
Kinematics
Motion in 1-Dimension

Graphing Kinematic Quantities

Lana Sheridan

De Anza College

Jan 15, 2020



Last time

• 1-D kinematics

• quantities of motion

• graphing position against time



Overview

• graphing velocity and acceleration against time

• more about graphs of kinematic quantities vs time



Graphing Kinematic Quantities

One very convenient way of representing motion is with graphs
that show the variation of these kinematic quantities with time.

Time is written along the horizontal axis – we are representing
time passing with a direction in space (the horizontal direction).



Position vs Time Graphs

22 Chapter 2 Motion in One Dimension

obtain reasonably accurate data about its orbit. This approximation is justified because the 
radius of the Earth’s orbit is large compared with the dimensions of the Earth and the Sun. 
As an example on a much smaller scale, it is possible to explain the pressure exerted by a gas 
on the walls of a container by treating the gas molecules as particles, without regard for the 
internal structure of the molecules.

2.1 Position, Velocity, and Speed
A particle’s position x  is the location of the particle with respect to a chosen ref-
erence point that we can consider to be the origin of a coordinate system. The 
motion of a particle is completely known if the particle’s position in space is known 
at all times.
 Consider a car moving back and forth along the x axis as in Figure 2.1a. When 
we begin collecting position data, the car is 30 m to the right of the reference posi-
tion x 5 0. We will use the particle model by identifying some point on the car, 
perhaps the front door handle, as a particle representing the entire car.
 We start our clock, and once every 10 s we note the car’s position. As you can see 
from Table 2.1, the car moves to the right (which we have defined as the positive 
direction) during the first 10 s of motion, from position ! to position ". After ", 
the position values begin to decrease, suggesting the car is backing up from position 
" through position #. In fact, at $, 30 s after we start measuring, the car is at the 
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than 
50 m to the left of x 5 0 when we stop recording information after our sixth data 
point. A graphical representation of this information is presented in Figure 2.1b. 
Such a plot is called a position–time graph.
 Notice the alternative representations of information that we have used for the 
motion of the car. Figure 2.1a is a pictorial representation, whereas Figure 2.1b is a 
graphical representation. Table 2.1 is a tabular representation of the same information. 
Using an alternative representation is often an excellent strategy for understanding 
the situation in a given problem. The ultimate goal in many problems is a math-

Position X

 Position of 
the Car at Various Times

Position t (s) x (m)

!  0 30
" 10 52
% 20 38
$ 30 0
& 40 237
# 50 253

Table 2.1

!60 !50 !40 !30 !20 !10 0 10 20 30 40 50 60
x (m)

! "

The car moves to 
the right between 
positions ! and ".

!60 !50 !40 !30 !20 !10 0 10 20 30 40 50 60
x (m)

$ %&#

The car moves to 
the left between 
positions % and #.

a

!

10 20 30 40 500

!40

!60

!20

0

20

40

60

"t

"x

x (m)

t (s)

"

%

$

&

#

b

Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
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Average Velocity in Position vs Time Graphs

A→B: #    »vavg =
#   »

∆x
∆t = 2 m/s î

26 Chapter 2 Motion in One Dimension

Conceptual Example 2.2   The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls 
back into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts 
through space at constant velocity. Are there any points in the motion of these objects at which the instantaneous 
velocity has the same value as the average velocity over the entire motion? If so, identify the point(s).

represents the velocity of the car at point !. What we have done is determine the 
instantaneous velocity at that moment. In other words, the instantaneous velocity vx 
equals the limiting value of the ratio Dx/Dt as Dt approaches zero:1

 vx ; lim
Dt S 0

 Dx
Dt

 (2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written 
dx/dt:

 vx ; lim
Dt S 0

 Dx
Dt

5
dx
dt

 (2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the 
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3, 
vx is positive and the car is moving toward larger values of x. After point ", vx is nega-
tive because the slope is negative and the car is moving toward smaller values of x. 
At point ", the slope and the instantaneous velocity are zero and the car is momen-
tarily at rest.
 From here on, we use the word velocity to designate instantaneous velocity. When 
we are interested in average velocity, we shall always use the adjective average.
 The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of 125 m/s 
along a given line and another particle has an instantaneous velocity of 225 m/s 
along the same line, both have a speed2 of 25 m/s.

Q uick Quiz 2.2 Are members of the highway patrol more interested in (a) your 
average speed or (b) your instantaneous speed as you drive?
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Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the 
upper-left-hand corner of the graph.

1Notice that the displacement Dx also approaches zero as Dt approaches zero, so the ratio looks like 0/0. While this 
ratio may appear to be difficult to evaluate, the ratio does have a specific value. As Dx and Dt become smaller and 
smaller, the ratio Dx/Dt approaches a value equal to the slope of the line tangent to the x -versus-t curve.
2As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”

Pitfall Prevention 2.3
Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the 
magnitude of the average velocity 
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous 
speed. In an infinitesimal time 
interval, the magnitude of the dis-
placement is equal to the distance 
traveled by the particle.

Pitfall Prevention 2.2
Slopes of Graphs In any graph of 
physical data, the slope represents 
the ratio of the change in the 
quantity represented on the verti-
cal axis to the change in the quan-
tity represented on the horizontal 
axis. Remember that a slope has 
units (unless both axes have the 
same units). The units of slope in 
Figures 2.1b and 2.3 are meters 
per second, the units of velocity.

A→F: #    »vavg =
#   »

∆x
∆t = −1.8 m/s î



Velocity in Position vs Time Graphs
The (instantaneous) velocity is the rate of change of
displacement ⇒ the slope of a velocity-time graph.

Pos.-time graph for car zoomed in
26 Chapter 2 Motion in One Dimension

Conceptual Example 2.2   The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls 
back into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts 
through space at constant velocity. Are there any points in the motion of these objects at which the instantaneous 
velocity has the same value as the average velocity over the entire motion? If so, identify the point(s).

represents the velocity of the car at point !. What we have done is determine the 
instantaneous velocity at that moment. In other words, the instantaneous velocity vx 
equals the limiting value of the ratio Dx/Dt as Dt approaches zero:1

 vx ; lim
Dt S 0

 Dx
Dt

 (2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written 
dx/dt:

 vx ; lim
Dt S 0

 Dx
Dt

5
dx
dt

 (2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the 
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3, 
vx is positive and the car is moving toward larger values of x. After point ", vx is nega-
tive because the slope is negative and the car is moving toward smaller values of x. 
At point ", the slope and the instantaneous velocity are zero and the car is momen-
tarily at rest.
 From here on, we use the word velocity to designate instantaneous velocity. When 
we are interested in average velocity, we shall always use the adjective average.
 The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of 125 m/s 
along a given line and another particle has an instantaneous velocity of 225 m/s 
along the same line, both have a speed2 of 25 m/s.

Q uick Quiz 2.2 Are members of the highway patrol more interested in (a) your 
average speed or (b) your instantaneous speed as you drive?
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Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the 
upper-left-hand corner of the graph.

1Notice that the displacement Dx also approaches zero as Dt approaches zero, so the ratio looks like 0/0. While this 
ratio may appear to be difficult to evaluate, the ratio does have a specific value. As Dx and Dt become smaller and 
smaller, the ratio Dx/Dt approaches a value equal to the slope of the line tangent to the x -versus-t curve.
2As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”

Pitfall Prevention 2.3
Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the 
magnitude of the average velocity 
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous 
speed. In an infinitesimal time 
interval, the magnitude of the dis-
placement is equal to the distance 
traveled by the particle.

Pitfall Prevention 2.2
Slopes of Graphs In any graph of 
physical data, the slope represents 
the ratio of the change in the 
quantity represented on the verti-
cal axis to the change in the quan-
tity represented on the horizontal 
axis. Remember that a slope has 
units (unless both axes have the 
same units). The units of slope in 
Figures 2.1b and 2.3 are meters 
per second, the units of velocity.

The green line is the tangent line, gives the slope of the curve at
t = 0.

#»v = lim
∆t→0

#   »

∆x
∆t



Velocity vs Time Graphs

We can plot the slope of a position-time curve against time as
well.

This is plotting the velocity of an object at each point in time.



Velocity vs Time Graphs

PROBLEMS 49

24. •• IP A tennis player moves back and forth along the base-
line while waiting for her opponent to serve, producing the
position-versus-time graph shown in Figure 2–30. (a) Without
performing a calculation, indicate on which of the segments
of the graph, A, B, or C, the player has the greatest speed. Cal-
culate the player’s speed for (b) segment A, (c) segment B, and
(d) segment C, and show that your results verify your answers
to part (a).
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▲ FIGURE 2–30 Problem 24

33. •• A person on horseback moves according to the velocity-
versus-time graph shown in Figure 2–32. Find the displace-
ment of the person for each of the following segments of the
motion: (a) A, (b) B, and (c) C.

25. ••• On your wedding day you leave for the church 30.0 min-
utes before the ceremony is to begin, which should be plenty of
time since the church is only 10.0 miles away. On the way, how-
ever, you have to make an unanticipated stop for construction
work on the road. As a result, your average speed for the first
15 minutes is only 5.0 mi/h. What average speed do you need
for the rest of the trip to get you to the church on time?

Section 2–3 Instantaneous Velocity
26. •• The position of a particle as a function of time is given by

(a) Plot x versus t for time
from to (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the
instantaneous velocity at to be closer to 0.54 m/s,
0.56 m/s, or 0.58 m/s? Explain.

27. •• The position of a particle as a function of time is given by
(a) Plot x versus t for time

from to . (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the in-
stantaneous velocity at to be closer to 

or Explain.

Section 2–4 Acceleration
28. • A 747 airliner reaches its takeoff speed of 173 mi/h in 35.2 s.

What is the magnitude of its average acceleration?
29. • At the starting gun, a runner accelerates at for 5.2 s.

The runner’s acceleration is zero for the rest of the race. What is
the speed of the runner (a) at and (b) at the end of the
race?

30. • A jet makes a landing traveling due east with a speed of
115 m/s. If the jet comes to rest in 13.0 s, what is the magnitude
and direction of its average acceleration?

31. • A car is traveling due north at 18.1 m/s. Find the velocity of
the car after 7.50 s if its acceleration is (a) due north,
or (b) due south.

32. •• A motorcycle moves according to the velocity-versus-time
graph shown in Figure 2–31. Find the average acceleration of

1.15 m/s2
1.30 m/s2

t = 2.0 s,

1.9 m/s2

-1.66 m/s?-1.64 m/s,
-1.62 m/s,t = 0.200 s

t = 0.210 s.t = 0.190 s
t = 0.250 s.t = 0.150 s

t = 1.00 st = 0
x = 1-2.00 m/s2t + 13.00 m/s32t3.

t = 0.40 s
t = 0.41 s.t = 0.39 s
t = 0.45 s.t = 0.35 s

t = 1.0 s.t = 0
x = 12.0 m/s2t + 1-3.0 m/s32t3.
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▲ FIGURE 2–32 Problem 33

34. •• Running with an initial velocity of a horse has an
average acceleration of How long does it take for
the horse to decrease its velocity to 

35. •• IP Assume that the brakes in your car create a constant
deceleration of regardless of how fast you are dri-
ving. If you double your driving speed from 16 m/s to 32 m/s,
(a) does the time required to come to a stop increase by a fac-
tor of two or a factor of four? Explain. Verify your answer to
part (a) by calculating the stopping times for initial speeds of
(b) 16 m/s and (c) 32 m/s.

36. •• IP In the previous problem, (a) does the distance needed
to stop increase by a factor of two or a factor of four? Explain.
Verify your answer to part (a) by calculating the stopping dis-
tances for initial speeds of (b) 16 m/s and (c) 32 m/s.

37. •• As a train accelerates away from a station, it reaches a speed
of 4.7 m/s in 5.0 s. If the train’s acceleration remains constant,
what is its speed after an additional 6.0 s has elapsed?

38. •• A particle has an acceleration of for 0.300 s. At
the end of this time the particle’s velocity is What
was the particle’s initial velocity?

Section 2–5 Motion with Constant Acceleration
39. • Landing with a speed of 81.9 m/s, and traveling due south, a

jet comes to rest in 949 m. Assuming the jet slows with constant
acceleration, find the magnitude and direction of its acceleration.

+9.31 m/s.
+6.24 m/s2

4.2 m/s2

+6.5 m/s?
-1.81 m/s2.

+11 m/s,

the motorcycle during each of the following segments of the
motion: (a) A, (b) B, and (c) C.
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Velocity vs Time Graphs
The area under a velocity-time graph has a special interpretation:
it is the displacement of the object over the time interval
considered.

PROBLEMS 49

24. •• IP A tennis player moves back and forth along the base-
line while waiting for her opponent to serve, producing the
position-versus-time graph shown in Figure 2–30. (a) Without
performing a calculation, indicate on which of the segments
of the graph, A, B, or C, the player has the greatest speed. Cal-
culate the player’s speed for (b) segment A, (c) segment B, and
(d) segment C, and show that your results verify your answers
to part (a).
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33. •• A person on horseback moves according to the velocity-
versus-time graph shown in Figure 2–32. Find the displace-
ment of the person for each of the following segments of the
motion: (a) A, (b) B, and (c) C.

25. ••• On your wedding day you leave for the church 30.0 min-
utes before the ceremony is to begin, which should be plenty of
time since the church is only 10.0 miles away. On the way, how-
ever, you have to make an unanticipated stop for construction
work on the road. As a result, your average speed for the first
15 minutes is only 5.0 mi/h. What average speed do you need
for the rest of the trip to get you to the church on time?

Section 2–3 Instantaneous Velocity
26. •• The position of a particle as a function of time is given by

(a) Plot x versus t for time
from to (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the
instantaneous velocity at to be closer to 0.54 m/s,
0.56 m/s, or 0.58 m/s? Explain.

27. •• The position of a particle as a function of time is given by
(a) Plot x versus t for time

from to . (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the in-
stantaneous velocity at to be closer to 

or Explain.

Section 2–4 Acceleration
28. • A 747 airliner reaches its takeoff speed of 173 mi/h in 35.2 s.

What is the magnitude of its average acceleration?
29. • At the starting gun, a runner accelerates at for 5.2 s.

The runner’s acceleration is zero for the rest of the race. What is
the speed of the runner (a) at and (b) at the end of the
race?

30. • A jet makes a landing traveling due east with a speed of
115 m/s. If the jet comes to rest in 13.0 s, what is the magnitude
and direction of its average acceleration?

31. • A car is traveling due north at 18.1 m/s. Find the velocity of
the car after 7.50 s if its acceleration is (a) due north,
or (b) due south.

32. •• A motorcycle moves according to the velocity-versus-time
graph shown in Figure 2–31. Find the average acceleration of

1.15 m/s2
1.30 m/s2

t = 2.0 s,

1.9 m/s2

-1.66 m/s?-1.64 m/s,
-1.62 m/s,t = 0.200 s

t = 0.210 s.t = 0.190 s
t = 0.250 s.t = 0.150 s

t = 1.00 st = 0
x = 1-2.00 m/s2t + 13.00 m/s32t3.

t = 0.40 s
t = 0.41 s.t = 0.39 s
t = 0.45 s.t = 0.35 s

t = 1.0 s.t = 0
x = 12.0 m/s2t + 1-3.0 m/s32t3.
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34. •• Running with an initial velocity of a horse has an
average acceleration of How long does it take for
the horse to decrease its velocity to 

35. •• IP Assume that the brakes in your car create a constant
deceleration of regardless of how fast you are dri-
ving. If you double your driving speed from 16 m/s to 32 m/s,
(a) does the time required to come to a stop increase by a fac-
tor of two or a factor of four? Explain. Verify your answer to
part (a) by calculating the stopping times for initial speeds of
(b) 16 m/s and (c) 32 m/s.

36. •• IP In the previous problem, (a) does the distance needed
to stop increase by a factor of two or a factor of four? Explain.
Verify your answer to part (a) by calculating the stopping dis-
tances for initial speeds of (b) 16 m/s and (c) 32 m/s.

37. •• As a train accelerates away from a station, it reaches a speed
of 4.7 m/s in 5.0 s. If the train’s acceleration remains constant,
what is its speed after an additional 6.0 s has elapsed?

38. •• A particle has an acceleration of for 0.300 s. At
the end of this time the particle’s velocity is What
was the particle’s initial velocity?

Section 2–5 Motion with Constant Acceleration
39. • Landing with a speed of 81.9 m/s, and traveling due south, a

jet comes to rest in 949 m. Assuming the jet slows with constant
acceleration, find the magnitude and direction of its acceleration.

+9.31 m/s.
+6.24 m/s2

4.2 m/s2

+6.5 m/s?
-1.81 m/s2.

+11 m/s,

the motorcycle during each of the following segments of the
motion: (a) A, (b) B, and (c) C.
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Velocity vs Time Graphs
The area under a velocity-time graph has a special interpretation:
it is the displacement of the object over the time interval
considered.

PROBLEMS 49

24. •• IP A tennis player moves back and forth along the base-
line while waiting for her opponent to serve, producing the
position-versus-time graph shown in Figure 2–30. (a) Without
performing a calculation, indicate on which of the segments
of the graph, A, B, or C, the player has the greatest speed. Cal-
culate the player’s speed for (b) segment A, (c) segment B, and
(d) segment C, and show that your results verify your answers
to part (a).
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33. •• A person on horseback moves according to the velocity-
versus-time graph shown in Figure 2–32. Find the displace-
ment of the person for each of the following segments of the
motion: (a) A, (b) B, and (c) C.

25. ••• On your wedding day you leave for the church 30.0 min-
utes before the ceremony is to begin, which should be plenty of
time since the church is only 10.0 miles away. On the way, how-
ever, you have to make an unanticipated stop for construction
work on the road. As a result, your average speed for the first
15 minutes is only 5.0 mi/h. What average speed do you need
for the rest of the trip to get you to the church on time?

Section 2–3 Instantaneous Velocity
26. •• The position of a particle as a function of time is given by

(a) Plot x versus t for time
from to (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the
instantaneous velocity at to be closer to 0.54 m/s,
0.56 m/s, or 0.58 m/s? Explain.

27. •• The position of a particle as a function of time is given by
(a) Plot x versus t for time

from to . (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the in-
stantaneous velocity at to be closer to 

or Explain.

Section 2–4 Acceleration
28. • A 747 airliner reaches its takeoff speed of 173 mi/h in 35.2 s.

What is the magnitude of its average acceleration?
29. • At the starting gun, a runner accelerates at for 5.2 s.

The runner’s acceleration is zero for the rest of the race. What is
the speed of the runner (a) at and (b) at the end of the
race?

30. • A jet makes a landing traveling due east with a speed of
115 m/s. If the jet comes to rest in 13.0 s, what is the magnitude
and direction of its average acceleration?

31. • A car is traveling due north at 18.1 m/s. Find the velocity of
the car after 7.50 s if its acceleration is (a) due north,
or (b) due south.

32. •• A motorcycle moves according to the velocity-versus-time
graph shown in Figure 2–31. Find the average acceleration of

1.15 m/s2
1.30 m/s2

t = 2.0 s,

1.9 m/s2

-1.66 m/s?-1.64 m/s,
-1.62 m/s,t = 0.200 s

t = 0.210 s.t = 0.190 s
t = 0.250 s.t = 0.150 s

t = 1.00 st = 0
x = 1-2.00 m/s2t + 13.00 m/s32t3.

t = 0.40 s
t = 0.41 s.t = 0.39 s
t = 0.45 s.t = 0.35 s

t = 1.0 s.t = 0
x = 12.0 m/s2t + 1-3.0 m/s32t3.
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34. •• Running with an initial velocity of a horse has an
average acceleration of How long does it take for
the horse to decrease its velocity to 

35. •• IP Assume that the brakes in your car create a constant
deceleration of regardless of how fast you are dri-
ving. If you double your driving speed from 16 m/s to 32 m/s,
(a) does the time required to come to a stop increase by a fac-
tor of two or a factor of four? Explain. Verify your answer to
part (a) by calculating the stopping times for initial speeds of
(b) 16 m/s and (c) 32 m/s.

36. •• IP In the previous problem, (a) does the distance needed
to stop increase by a factor of two or a factor of four? Explain.
Verify your answer to part (a) by calculating the stopping dis-
tances for initial speeds of (b) 16 m/s and (c) 32 m/s.

37. •• As a train accelerates away from a station, it reaches a speed
of 4.7 m/s in 5.0 s. If the train’s acceleration remains constant,
what is its speed after an additional 6.0 s has elapsed?

38. •• A particle has an acceleration of for 0.300 s. At
the end of this time the particle’s velocity is What
was the particle’s initial velocity?

Section 2–5 Motion with Constant Acceleration
39. • Landing with a speed of 81.9 m/s, and traveling due south, a

jet comes to rest in 949 m. Assuming the jet slows with constant
acceleration, find the magnitude and direction of its acceleration.

+9.31 m/s.
+6.24 m/s2

4.2 m/s2

+6.5 m/s?
-1.81 m/s2.

+11 m/s,

the motorcycle during each of the following segments of the
motion: (a) A, (b) B, and (c) C.
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Acceleration in Velocity vs Time Graphs

36 Chapter 2 Motion in One Dimension

 In Figure 2.10c, we can tell that the car slows as it moves to the right because its 
displacement between adjacent images decreases with time. This case suggests the 
car moves to the right with a negative acceleration. The length of the velocity arrow 
decreases in time and eventually reaches zero. From this diagram, we see that the 
acceleration and velocity arrows are not in the same direction. The car is moving 
with a positive velocity, but with a negative acceleration. (This type of motion is exhib-
ited by a car that skids to a stop after its brakes are applied.) The velocity and accel-
eration are in opposite directions. In terms of our earlier force discussion, imagine 
a force pulling on the car opposite to the direction it is moving: it slows down.
 Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same 
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

Q uick Quiz 2.5 Which one of the following statements is true? (a) If a car is trav-
eling eastward, its acceleration must be eastward. (b) If a car is slowing down, 
its acceleration must be negative. (c) A particle with constant acceleration can 
never stop and stay stopped.

2.6 Analysis Model: Particle  
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult 
to analyze. A very common and simple type of one-dimensional motion, however, is 
that in which the acceleration is constant. In such a case, the average acceleration 
ax,avg over any time interval is numerically equal to the instantaneous acceleration ax 
at any instant within the interval, and the velocity changes at the same rate through-
out the motion. This situation occurs often enough that we identify it as an analysis 
model: the particle under constant acceleration. In the discussion that follows, we 
generate several equations that describe the motion of a particle for this model.
 If we replace ax,avg by ax in Equation 2.9 and take ti 5 0 and tf to be any later time 
t, we find that

ax 5
vxf 2 vxi

t 2 0

or

 vxf 5 vxi 1 axt (for constant ax) (2.13)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity vxi and its (constant) acceleration ax. A  
velocity–time graph for this constant-acceleration motion is shown in Figure 2.11b. 
The graph is a straight line, the slope of which is the acceleration ax; the (constant) 
slope is consistent with ax 5 dvx/dt being a constant. Notice that the slope is posi-
tive, which indicates a positive acceleration. If the acceleration were negative, the 
slope of the line in Figure 2.11b would be negative. When the acceleration is con-
stant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having a 
slope of zero.
 Because velocity at constant acceleration varies linearly in time according to 
Equation 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

 vx,avg 5
vxi 1 vxf

2
  1 for constant ax 2  (2.14)

vx

vxi vxf

t
vxi

axt

t

t

Slope !  ax

ax

t

Slope ! 0

x

t

xi

Slope ! vxi

t

Slope ! vxf
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c

Figure 2.11 A particle under 
constant acceleration ax moving 
along the x axis: (a) the position–
time graph, (b) the velocity–time 
graph, and (c) the acceleration–
time graph.



Acceleration vs Time Graphs

36 Chapter 2 Motion in One Dimension

 In Figure 2.10c, we can tell that the car slows as it moves to the right because its 
displacement between adjacent images decreases with time. This case suggests the 
car moves to the right with a negative acceleration. The length of the velocity arrow 
decreases in time and eventually reaches zero. From this diagram, we see that the 
acceleration and velocity arrows are not in the same direction. The car is moving 
with a positive velocity, but with a negative acceleration. (This type of motion is exhib-
ited by a car that skids to a stop after its brakes are applied.) The velocity and accel-
eration are in opposite directions. In terms of our earlier force discussion, imagine 
a force pulling on the car opposite to the direction it is moving: it slows down.
 Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same 
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

Q uick Quiz 2.5 Which one of the following statements is true? (a) If a car is trav-
eling eastward, its acceleration must be eastward. (b) If a car is slowing down, 
its acceleration must be negative. (c) A particle with constant acceleration can 
never stop and stay stopped.

2.6 Analysis Model: Particle  
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult 
to analyze. A very common and simple type of one-dimensional motion, however, is 
that in which the acceleration is constant. In such a case, the average acceleration 
ax,avg over any time interval is numerically equal to the instantaneous acceleration ax 
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Acceleration vs Time Graphs
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The area under an acceleration-time graph is the change in
velocity over that time interval.



Relating Position, Velocity, Acceleration graphs

For a single moving object, the graphs of its position, velocity, and
acceleration are not independent!

The slope of the position-time graph is the velocity.

The slope of the velocity-time graph is the acceleration.



Constant Acceleration Graphs
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Falling Objects

Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that velocity changes linearly
with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical position only. It is easy to get the impression that
the graph shows some horizontal motion—the shape of the graph looks like the path of a projectile. But this is not the case; the horizontal axis is time, not space. The
actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since and are both

positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving downward. At 3.00 s, both and

are negative, meaning the rock is below its starting point and continuing to move downward. Notice that when the rock is at its highest point (at

1.5 s), its velocity is zero, but its acceleration is still . Its acceleration is for the whole trip—while it is moving up and
while it is moving down. Note that the values for are the positions (or displacements) of the rock, not the total distances traveled. Finally, note

that free-fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which remains
constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we
will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index finger, separated by
about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler unexpectedly, and try to catch it
between your two fingers. Note the new reading on the ruler. Assuming acceleration is that due to gravity, calculate your reaction time. How far
would you travel in a car (moving at 30 m/s) if the time it took your foot to go from the gas pedal to the brake was twice this reaction time?
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Relating Graphs

What would the position-time graph be for this motion, assuming
x(t = 0) = 0? What would the acceleration-time graph be?

PROBLEMS 49

24. •• IP A tennis player moves back and forth along the base-
line while waiting for her opponent to serve, producing the
position-versus-time graph shown in Figure 2–30. (a) Without
performing a calculation, indicate on which of the segments
of the graph, A, B, or C, the player has the greatest speed. Cal-
culate the player’s speed for (b) segment A, (c) segment B, and
(d) segment C, and show that your results verify your answers
to part (a).
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▲ FIGURE 2–30 Problem 24

33. •• A person on horseback moves according to the velocity-
versus-time graph shown in Figure 2–32. Find the displace-
ment of the person for each of the following segments of the
motion: (a) A, (b) B, and (c) C.

25. ••• On your wedding day you leave for the church 30.0 min-
utes before the ceremony is to begin, which should be plenty of
time since the church is only 10.0 miles away. On the way, how-
ever, you have to make an unanticipated stop for construction
work on the road. As a result, your average speed for the first
15 minutes is only 5.0 mi/h. What average speed do you need
for the rest of the trip to get you to the church on time?

Section 2–3 Instantaneous Velocity
26. •• The position of a particle as a function of time is given by

(a) Plot x versus t for time
from to (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the
instantaneous velocity at to be closer to 0.54 m/s,
0.56 m/s, or 0.58 m/s? Explain.

27. •• The position of a particle as a function of time is given by
(a) Plot x versus t for time

from to . (b) Find the average velocity of the
particle from to (c) Find the average
velocity from to (d) Do you expect the in-
stantaneous velocity at to be closer to 

or Explain.

Section 2–4 Acceleration
28. • A 747 airliner reaches its takeoff speed of 173 mi/h in 35.2 s.

What is the magnitude of its average acceleration?
29. • At the starting gun, a runner accelerates at for 5.2 s.

The runner’s acceleration is zero for the rest of the race. What is
the speed of the runner (a) at and (b) at the end of the
race?

30. • A jet makes a landing traveling due east with a speed of
115 m/s. If the jet comes to rest in 13.0 s, what is the magnitude
and direction of its average acceleration?

31. • A car is traveling due north at 18.1 m/s. Find the velocity of
the car after 7.50 s if its acceleration is (a) due north,
or (b) due south.

32. •• A motorcycle moves according to the velocity-versus-time
graph shown in Figure 2–31. Find the average acceleration of

1.15 m/s2
1.30 m/s2

t = 2.0 s,

1.9 m/s2

-1.66 m/s?-1.64 m/s,
-1.62 m/s,t = 0.200 s

t = 0.210 s.t = 0.190 s
t = 0.250 s.t = 0.150 s

t = 1.00 st = 0
x = 1-2.00 m/s2t + 13.00 m/s32t3.

t = 0.40 s
t = 0.41 s.t = 0.39 s
t = 0.45 s.t = 0.35 s

t = 1.0 s.t = 0
x = 12.0 m/s2t + 1-3.0 m/s32t3.
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34. •• Running with an initial velocity of a horse has an
average acceleration of How long does it take for
the horse to decrease its velocity to 

35. •• IP Assume that the brakes in your car create a constant
deceleration of regardless of how fast you are dri-
ving. If you double your driving speed from 16 m/s to 32 m/s,
(a) does the time required to come to a stop increase by a fac-
tor of two or a factor of four? Explain. Verify your answer to
part (a) by calculating the stopping times for initial speeds of
(b) 16 m/s and (c) 32 m/s.

36. •• IP In the previous problem, (a) does the distance needed
to stop increase by a factor of two or a factor of four? Explain.
Verify your answer to part (a) by calculating the stopping dis-
tances for initial speeds of (b) 16 m/s and (c) 32 m/s.

37. •• As a train accelerates away from a station, it reaches a speed
of 4.7 m/s in 5.0 s. If the train’s acceleration remains constant,
what is its speed after an additional 6.0 s has elapsed?

38. •• A particle has an acceleration of for 0.300 s. At
the end of this time the particle’s velocity is What
was the particle’s initial velocity?

Section 2–5 Motion with Constant Acceleration
39. • Landing with a speed of 81.9 m/s, and traveling due south, a

jet comes to rest in 949 m. Assuming the jet slows with constant
acceleration, find the magnitude and direction of its acceleration.

+9.31 m/s.
+6.24 m/s2

4.2 m/s2

+6.5 m/s?
-1.81 m/s2.

+11 m/s,

the motorcycle during each of the following segments of the
motion: (a) A, (b) B, and (c) C.
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Summary

• graphing kinematic quantities

Homework Walker Physics:

• Ch 1, onward from page 14. Probs: 53, 55 (reading a graph)

• Ch 2, onward from page 47. Probs: 21, 23


