

In the lecture notes vector variables are represented using bold variables with over arrows. This is to match the textbook.

Example:

$$
k \text { is a scalar }
$$

$$
\vec{x} \text { (or } \mathbf{x} \text {) is a vector }
$$

In handwriting, just write an arrow or "harpoon" over the variable to indicate it is a vector.

The magnitude of a vector, \vec{v} is written:

$$
|\overrightarrow{\mathbf{v}}|=v
$$

Unit Vectors

Unit vectors are one-unit-long vectors that just give a direction.

Unit Vectors

Unit vectors are one-unit-long vectors that just give a direction.

Since we are only considering 1-dimension right now, we only need one so far: $\hat{\mathbf{i}}$

It is written with a "carrot" over the letter to indicate it is a unit vector.
$\hat{\mathbf{i}}$ is a unit vector pointing in the $+x$ direction. In the textbook, $\hat{\mathbf{x}}$ is used for this.

Examples of Scalars and Vectors

Some physical quantities that are scalars are

- temperature
- mass
- pressure

Some physical quantities that are vectors are

- velocity
- force

Distance vs Displacement

How far are two points from one another?

Distance is the length of a path that connects the two points.

Displacement is the length together with the direction of a straight line that connects the starting position to the final position.

Displacement is a vector.

Position

Quantities

$$
\begin{aligned}
\text { position } & \overrightarrow{\mathrm{x}} \text { or } \overrightarrow{\mathrm{r}} \\
\text { displacement } & \overrightarrow{\Delta x}=\overrightarrow{\mathrm{x}}_{f}-\overrightarrow{\mathrm{x}}_{i} \quad(\text { or } \overrightarrow{\Delta r}) \\
\text { distance } & d
\end{aligned}
$$

Position and displacement are vector quantities.
Position and displacement can be positive or negative numbers.

Distance is a scalar. It is always a positive number.

Position

Quantities

$$
\begin{aligned}
\text { position } & \overrightarrow{\mathrm{x}} \text { or } \overrightarrow{\mathrm{r}} \\
\text { displacement } & \overrightarrow{\Delta \boldsymbol{x}}=\overrightarrow{\mathrm{x}}_{f}-\overrightarrow{\mathrm{x}}_{i} \quad(\text { or } \overrightarrow{\Delta r}) \\
\text { distance } & d
\end{aligned}
$$

Position and displacement are vector quantities.
Position and displacement can be positive or negative numbers.

Distance is a scalar. It is always a positive number.

Units: meters, m

Position, Displacement, Distance Example

The starting position of the car is $\overrightarrow{\mathbf{x}}_{i}=30 \mathrm{~m} \hat{\mathbf{i}}$, the final position is $\overrightarrow{\mathbf{x}}_{f}=50 \mathrm{~m} \hat{\mathbf{i}}$.

The distance the car travels is

Position, Displacement, Distance Example

The starting position of the car is $\overrightarrow{\mathbf{x}}_{i}=30 \mathrm{~m} \hat{\mathbf{i}}$, the final position is $\overrightarrow{\mathbf{x}}_{f}=50 \mathrm{~m} \hat{\mathbf{i}}$.

The distance the car travels is $d=50 \mathrm{~m}-30 \mathrm{~m}=20 \mathrm{~m}$.

> The car moves to the right between positions (A) and (B).

Position, Displacement, Distance Example

The starting position of the car is $\overrightarrow{\mathbf{x}}_{i}=30 \mathrm{~m} \hat{\mathbf{i}}$, the final position is $\overrightarrow{\mathbf{x}}_{f}=50 \mathrm{~m} \hat{\mathbf{i}}$.

The distance the car travels is $d=50 \mathrm{~m}-30 \mathrm{~m}=20 \mathrm{~m}$.

The displacement of the car is

Position, Displacement, Distance Example

The starting position of the car is $\overrightarrow{\mathbf{x}}_{i}=30 \mathrm{~m} \hat{\mathbf{i}}$, the final position is $\overrightarrow{\mathbf{x}}_{f}=50 \mathrm{~m} \hat{\mathbf{i}}$.

The distance the car travels is $d=50 \mathrm{~m}-30 \mathrm{~m}=20 \mathrm{~m}$.

The displacement of the car is $\overrightarrow{\Delta \boldsymbol{x}}=\overrightarrow{\mathbf{x}}_{f}-\overrightarrow{\mathbf{x}}_{i}=20 \mathrm{~m} \hat{\mathbf{i}}$.

Position, Displacement, Distance Example

Now, the starting position of the car is $\overrightarrow{\mathbf{x}}_{i}=30 \mathrm{~m} \hat{\mathbf{i}}$, the final position is $\overrightarrow{\mathbf{x}}_{f}=-60 \mathrm{~m} \hat{\mathbf{i}}$.

Position, Displacement, Distance Example

Now, the starting position of the car is $\overrightarrow{\mathbf{x}}_{i}=30 \mathrm{~m} \hat{\mathbf{i}}$, the final position is $\overrightarrow{\mathbf{x}}_{f}=-60 \mathrm{~m} \hat{\mathbf{i}}$.

The distance the car travels is $d=130 \mathrm{~m}$.

Position, Displacement, Distance Example

Now, the starting position of the car is $\overrightarrow{\mathbf{x}}_{i}=30 \mathrm{~m} \hat{\mathbf{i}}$, the final position is $\overrightarrow{\mathbf{x}}_{f}=-60 \mathrm{~m} \hat{\mathbf{i}}$.

The distance the car travels is $d=130 \mathrm{~m}$.

The displacement of the car is

$$
\begin{aligned}
\overrightarrow{\Delta x} & =\overrightarrow{\mathbf{x}}_{f}-\overrightarrow{\mathbf{x}}_{i} \\
& =(-60 \hat{\mathbf{i}})-30 \hat{\mathbf{i}} \mathrm{~m} \\
& =-90 \mathrm{~m} \hat{\mathbf{i}}
\end{aligned}
$$

Speed

We need a measure how fast objects move.

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

If an object goes 100 m in 1 second, its speed is $100 \mathrm{~m} / \mathrm{s}$.

Speed

Speed can change with time.

For example, driving. Sometimes you are on the highway going fast, sometimes you wait at a stoplight.

Instantaneous speed is an object's speed at any given moment in time.

Speed

Speed can change with time.

For example, driving. Sometimes you are on the highway going fast, sometimes you wait at a stoplight.

Instantaneous speed is an object's speed at any given moment in time.

Average speed is the average of the object's speed over a period of time:

$$
\text { average speed }=\frac{\text { total distance traveled }}{\text { time interval }}
$$

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

There is a quantity that combines the speed and the direction of motion.

This is the velocity.

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

There is a quantity that combines the speed and the direction of motion.

This is the velocity.

Velocity is a vector quantity. Speed is a scalar quantity.

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

There is a quantity that combines the speed and the direction of motion.

This is the velocity.

Velocity is a vector quantity. Speed is a scalar quantity.

If a car drives in a circle, without speeding up or slowing down, is its speed constant?

Velocity

Driving East at 65 mph is not the same as driving West at 65 mph .

There is a quantity that combines the speed and the direction of motion.

This is the velocity.

Velocity is a vector quantity. Speed is a scalar quantity.

If a car drives in a circle, without speeding up or slowing down, is its speed constant?

Is its velocity constant?

Velocity

How position changes with time.
Quantities

$$
\begin{array}{cl}
\qquad \text { velocity } & \overrightarrow{\mathbf{v}}\left(=\frac{\mathrm{d} \overrightarrow{\mathrm{x}}}{\mathrm{dt}}\right) \\
\text { average velocity } & \overrightarrow{\mathbf{v}_{\text {avg }}=\frac{\overrightarrow{\Delta x}}{\Delta t}} \\
\text { instantaneous speed } & v \text { or }|\overrightarrow{\mathrm{v}}| \\
\text { average speed } & \frac{d}{\Delta t}
\end{array}
$$

Velocity

How position changes with time.

Quantities

$$
\begin{array}{cl}
\qquad \text { velocity } & \overrightarrow{\mathbf{v}}\left(=\frac{\mathrm{d} \overrightarrow{\mathrm{x}}}{\mathrm{dt}}\right) \\
\text { average velocity } & \overrightarrow{\mathbf{v} \mathbf{a v g}}=\frac{\overrightarrow{\Delta x}}{\Delta t} \\
\text { instantaneous speed } & v \text { or }|\overrightarrow{\mathbf{v}}| \\
\text { average speed } & \frac{d}{\Delta t}
\end{array}
$$

Can velocity be negative?

Velocity

How position changes with time.
Quantities

$$
\begin{array}{cl}
\qquad \text { velocity } & \overrightarrow{\mathbf{v}}\left(=\frac{\mathrm{d} \overrightarrow{\mathrm{x}}}{\mathrm{dt}}\right) \\
\text { average velocity } & \overrightarrow{\mathrm{vavg}}=\frac{\overrightarrow{\Delta x}}{\Delta t} \\
\text { instantaneous speed } & v \text { or }|\overrightarrow{\mathrm{v}}| \\
\text { average speed } & \frac{d}{\Delta t}
\end{array}
$$

Can velocity be negative?
Can speed be negative?

Velocity

How position changes with time.
Quantities

$$
\begin{array}{cl}
\qquad \text { velocity } & \overrightarrow{\mathbf{v}}\left(=\frac{d \overrightarrow{\mathrm{x}}}{\mathrm{dt}}\right) \\
\text { average velocity } & \overrightarrow{\mathbf{v}_{\text {avg }}}=\frac{\overrightarrow{\Delta x}}{\Delta t} \\
\text { instantaneous speed } & v \text { or }|\overrightarrow{\mathbf{v} \mid}| \\
\text { average speed } & \frac{d}{\Delta t}
\end{array}
$$

Can velocity be negative?
Can speed be negative?
Units: meters per second, m/s

Average Velocity vs Average Speed Example

The displacement of the car is $\overrightarrow{\Delta \boldsymbol{x}}=20 \mathrm{~m} \hat{\mathbf{i}}$.
The distance the car travels is $d=20 \mathrm{~m}$.
The time for the car to move this far is 10 seconds.
What is the average velocity of the car? What is the average speed of the car?

> The car moves to the right between positions © (A) and (B).

Average Velocity vs Average Speed Example

The displacement of the car is $\overrightarrow{\Delta \boldsymbol{x}}=20 \mathrm{~m} \hat{\mathbf{i}}$.
The distance the car travels is $d=20 \mathrm{~m}$.
The time for the car to move this far is 10 seconds.
What is the average velocity of the car? What is the average speed of the car?

> The car moves to the right between positions © \mathbb{A} and (B).

average velocity $\overrightarrow{\mathbf{v}}_{\text {avg }}=\frac{\overrightarrow{\Delta x}}{\Delta t}=2 \mathrm{~m} / \mathrm{s} \hat{\mathbf{i}}$
average speed $=\frac{d}{\Delta t}=2 \mathrm{~m} / \mathrm{s} \quad$ (same magnitude in this case)

Average Velocity vs Average Speed Example

The displacement of the car is $-90 \mathrm{~m} \hat{\mathbf{i}}$.
The distance the car travels is $d=130 \mathrm{~m}$.
The time for the car to move $A \rightarrow F$ is 50 seconds.
Average velocity? Average speed?
(A)
(B)

Average Velocity vs Average Speed Example

The displacement of the car is $-90 \mathrm{~m} \hat{\mathbf{i}}$.
The distance the car travels is $d=130 \mathrm{~m}$.
The time for the car to move $A \rightarrow F$ is 50 seconds.
Average velocity? Average speed?
(A)
(B)

average velocity $\overrightarrow{\mathbf{v}}_{\text {avg }}=\frac{\overrightarrow{\Delta \mathbf{x}}}{\Delta t}=-1.8 \mathrm{~m} / \mathrm{s} \hat{\mathbf{i}}$
average speed $=\frac{d}{\Delta t}=2.6 \mathrm{~m} / \mathrm{s} \quad$ Not the same!

Question

Quick Quiz 2.1 ${ }^{1}$ Under which of the following conditions is the magnitude of the average velocity of a particle moving in one dimension smaller than the average speed over some time interval?

A A particle moves in the $+x$ direction without reversing.
B A particle moves in the $-x$ direction without reversing.
C A particle moves in the $+x$ direction and then reverses the direction of its motion.

D There are no conditions for which this is true.

Question

Quick Quiz 2.1 ${ }^{1}$ Under which of the following conditions is the magnitude of the average velocity of a particle moving in one dimension smaller than the average speed over some time interval?

A A particle moves in the $+x$ direction without reversing.
B A particle moves in the $-x$ direction without reversing.
C A particle moves in the $+x$ direction and then reverses the direction of its motion.

D There are no conditions for which this is true.

Conceptual Question

1. If the average velocity of an object is zero in some time interval, what can you say about the displacement of the object for that interval?
${ }^{1}$ Serway \& Jewett, page 50.

Summary

- introducing kinematics
- position, displacement, and distance
- speed and velocity

Quiz tomorrow, in class.

Homework

- unit conversion worksheet, due tomorrow.

Walker Physics:

- Ch 2, onward from page 47. Conc. Ques: 1, 3, 9; Probs: 1, 3, $5,7,9,13$ (can wait until tomorrow to do these)

