


## Characteristics of the Chi-Square Distribution

- The major characteristics of the chisquare distribution are:
  - It is positively skewed
  - It is non-negative
  - It is based on degrees of freedom
  - When the degrees of freedom change a new distribution is created



### Goodness-of-Fit Test: Equal Expected Frequencies

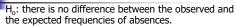
- Let O<sub>i</sub> and E<sub>i</sub> be the observed and expected frequencies respectively for each category.
- $\quad \quad \textbf{$H_0$: there is no difference between Observed and } \\ \text{Expected Frequencies}$
- $lacktriangledown H_a$ : there is a difference between Observed and Expected Frequencies
- The test statistic is:  $\chi^2 = \sum \frac{(O_i E_i)^2}{E_i}$
- The critical value is a chi-square value with (k-1) degrees of freedom, where k is the number of categories

### **EXAMPLE 1**

The following data on absenteeism was collected from a manufacturing plant. At the .01 level of significance, test to determine whether there is a difference in the absence rate by day of the week.

| Day       | Frequency |
|-----------|-----------|
| Monday    | 95        |
| Tuesday   | 65        |
| Wednesday | 60        |
| Thursday  | 80        |
| Friday    | 100       |

5



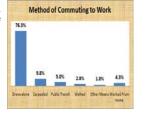

### **EXAMPLE 1** continued

Assume equal expected frequency: (95+65+60+80+100)/5=80

| Day   | 0   | E   | (O-E)^2/E |
|-------|-----|-----|-----------|
| Mon   | 95  | 80  | 2.8125    |
| Tues  | 65  | 80  | 2.8125    |
| Wed   | 60  | 80  | 5.0000    |
| Thur  | 80  | 80  | 0.0000    |
| Fri   | 100 | 80  | 5.0000    |
| Total | 400 | 400 | 15.625    |

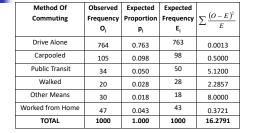
### **EXAMPLE 1** continued




- H<sub>a</sub>: there is a difference between the observed and the expected frequencies of absences.
- Test statistic: chi-square=Σ(O-E)²/E=15.625
- = Decision Rule: reject H $_{\rm 0}$  if test statistic is greater than the critical value of 13.277. (4 df,  $\alpha$ =.01)
- Conclusion: reject H<sub>o</sub> and conclude that there is a difference between the observed and expected frequencies of absences.

,

# Goodness-of-Fit Test: Unequal Expected Frequencies


#### **EXAMPLE 2**

- In the 2010 United States census, data was collected on how people get to work -- their method of commuting.
- Suppose you wanted to know if people who live in the San Jose metropolitan area (Santa Clara County) commute with similar proportions as the United States.
- Design and conduct a hypothesis test at the 5% significance level.



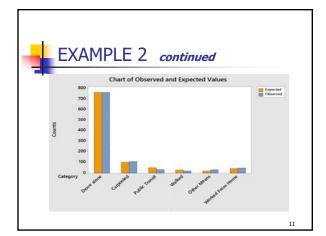
Ω

# EXAMPLE 2 continued



### **EXAMPLE 2** continued




#### Design:

**Ho:**  $p_1=.763$   $p_2=.098$   $p_3=.050$   $p_4=.028$   $p_5=.018$   $p_6=.043$  **Ha:** At least one  $p_i$  is different than what was stated in Ho

- $\alpha = .05$
- Model: Chi-Square Goodness of Fit, df=5
- $H_0$  is rejected if  $\chi^2 > 11.071$
- Data:
- $\chi^2 = 16.2791$ , Reject Ho
- Conclusion:

Workers in Santa Clara County do not have the same frequencies of method of commuting as workers in the entire United States.

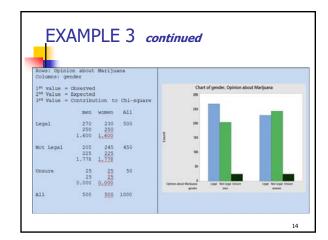
10



### **Contingency Table Analysis**



- Contingency table analysis is used to test whether two traits or variables are related.
- Each observation is classified according to two variables.
- The usual hypothesis testing procedure is used.
- The degrees of freedom is equal to: (number of rows-1)(number of columns-1).
- The expected frequency is computed as: Expected Frequency = (row total)(column total)/grand total




### **EXAMPLE 3**

- In May 2014, Colorado became the first state to legalize the recreational use of marijuana.
- A poll of 1000 adults were classified by gender and their opinion about legalizing marijuana
- At the .05 level of significance, can we conclude that gender and the opinion about legalizing marijuana for recreational use are dependent events?

| Marijuana<br>should be | Men | Women | Total |
|------------------------|-----|-------|-------|
| Legal                  | 270 | 230   | 500   |
| Not Legal              | 205 | 245   | 450   |
| Unsure                 | 25  | 25    | 50    |
| Total                  | 500 | 500   | 1000  |

12





### **EXAMPLE 3** continued

- Design: H<sub>o</sub>: Gender and Opinion are independent.
  H<sub>a</sub>: Gender and Opinion are dependent.
- $\alpha = .05$
- Model: Chi-Square Test for Independence, df=2
- $H_0$  is rejected if  $\chi^2 > 5.99$
- **Data:**  $\chi^2 = 6.756$ , Reject Ho
- **Conclusion:** Gender and opinion are dependent variables. Men are more likely to support legalizing marijuana for recreational use.