

Distribution of Sample Mean

- Random Sample: X₁, X₂, X₃, ..., X_n
 Each X_i is a Random Variable from the same population
 - All X_i's are Mutually Independent
- \overline{X} is a function of Random Variables, so \overline{X} is itself Random Variable.
- In other words, the Sample Mean can change if the values of the Random Sample change.
- What is the Probability Distribution of \overline{X} ?

Central Limit Theorem

3 important results for the distribution of \overline{X}

Mean Stays the same

$$\mu_{\overline{X}} = \mu$$

Standard Deviation Gets Smaller

$$\sigma_{\overline{X}} = \frac{\sigma}{\sqrt{n}}$$

 $\ \ \,$ If n is sufficiently large, $\,\overline{\!X}\,$ has a Normal Distribution

ın

Example

The mean height of American men (ages 20-29) is μ = 69.2 inches. If a random sample of 60 men in this age group is selected, what is the probability the mean height for the sample is greater than 70 inches? Assume σ = 2.9".

$$P(\overline{X} > 70) = P\left(Z > \frac{(70 - 69.2)}{2.9/\sqrt{60}}\right)$$

$$= P(Z > 2.14) = 0.0162$$

Example – Central Limit Theorem

The waiting time until receiving a text message follows an exponential distribution with an expected waiting time of 1.5 minutes. Find the probability that the mean waiting time for the 50 text messages exceeds 1.6 minutes.

$$\mu = 1.5$$
 $\sigma = 1.5$ $n = 50$

Use Normal Distribution (n>30)

$$P(\overline{X} > 1.6) = P\left(Z > \frac{(1.6 - 1.5)}{1.5/\sqrt{50}}\right) = P(Z > 0.47) = 0.3192$$

Central Limit Theorem Sample Proportion

- The sample proportion of successes from a sample from a Binomial distribution is a random variable.
- If X is a random variable from a Binomial distribution with parameters n and p, an np > 10 and n(1-p) > 10, then the following is true for the Sample Proportion, \hat{p} :

$$\mu_{\hat{p}} = p \qquad \qquad \sigma_{\hat{p}} = \sqrt{\frac{p(1-p)}{n}}$$

 \bullet The Distribution of \hat{P} is approximately Normal.

Example

- 45% of all community college students in California receive fee waivers.
- Suppose you randomly sample 1000 community college students to determine the proportion of students with fee waivers in the sample.
- 483 of the sampled students are receiving fee waivers
- Determine \hat{P} . Is the result unusual?