Kinematics
 Motion in 1-Dimension Graphs and Problem Solving

Lana Sheridan
De Anza College

Jan 16, 2020

Last time

- graphing kinematic quantities against time

Overview

- more about graphs of kinematic quantities vs time
- how to solve problems \& using a graph

Reminder: Graphing Kinematic Quantities

One very convenient way of representing motion is with graphs that show the variation of these kinematic quantities with time.

Time is written along the horizontal axis - we are representing time passing with a direction in space (the horizontal direction).

Relating Graphs

Matching Velocity to Acceleration Graphs

a

d

b

e

C

f

More Graph Matching Questions

Which of the following position-time graphs corresponds to this velocity-time graph?

A

C

D

${ }^{1}$ Figures from Leduc, "Cracking the AP Physics B Exam" Princeton Review.

More Graph Matching Questions

Sketch the velocity-time graph that corresponds to this position-time graph:

Time

More Graph Matching Questions

Sketch the velocity-time graph that corresponds to this position-time graph:

How to solve problems

Solving physics problems is often not simple.

To get into good habits for future work in physics, we will follow a set process.

This process is similar to the process that physicists and engineers go through solving problems, sometimes only mentally, sometimes explicitly.
(Also have a look at the similar process and examples on page 12 of the textbook.)

How to solve problems

(1) Draw a diagram, sketch, or graph showing the situation in the question.

How to solve problems

(1) Draw a diagram, sketch, or graph showing the situation in the question.
(2) Make a hypothesis or estimate of what the answer will be.

How to solve problems

(1) Draw a diagram, sketch, or graph showing the situation in the question.
(2) Make a hypothesis or estimate of what the answer will be.
(3) Solve the question or problem:
a If it's a 'question' -
i Explanation or proof; make sure that the principles used are clearly stated.

How to solve problems

(1) Draw a diagram, sketch, or graph showing the situation in the question.
(2) Make a hypothesis or estimate of what the answer will be.
(3) Solve the question or problem:
a If it's a 'question' -
i Explanation or proof; make sure that the principles used are clearly stated.
b If it's a 'problem' -
i Write out quantities given in question and quantity asked for.
ii Write out the equation(s) you will use. (Start from equations we have discussed in class.)
iii Do any required algebra.
iv Plug in givens and solve.
v Check units.

How to solve problems

(1) Draw a diagram, sketch, or graph showing the situation in the question.
2 Make a hypothesis or estimate of what the answer will be.
(3) Solve the question or problem:
a If it's a 'question' -
i Explanation or proof; make sure that the principles used are clearly stated.
b If it's a 'problem' -
i Write out quantities given in question and quantity asked for.
ii Write out the equation(s) you will use. (Start from equations we have discussed in class.)
iii Do any required algebra.
iv Plug in givens and solve.
v Check units.
(4) Analyze answer as appropriate.
a Compare answer to hypothesis - if it is not the same try to explain why.
b Is your answer reasonable? / Compare to other things your are familiar with.
c Consider limits or special cases.

Example 2.5 (from the textbook)

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of $1.50 \mathrm{~m} / \mathrm{s}$. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at $2.40 \mathrm{~m} / \mathrm{s}^{2}$.
(a) How fast is the boat moving after accelerating for 5.00 s ?
(b) How far has the boat traveled in this time?

Example 2.5 (from the textbook)

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of $1.50 \mathrm{~m} / \mathrm{s}$. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at $2.40 \mathrm{~m} / \mathrm{s}^{2}$.
(a) How fast is the boat moving after accelerating for 5.00 s ?
(b) How far has the boat traveled in this time?

Sketch:

Breakwater

[^0]
Example 2.5

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of $1.50 \mathrm{~m} / \mathrm{s}$. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at $2.40 \mathrm{~m} / \mathrm{s}^{2}$.
(a) How fast is the boat moving after accelerating for 5.00 s ?
(b) How far has the boat traveled in this time?

Hypothesis:

Example 2.5

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of $1.50 \mathrm{~m} / \mathrm{s}$. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at $2.40 \mathrm{~m} / \mathrm{s}^{2}$.
(a) How fast is the boat moving after accelerating for 5.00 s ?
(b) How far has the boat traveled in this time?

Hypothesis:
(a) $10 \mathrm{~m} / \mathrm{s}$. (Must be bigger than $1.50 \mathrm{~m} / \mathrm{s}$, but there's only so fast a boat can go.)
(b) 30 m . If the average speed is about $6 \mathrm{~m} / \mathrm{s}$ (between 1.50 and $10 \mathrm{~m} / \mathrm{s}$) multiply that by 5 s to get 30 m .

[^1]
Example 2.5

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of $1.50 \mathrm{~m} / \mathrm{s}$. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at $2.40 \mathrm{~m} / \mathrm{s}^{2}$.
(a) How fast is the boat moving after accelerating for 5.00 s ?

Example 2.5

A boat moves slowly inside a marina (so as not to leave a wake) with a constant speed of $1.50 \mathrm{~m} / \mathrm{s}$. As soon as it passes the breakwater, leaving the marina, it throttles up and accelerates at $2.40 \mathrm{~m} / \mathrm{s}^{2}$.
(a) How fast is the boat moving after accelerating for 5.00 s ?

Given: $a=2.40 \mathrm{~m} / \mathrm{s}^{2}, v_{0}=1.50 \mathrm{~m} / \mathrm{s}, t=5.00 \mathrm{~s}$
Want: v_{f}

Example 2.5

(b) How far has the boat traveled in this time?

Example 2.5

Analyze answers:

Now You Try It

A car is traveling along a straight road at $11 \mathrm{~m} / \mathrm{s}$ and accelerates at a constant rate of $1.8 \mathrm{~m} / \mathrm{s}^{2}$. How long does it take to reach a speed of $20 \mathrm{~m} / \mathrm{s}$?

How to solve problems

(1) Draw a diagram, sketch, or graph showing the situation in the question.
(2) Make a hypothesis or estimate of what the answer will be.
(3) Solve the question or problem:
a Here, it's a 'problem' -
i Write out quantities given in question and quantity asked for.
ii Write out the equation(s) you will use. (Start from equations we have discussed in class.)
iii Do any required algebra.
iv Plug in givens and solve.
v Check units.
(4) Analyze answer as appropriate.
a Compare answer to hypothesis - if it is not the same try to explain why.
b Is your answer reasonable? / Compare to other things your are familiar with.
c Consider limits or special cases.

Summary

- graphing kinematic quantities

Homework

- graphs multiple choice worksheet, *do on 882-E scantron sheet*, due ?
Walker Physics:
- Ch 2, onward from page 47. Probs: $36^{*}, 37$

[^2]
[^0]: ${ }^{1}$ Walker, pg 31.

[^1]: ${ }^{1}$ Walker, pg 31.

[^2]: *Ans for 26: (a) which has the steepest slope?, (b) $1 \mathrm{~m} / \mathrm{s}$, (c) $2 \mathrm{~m} / \mathrm{s}$,
 (d) $0.5 \mathrm{~m} / \mathrm{s}$

