

Kinematics Motion in 1-Dimension Graphs and Problem Solving

Lana Sheridan

De Anza College

Jan 16, 2020

Last time

• graphing kinematic quantities against time

Overview

- more about graphs of kinematic quantities vs time
- how to solve problems & using a graph

Reminder: Graphing Kinematic Quantities

One very convenient way of representing motion is with graphs that show the variation of these kinematic quantities with time.

Time is written along the horizontal axis – we are representing time passing with a direction in space (the horizontal direction).

Relating Graphs

Matching Velocity to Acceleration Graphs

More Graph Matching Questions

Which of the following position-time graphs corresponds to this velocity-time graph?

¹Figures from Leduc, "Cracking the AP Physics B Exam" Princeton Review.

More Graph Matching Questions

Sketch the velocity-time graph that corresponds to this position-time graph:

More Graph Matching Questions

Sketch the velocity-time graph that corresponds to this position-time graph:

Solving physics problems is often not simple.

To get into good habits for future work in physics, we will follow a set process.

This process is similar to the process that physicists and engineers go through solving problems, sometimes only mentally, sometimes explicitly.

(Also have a look at the similar process and examples on page 12 of the textbook.)

 Draw a diagram, sketch, or graph showing the situation in the question.

- Draw a diagram, sketch, or graph showing the situation in the question.
- 2 Make a hypothesis or estimate of what the answer will be.

- Draw a diagram, sketch, or graph showing the situation in the question.
- 2 Make a hypothesis or estimate of what the answer will be.
- **3** Solve the **question** or **problem**:
 - a If it's a 'question'
 - i Explanation or proof; make sure that the principles used are clearly stated.

- Draw a diagram, sketch, or graph showing the situation in the question.
- 2 Make a hypothesis or estimate of what the answer will be.
- **3** Solve the **question** or **problem**:
 - a If it's a 'question'
 - i Explanation or proof; make sure that the principles used are clearly stated.
 - b If it's a 'problem'
 - i Write out quantities given in question and quantity asked for.
 - ii Write out the equation(s) you will use. (Start from equations we have discussed in class.)
 - iii Do any required algebra.
 - iv Plug in givens and solve.
 - v Check units.

- Draw a diagram, sketch, or graph showing the situation in the question.
- 2 Make a hypothesis or estimate of what the answer will be.
- **3** Solve the **question** or **problem**:
 - a If it's a 'question'
 - i Explanation or proof; make sure that the principles used are clearly stated.
 - b If it's a 'problem'
 - i Write out quantities given in question and quantity asked for.
 - ii Write out the equation(s) you will use. (Start from equations we have discussed in class.)
 - iii Do any required algebra.
 - iv Plug in givens and solve.
 - v Check units.
- 4 Analyze answer as appropriate.
 - a Compare answer to hypothesis if it is not the same try to explain why.
 - **b** Is your answer reasonable? / Compare to other things your are familiar with.
 - c Consider limits or special cases.

Example 2.5 (from the textbook)

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of 1.50 m/s. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at 2.40 m/s².

(a) How fast is the boat moving after accelerating for 5.00 s?

(b) How far has the boat traveled in this time?

Example 2.5 (from the textbook)

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of 1.50 m/s. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at 2.40 m/s².

(a) How fast is the boat moving after accelerating for 5.00 s?

(b) How far has the boat traveled in this time?

Sketch:

¹Walker, pg 31.

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of 1.50 m/s. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at 2.40 m/s².

(a) How fast is the boat moving after accelerating for 5.00 s?

(b) How far has the boat traveled in this time?

Hypothesis:

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of 1.50 m/s. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at 2.40 m/s².

(a) How fast is the boat moving after accelerating for 5.00 s?(b) How far has the boat traveled in this time?

Hypothesis: (a) 10 m/s. (Must be bigger than 1.50 m/s, but there's only so fast a boat can go.)

(b) 30 m. If the average speed is about 6 m/s (between 1.50 and 10 m/s) multiply that by 5 s to get 30 m.

¹Walker, pg 31.

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of 1.50 m/s. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at 2.40 m/s².

(a) How fast is the boat moving after accelerating for 5.00 s?

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of 1.50 m/s. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at 2.40 m/s².

(a) How fast is the boat moving after accelerating for 5.00 s?

Given: $a = 2.40 \text{ m/s}^2$, $v_0 = 1.50 \text{ m/s}$, t = 5.00 sWant: v_f

(b) How far has the boat traveled in this time?

Analyze answers:

A car is traveling along a straight road at 11 m/s and accelerates at a constant rate of 1.8 m/s². How long does it take to reach a speed of 20 m/s?

- Draw a diagram, sketch, or graph showing the situation in the question.
- 2 Make a hypothesis or estimate of what the answer will be.
- **3** Solve the question or problem:
 - a Here, it's a 'problem'
 - i Write out quantities given in question and quantity asked for.
 - ii Write out the equation(s) you will use. (Start from equations we have discussed in class.)
 - iii Do any required algebra.
 - iv Plug in givens and solve.
 - v Check units.
- 4 Analyze answer as appropriate.
 - a Compare answer to hypothesis if it is not the same try to explain why.
 - **b** Is your answer reasonable? / Compare to other things your are familiar with.
 - c Consider limits or special cases.

Summary

• graphing kinematic quantities

Homework

 graphs multiple choice worksheet, *do on 882-E scantron sheet*, due ?

Walker Physics:

• Ch 2, onward from page 47. Probs: 36*, 37

^{*}Ans for 26: (a) which has the steepest slope?, (b) 1 m/s, (c) 2 m/s, (d) 0.5 m/s