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a Holistic Approach
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Chapter 7
Central Limit Theorem

This Course Material by Maurice Geraghty is licensed under a Creative Commons 
Attribution-ShareAlike 4.0 International License. 

Conditions for use are shown here: https://creativecommons.org/licenses/by-sa/4.0/

Distribution of Sample Mean 
 Random Sample: X1, X2, X3, …, Xn 

 Each Xi is a Random Variable from the same population
 All Xi’s are Mutually Independent
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 is a function of Random Variables, so 
is itself Random Variable. 

 In other words, the Sample Mean can change if the 
values of the Random Sample change.

 What is the Probability Distribution of     ?
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Example – Roll 2 Dice
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Example – Roll 10 Dice
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Example – Roll 30 Dice
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Example - Poisson
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Central Limit Theorem – Part 1
 IF a Random Sample of any 

size is taken from a 
population with a Normal 
Distribution with mean= μ
and standard deviation = σ |
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and standard deviation = σ

 THEN the distribution of the 
sample mean has a Normal 
Distribution with:
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Central Limit Theorem – Part 2
 IF a random sample of 

sufficiently large size is taken 
from a population with any
Distribution with mean= μ and 
standard deviation = σ
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standard deviation = σ

 THEN the distribution of the 
sample mean has approximately 
a Normal Distribution with:

nXX
σσμμ ==

x

x
x

x

x
x

x

x
x

xx
x

x xx
xx x

x
x
x

xx

X

X

μ



Chapter 7 Slides

Maurice Geraghty, 2018 4

Central Limit Theorem 
3 important results for the distribution of 
 Mean Stays the same

X

μμ =X
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 Standard Deviation Gets Smaller

 If n is sufficiently large,      has a Normal 
Distribution
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Example
The mean height of American men (ages 20-29) is μ
= 69.2 inches. If a random sample of 60 men in this 
age group is selected, what is the probability  the 
mean height for the sample is greater than 70
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mean height for the sample is greater than 70 
inches?  Assume  σ = 2.9”. 
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Example (cont)
μ = 69.2
σ = 2.9
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Example – Central Limit Theorem
The waiting time until receiving a text message 
follows an exponential distribution with an expected 
waiting time of 1.5 minutes. Find the probability that 
the mean waiting time for the 50 text messages
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the mean waiting time for the 50 text messages 
exceeds 1.6 minutes.
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Use Normal Distribution (n>30)

Binomial np=0.2
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Binomial np=0.5
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Binomial np=2.5
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Binomial np=10
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Central Limit Theorem 
Sample Proportion
 The sample proportion of successes from a sample 

from a Binomial distribution is a random variable.
 If X is a random variable from a Binomial distribution 

with parameters n and p an np > 10 and n(1-p) >with parameters n and p, an np > 10 and n(1 p) > 
10, then the following is true for the  Sample 
Proportion,    :



 The Distribution of    is approximately Normal.

18

p̂ pμ = ( )
ˆ

1
p

p p
n

σ
−

=

P̂

P̂



Chapter 7 Slides

Maurice Geraghty, 2018 7

Example
 45% of all community college students in California 

receive fee waivers. 
 Suppose you randomly sample 1000 community 

college students to determine the proportion of
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college students to determine the proportion of 
students with fee waivers in the sample.

 483 of the sampled students are receiving fee 
waivers. 

 Determine    . Is the result unusual?P̂


