

Chapter 2 Slides

Measures of Variability

- Range
- Variance
- Standard Deviation
- Interquartile Range (percentiles)

Sample Variance
$$s^{2} = \frac{\sum (x_{i} - \overline{x})^{2}}{n-1}$$

$$s^{2} = \frac{\sum x_{i}^{2} - (\sum x_{i})^{2} / n}{n - 1}$$

Variance and Standard Deviation

<i>X</i> _i 2 5 9 <u>12</u> 30	$X_i - \overline{X}$ -4 -4 -1 3 $\underline{6}$ 0	$(X_i - \overline{X})^2$ 16 16 1 9 36 78	$s^2 = \frac{78}{4} = 195$ $s = \sqrt{195} \approx 4.42$
---	---	--	--

Interpreting the Standard Deviation

- Chebyshev's Rule
 - At least 100 x (1-(1/k)²)% of any data set must be within k standard deviations of the mean.
- Empirical Rule (68-95-99 rule)
 - Bell shaped data
 - 68% within 1 standard deviation of mean
 - 95% within 2 standard deviations of mean
 - 99.7% within 3 standard deviations of mean

Measures of Relative Standing

- Z-score
- Percentile
- Quartiles
- Box Plots

15

Z-score

- The number of Standard Deviations from the Mean
- Z>0, X_i is greater than mean
- Z<0, X_i is less than mean

$$Z = \frac{X_i - \overline{X}}{S}$$

16

Percentile Rank

Formula for ungrouped data

- The location is (n+1)p (interpolated or rounded)
- n= sample size
- p = percentile

4

Quartiles

- 25th percentile is 1st quartile
- 50th percentile is median
- 75th percentile is 3rd quartile
- 75th percentile 25th percentile is called the Interquartile Range which represents the "middle 50%"

18

Using Z-score to detect outliers

- Calculate the mean and standard deviation without the suspected outlier.
- Calculate the Z-score of the suspected outlier.
- If the Z-score is more than 3 or less than -3, that data point is a probable outlier.

$$Z = \frac{50 - 4.4}{1.81} = 25.2$$

25

Outliers - what to do

- Remove or not remove, there is no clear answer.
- For some populations, outliers don't dramatically change the overall statistical analysis. Example: the tallest person in the world will not dramatically change the mean height of 10000 people.
- However, for some populations, a single outlier will have a dramatic effect on statistical analysis (called "Black Swan" by Nicholas Taleb) and inferential statistics may be invalid in analyzing these populations. Example: the richest person in the world will dramatically change the mean wealth of 10000 people

26

Bivariate Data

- Ordered numeric pairs (X,Y)
- Both values are numeric
- Paired by a common characteristic
- Graph as Scatterplot

27

Example of Bivariate Data

- Housing Data
 - X = Square Footage
 - Y = Price

Correlation Analysis

- Correlation Analysis: A group of statistical techniques used to measure the strength of the relationship (correlation) between two variables.
- Scatter Diagram: A chart that portrays the relationship between the two variables of interest
- Dependent Variable: The variable that is being predicted or estimated. "Effect"
- Independent Variable: The variable that provides the basis for estimation. It is the predictor variable. "Cause?" (Maybe!)

31

The Coefficient of Correlation, r

- The Coefficient of Correlation (r) is a measure of the strength of the relationship between two variables.
 - It requires interval or ratio-scaled data (variables).
 - It can range from -1 to 1.
 - Values of -1 or 1 indicate perfect and strong correlation.
 - Values close to 0 indicate weak correlation.
 - Negative values indicate an inverse relationship and positive values indicate a direct relationship.

Causation

- Correlation does not necessarily imply causation.
- There are 4 possibilities if X and Y are correlated:
 - 1. X causes Y
 - 2. Y causes X
 - 3. X and Y are caused by something else.
 - 4. Confounding The effect of X and Y are hopelessly mixed up with other variables.

20

Causation - Examples

- City with more police per capita have more crime per capita.
- As Ice cream sales go up, shark attacks go up.
- People with a cold who take a cough medicine feel better after some rest.

39

Formula for correlation coefficient r

$$r = \frac{SSXY}{\sqrt{SSX \cdot SSY}}$$

$$SSX = \sum X^2 - \frac{1}{n} (\sum X)^2$$

$$SSY = \sum Y^2 - \frac{1}{n} (\sum Y)^2$$

$$SSXY = \sum XY - \frac{1}{n} (\sum X \cdot \sum Y)$$

40

Example

- X = Average Annual Rainfall (Inches)
- Y = Average Sale of Sunglasses/1000
- Make a Scatter Diagram
- Find the correlation coefficient

Х	10	15	20	30	40
Υ	40	35	25	25	15

41

Example continued

- Make a Scatter Diagram
- Find the correlation coefficient

