

Random Variable

- The value of the variable depends on an experiment, observation or measurement.
- The result is not known in advance.
- For the purposes of this class, the variable will be numeric.

2

Random Variables

- Discrete Data that you Count
 - Defects on an assembly line
 - Reported Sick days
 - RM 7.0 earthquakes on San Andreas Fault
- Continuous Data that you Measure
 - Temperature
 - Height
 - Time

3

Discrete Random Variable

- List Sample Space
- Assign probabilities P(x) to each event x
- Use "relative frequencies"
- Must follow two rules
 - $P(x) \ge 0$
 - $\Sigma P(x) = 1$
- P(x) is called a Probability Distribution Function or pdf for short.

4

Probability Distribution Example

- Students are asked 4 questions and the number of correct answers are determined.
- Assign probabilities to each event.

х	P(x)
0	.1
1	.1
2	.2
3	.4
4	

5

Probability Distribution Example

- Students are asked 4 questions and the number of correct answers are determined.
- Assign probabilities to each event.

Х	P(x)
0	.1
1	.1
2	.2
3	.4
4	.2

6

Mean and Variance of Discrete Random Variables

 $\,\blacksquare\,$ Population mean $\mu,$ is the expected value of x

$$\mu = \Sigma[(x) P(x)]$$

• Population variance σ^2 , is the expected value of $(x-\mu)^2$

$$\sigma^2 = \Sigma [(x-\mu)^2 P(x)]$$

7

Example of Mean and Variance

х	P(x)	xP(x)	(x-μ) ² P(x)
0	0.1	0.0	.625
1	0.1	0.1	.225
2	0.2	0.4	.050
3	0.4	1.2	.100
4	0.2	0.8	.450
Total	1.0	2.5 =μ	1.450=σ ²

Bernoulli Distribution

- Experiment is one trial
- 2 possible outcomes (Success, Failure)
- p=probability of success
- q=probability of failure
- X=number of successes (1 or 0)
- Also known as Indicator Variable

Mean and Variance of Bernoulli

Total	1.0	р=µ	p(1-p)=σ ²
1	р	р	p(1-p) ²
0	(1-p)	0.0	p ² (1-p)
Х	P(x)	xP(x)	(x-μ) ² P(x)

- μ = p
- $\sigma^2 = p(1-p) = pq$

10

Binomial Distribution

- n identical trials
- Two possible outcomes (success/failure)
- Probability of success in a single trial is p
- Trials are mutually independent
- X is the number of successes
- Note: X is a sum of n independent identically distributed Bernoulli distributions

Binomial Distribution

- n independent Bernoulli trials
- Mean and Variance of Binomial Distribution is just sample size times mean and variance of Bernoulli Distribution

$$p(x) = {}_{n}C_{x}p^{x}(1-p)^{n-x}$$

$$\mu = E(X) = np$$

$$\sigma^{2} = Var(X) = np(1-p)$$

12

Maurice Geraghty 2018

Binomial Examples

- The number of defective parts in a fixed sample.
- The number of adults in a sample who support the war in Iraq.
- The number of correct answers if you guess on a multiple choice test.

13

Binomial Example

- 90% of super duplex globe valves manufactured are good (not defective). A sample of 10 is selected.
- Find the probability of exactly 8 good valves being chosen.
- Find the probability of 9 or more good valves being chosen.
- Find the probability of 8 or less good valves being chosen.

14

Using Technology

X	p(X)	probability
0	0.00000	0.00000
1	0.00000	0.00000
2	0.00000	0.00000
3	0.00001	0.00001
4	0.00014	0.00015
5	0.00149	0.00163
6	0.01116	0.01280
7	0.05740	0.07019
8	0.19371	0.26390
9	0.38742	0.65132
10	0.34868	1.00000
755	1.00000	

Use Minitab or Excel to make a table of Binomial Probabilities.

P(X=8) = .19371

 $P(X \le 8) = .26390$

 $P(X \ge 9) = 1 - P(X \le 8) = .73610$

9.000 expected value 0.900 variance 0.949 standard deviation

Poisson Distribution

- Occurrences per time period (rate)
- Rate (μ) is constant
- No limit on occurrences over time period

$$P(x) = \frac{e^{-\mu} \mu^{x}}{x!} \qquad \mu = \mu$$

$$\sigma = \sqrt{\mu}$$

16

Examples of Poisson

- Text messages in the next hour
- Earthquakes on a fault
- Customers at a restaurant
- Flaws in sheet metal produced
- Lotto winners

Note: A binomial distribution with a large n and small p is approximately Poisson with $\mu \approx np.$

Poisson Example

- Earthquakes of Richter magnitude 3 or greater occur on a certain fault at a rate of twice every year.
- Find the probability of at least one earthquake of RM 3 or greater in the next year.

$$P(X > 0) = 1 - P(0)$$

$$= 1 - \frac{e^{-2} 2^{0}}{0!}$$

18

Maurice Geraghty 2018

Poisson Example (cont)

- Earthquakes of Richter magnitude 3 or greater occur on a certain fault at a rate of twice every year.
- Find the probability of exactly 6 earthquakes of RM 3 or greater in the next 2 years.

$$\mu = 2(2) = 4$$

$$P(X = 6) = \frac{e^{-4}4^{6}}{6!} \approx .1042$$

10