

Inferential Statistics and Probability a Holistic Approach

Chapter 1 Displaying and Analyzing Data with Graphs

This Course Material by Maurice Geraphty is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Conditions for use are shown here: https://creativecommons.org/licenses/by-sq/4.0/

Introduction

- Syllabus
 – Homework 0
- Projects
- Computer Lab S44
 - Minitab
- Website
- http://nebula2.deanza.edu/~mo
- Tutor Lab S43 (S41 for MPS)
 - Drop in or assigned tutors get form from lab.
 - Group Tutoring
- Other Questions

Descriptive Statistics

- Organizing, summarizing and displaying data
 - Graphs
 - Charts
 - Measure of Center
 - Measures of Spread
 - Measures of Relative Standing

Problem Solving

- The Role of Probability
- Modeling
- Simulation
- Verification

Inferential Statistics

- Population the set of all measurements of interest to the sample collector
- Sample a subset of measurements selected from the population
- Inference A conclusion about the population based on the sample
- Reliability Measure the strength of the Inference

Raw Data — Apple Monthly Adjusted Stock Price: 12/1998 to 12/2018

115.82	102.97	106.17	75.50	69.86	52.70	41.97	27.42	11.11	25.77	11.04	9.35	4.19	1.39	0.93	1.42	0.97	
110.52	115.73	114.39	74.83	76.83	49.73	40.49	26.01	12.06	23.71	11.93	8.82	4.36	1.36	1.01	1.39	1.07	
112.96	116.40	103.43	69.93	77.80	52.67	39.16	24.53	14.00	24.72	10.55	7.49	3.41	1.49	1.05	1.14	1.27	
112.47	107.44	96.49	63.79	87.18	49.62	36.92	24.12	14.79	19.97	10.02	6.98	2.52	1.35	0.94	1.01	1.68	
105.56	109.84	98.16	65.19	86.93	50.07	31.63	21.89	22.06	18.02	8.83	6.10	2.24	1.47	0.96	1.21	3.96	
103.12	117.62	91.10	60.15	79.47	50.81	33.47	21.26	20.68	17.14	8.84	5.55	2.10	1.37	0.99	1.22	3.31	
94.60	121.63	88.56	52.71	75.99	43.68	32.73	18.53	21.79	15.88	7.45	4.79	2.12	1.24	1.15	1.51	3.41	
98.81	126.33	86.17	59.78	75.17	45.26	33.43	17.67	24.56	15.77	7.78	5.17	1.83	1.17	1.52	1.30	2.73	
92.20	120.85	79.89	58.47	75.99	45.56	33.97	16.37	22.63	12.99	9.16	4.69	1.68	0.93	1.58	1.66	4.04	
107.20	120.15	72.66	58.45	78.01	45.35	30.58	13.68	18.67	12.09	8.16	5.42	1.76	0.92	1.54	1.44	4.42	
95.10	124.05	71.24	58.28	70.58	45.96	26.63	11.62	16.27	11.01	8.91	5.84	1.56	0.98	1.41	1.19	3.73	
95.22	112.69	67.37	59.80	59.40	44.15	24.99	11.73	17.61	11.16	9.83	5.00	1.47	0.93	1.61	1.41	3.38	

- In the last 18 years, has violent crime:
 - Increased?
 - Stayed about the Same?
 - Decreased?

Is there more crime in the	U.S. than there w	as a year ag	o, or less?	
_	More	Less	Same (vol.)	No opinion
	%	%	%	%
2016 Oct 5-9	70	20	6	4
2015 Oct 7-11	70	18	8	4
2014 Oct 12-15	63	21	9	7
2013 Oct 3-6	64	19	9	7
2011 Oct 6-9	68	17	8	8
2010 Oct 7-10	66	17	8	9
2009 Oct 1-4	74	15	6	5
2008 Oct 3-5	67	15	9	9
2007 Oct 4-7	71	14		6
2006 Oct 9-12	68	16	8	8
2005 Oct 13-16	67	21	9	3
2004 Oct 11-14	53	28	14	5
2003 Oct 6-8	60	25	11	4
2002 Oct 14-17	62	21	11	6
2001 Oct 11-14	41	43	10	6
2000 Aug 29-Sep 5	47	41	7	5
1998 Oct 23-25	52	35	8	5
1997 Aug 22-25	64	25	6	5
1996 Jul 25-28	.71	15	8	6
1993 Oct 13-18	87	4	5	4
1992 Feb 28-Mar 1	89	- 3		

Levels of Data Measurement

- Nominal: Names or labels only
 - Example: What city do you live in?
- **Ordinal:** Data can be ranked, but no quantifiable difference.
 - Example: Ratings Excellent, Good, Fair, Poor
- Interval: Data can be ranked with quantifiable differences, but no true zero.
 - Example: Temperature
- Ratio: Data can be ranked with quantifiable differences and there is a true zero.
 - Example: Age

Examples of Data

- Distance from De Anza College
- Number of Grandparents still alive
- Eye Color
- Amount you spend on food each week.
- Number of Facebook "Friends"
- Zip Code
- City you live in.
- Year of Birth
- How to prepare Steak? (rare, medium, well-done)
- Do you drive to De Anza?

25

Graphical Methods

- Qualitative Data
 - Pie Chart
 - Bar Chart
- Quantitative Data
 - Stem and Leaf Chart
 - Histogram
 - Ogive
 - Dot Plot

26

Graphing Categorical Data

A sample of 500 adults (age 18 and over) from Santa Clara County, California were taken from the year 2000 United States Census.

Marital Status	Frequency
Married	270
Widowed	22
Divorced - not remarried	42
Separated	10
Single - never married	156
Total	500

Graphing Categorical Data

- n = sample size The number of observations in your sample size
- Frequency the number of times a particular value is observed.
- Relative frequency The proportion or percentage of times a particular value is observed.
- Relative Frequency = Frequency / n

28

Graphing Categorical Data

A sample of 500 adults (age 18 and over) from Santa Clara County, California were taken from the year 2000 United States Census.

Marital Status	Frequency	Relative Frequency
Married	270	270/500 = 0.540 or 54.0%
Widowed	22	22/500 = 0.044 or 4.4%
Divorced - not remarried	42	42/500 = 0.084 or 8.4%
Separated	10	10/500 = 0.020 or 2.0%
Single - never married	156	156/500 = 0.312 or 31.2%
Total	500	500/500 = 1.000 or 100.0%

Daily Minutes spent on the Internet by 30 students

102	104	85	67	101
71	116	107	99	82
103	97	105	103	95
105	99	86	87	100
109	108	118	87	125
124	112	122	78	92

32

Describing Numeric Data

- Center?
 - Where is an "average" value
- Spread?
 - How far are data spread from the center
- Shape?
 - Symmetric or skewed?
- Anything Unusual?
 - Outliers, more than 1 peak?

Stem and Leaf Graph

6 7

7 18

8 25677

9 25799

10 01233455789

11 268

12 245

24

Back-to-back Example

Passenger loading times for two airlines

11, 14, 16, 17,	8, 11, 13, 14,
19, 21, 22, 23,	15, 16, 16, 18,
24, 24, 24, 26,	19, 19, 21, 21,
31, 32, 38, 39	22, 24, 26, 31
,,,	22, 27, 20, 31

35

Back to Back Example

```
0 0 8 14 1 134 679 1 566899 123444 2 1124 6 2 6 12 3 1 89 3
```


Grouping Data

- Choose the number of groups
 - between 5 and 10 is best
- Interval Width = (Range+1)/(Number of Groups)
 - Round **up** to a convenient value
- Start with lowest value and create the groups.
- Example for 5 categories Interval Width = (58+1)/5 = 12 (rounded up)

37

Grouping Data

Class Interval	Frequency	Relative Frequency
67 to 79	3	0.100 or 10.0%
79 to 91	5	0.167 or 16.7%
91 to 103	8	0.266 or 26.6%
103 to 115	9	0.300 or 30.0%
115 to 127	5	0.167 or 16.7%
Total	30	1.000 or 100%

