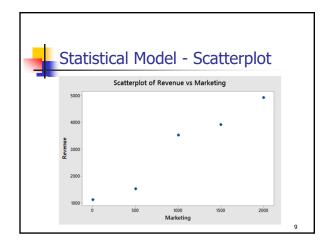
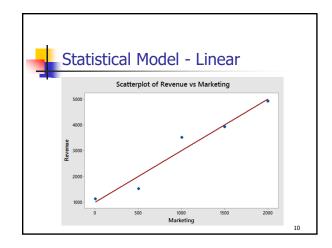


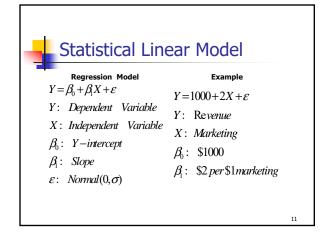
Let ϵ represent the difference between Expected
Revenue and Actual Revenue (Residual Error)

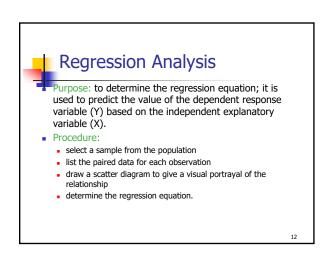
Write a statistical model that relates X to Y

Statistical Model - Table								
_	X=Marketing	Expected Revenue	Y=Actual Revenue	ε=Residual Error				
	\$0	\$1000	\$1100	+\$100				
	\$500	\$2000	\$1500	-\$500				
	\$1000	\$3000	\$3500	+\$500				
	\$1500	\$4000	\$3900	-\$100				
	\$2000	\$5000	\$4900	-\$100				









Simple Linear Regression Model

 $Y = \beta_0 + \beta_1 X + \varepsilon$

Y: Dependent Variable X: Independen t Variable

 β_0 : Y - intercept

 β_1 : Slope

 ε : Normal $(0,\sigma)$

Estimation of Population Parameters

- From sample data, find statistics that will estimate the 3 population parameters
- Slope parameter
 - b₁ will be an estimator for β₁
- Y-intercept parameter
 - b_o 1 will be an estimator for β_o
- Standard deviation
 - s_e will be an estimator for σ

Regression Analysis

- the regression equation: $\hat{Y} = b_0 + b_1 X$, where:
- Y is the average predicted value of Y for any X.
- b_0 is the Y-intercept, or the estimated Y value when
- b_1 is the slope of the line, or the average change in \hat{Y} for each change of one unit in X
- the least squares principle is used to obtain b₁ and b₀

$$SSX = \sum X^{2} - \frac{1}{n} (\sum X)^{2}$$
$$SSY = \sum Y^{2} - \frac{1}{n} (\sum Y)^{2}$$

$$b_1 = \frac{SSXY}{SSX}$$

$$SSXY = \sum XY - \frac{1}{n} \left(\sum X \cdot \sum Y \right)$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

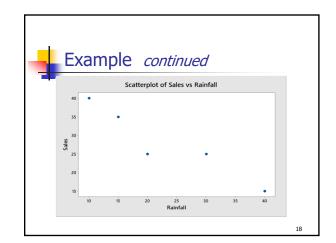
Assumptions Underlying Linear Regression

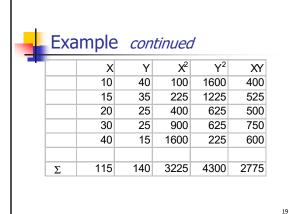
- For each value of X, there is a group of Y values, and these Y values are *normally distributed*.
- The means of these normal distributions of Y values all lie on the straight line of regression.
- The standard deviations of these normal distributions are equal.
- The Y values are statistically independent. This means that in the selection of a sample, the Y values chosen for a particular X value do not depend on the Y values for any other X values.

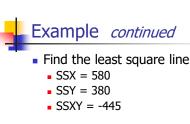
Example

- X = Average Annual Rainfall (Inches)
- Y = Average Sale of Sunglasses/1000
 - Make a Scatterplot
 - Find the least square line

Х	10	15	20	30	40
Υ	40	35	25	25	15







• $b_1 = -.767$

 $b_0 = 45.647$

 $\hat{Y} = 45.647 - .767X$

20

The Standard Error of Estimate

- The standard error of estimate measures the scatter, or dispersion, of the observed values around the line of regression
- The formulas that are used to compute the standard error:

$$SSR = b_1 \cdot SSXY$$

$$SSE = \sum (Y - \hat{Y})^2 = SSY - SSR$$

$$MSE = \frac{SSE}{(n-2)}$$

$$s_e = \sqrt{MSE}$$

1

Example continued

Find SSE and the standard error:

SSE = 38.578MSE = 12.859

SSR = 341.422

20 25 30.30 -5.30 28.108 30 25 22.63 2.37 5.620 40 15 14.96 0.04 0.002

Total

• s_e = 3.586 40 15

22

38.578

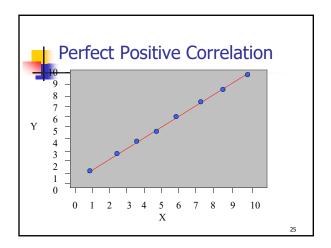
Correlation Analysis

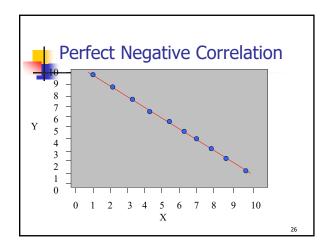
- Correlation Analysis: A group of statistical techniques used to measure the strength of the relationship (correlation) between two variables.
- Scatter Diagram: A chart that portrays the relationship between the two variables of interest.
- Dependent Variable: The variable that is being predicted or estimated. "Effect"
- Independent Variable: The variable that provides the basis for estimation. It is the predictor variable. "Cause?" (Maybe!)

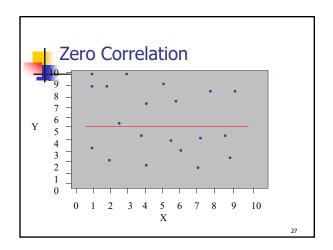
23

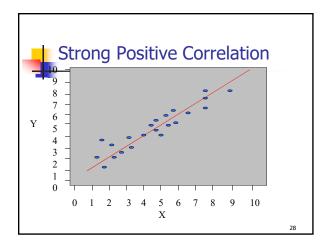
The Coefficient of Correlation, r

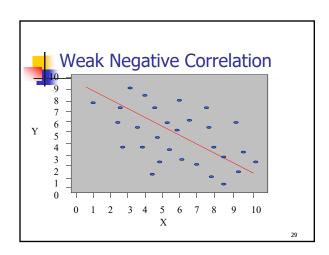
- The Coefficient of Correlation (r) is a measure of the **strength** of the relationship between two variables.
 - It requires interval or ratio-scaled data (variables).
 - It can range from -1.00 to 1.00.
 - Values of -1.00 or 1.00 indicate perfect and strong correlation.
 - Values close to 0.0 indicate weak correlation.
 - Negative values indicate an inverse relationship and positive values indicate a direct relationship.

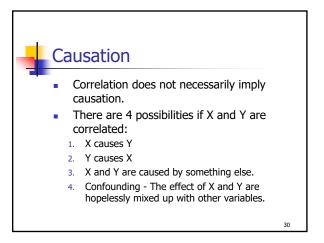












Causation - Examples

- City with more police per capita have more crime per capita.
- As Ice cream sales go up, shark attacks go up.
- People with a cold who take a cough medicine feel better after some rest.

31

r²: Coefficient of Determination

- r² is the proportion of the total variation in the dependent variable Y that is explained or accounted for by the variation in the independent variable X.
- The coefficient of determination is the square of the coefficient of correlation, and ranges from 0 to 1.

32

Formulas for r and r²

$$r = \frac{SSXY}{\sqrt{SSX \cdot SSY}} \qquad r^2 = \frac{SSR}{SSY}$$

$$SSX = \Sigma X^2 - \frac{1}{n}(\Sigma X)^2$$

$$SSY = \Sigma Y^2 - \frac{1}{n}(\Sigma Y)^2$$

$$SSXY = \Sigma XY - \frac{1}{n}(\Sigma X \cdot \Sigma Y)$$

$$SSR = SSY - \left(\frac{SSXY^2}{SSX}\right)$$

Example

- X = Average Annual Rainfall (Inches)
- Y = Average Sale of Sunglasses/1000

Х	10	15	20	30	40
Υ	40	35	25	25	15

24

Example continued

- Make a Scatter Diagram
- Find r and r²

35

Example *continued*

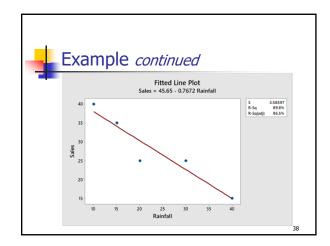
Х	Υ	X ²	Y ²	XY
10	40	100	1600	400
15	35	225	1225	525
20	25	400	625	500
30	25	900	625	750
40	15	1600	225	600
115	140	3225	4300	2775

- SSX = $3225 115^2/5$ = 580
- SSY = $4300 140^2/5$ = 380
- SSXY= 2775 (115)(140)/5 = -445

Example continued

- $r = -445/\text{sqrt}(580 \times 330) = -.9479$
 - Strong negative correlation
- $r^2 = .8985$
 - About 89.85% of the variability of sales is explained by rainfall.

37



Characteristics of F-Distribution

- There is a "family" of F Distributions.
- Each member of the family is determined by two parameters: the numerator degrees of freedom and the denominator degrees of freedom.
- F cannot be negative, and it is a continuous distribution.
- The F distribution is positively skewed.
- Its values range from 0 $to \infty$. As $F \to \infty$ the curve approaches the X-axis.

39

Hypothesis Testing in Simple Linear Regression

- The following Tests are equivalent:
 - H₀: X and Y are uncorrelated
 - H_a: X and Y are correlated
 - H_0 : $\beta_1 = 0$
 - H_a : $\beta_1 \neq 0$
- Both can be tested using ANOVA

40

ANOVA Table for Simple Linear Regression

Source	SS	df	MS	F
Regression	SSR	1	SSR/dfR	MSR/MSE
Error/Residual	SSE	n-2	SSE/dfE	
TOTAL	SSY	n-1		

41

Example continued

• Test the Hypothesis H_0 : $\beta_1 = 0$, $\alpha = 5\%$

Source	SS	df	MS	F	p-value
Regression	341.422	1	341.422	26.551	0.0142
Error	38.578	3	12.859		
TOTAL	380.000	4			

Reject Ho p-value < α

Confidence Interval

The confidence interval for the mean value of Y for a given value of X is given by:

$$\hat{Y} \pm t \cdot s_e \cdot \sqrt{\frac{1}{n} + \frac{\left(X - \overline{X}\right)^2}{SSX}}$$

Degrees of freedom for t =n-2

43

Prediction Interval

The prediction interval for an individual value of Y for a given value of X is given by:

$$\hat{Y} \pm t \cdot s_e \cdot \sqrt{1 + \frac{1}{n} + \frac{\left(X - \overline{X}\right)^2}{SSX}}$$

Degrees of freedom for t =n-2

..

Example continued

- Find a 95% Confidence Interval for Sales of Sunglasses when rainfall = 25 inches
- Find a 95% Prediction Interval for Sales of Sunglasses when rainfall = 25 inches.

45

Example – Minitab output

- Sales = 45.65 0.767 Rainfall
- Variable Setting
- Rainfall 25
- Fit SE Fit 95% CI 95% PI
- 26.4655 1.63111 (21.2746, 31.6564) (13.9282, 39.0028)

46

Example continued

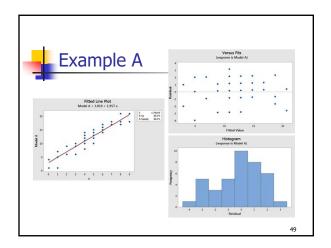
- 95% Confidence Interval 22.63 ± 6.60
- 95% Confidence Interval

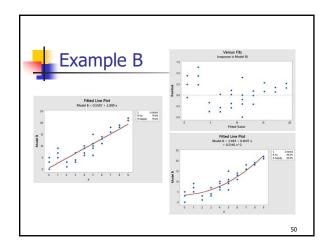
 22.63 ± 13.18

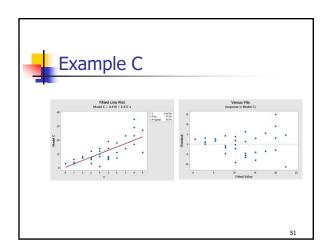
47

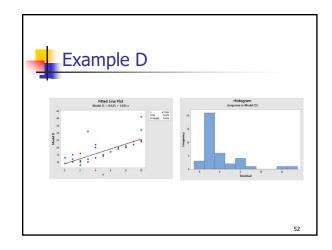
Residual Analysis

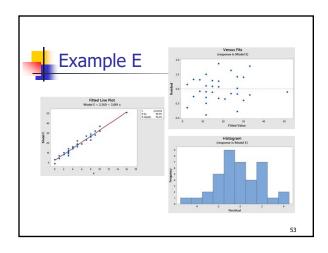
- Residuals should
 - \blacksquare have a normal distribution with constant σ
 - be mutually independent
 - not follow a pattern
 - be checked for outliers
 - with respect the line
 - with respect to X

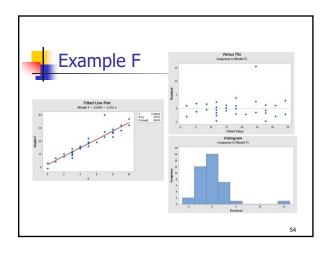


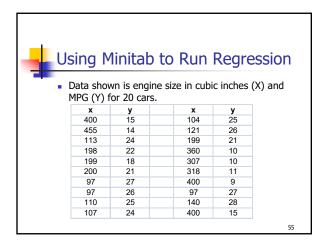


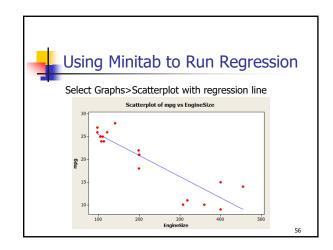


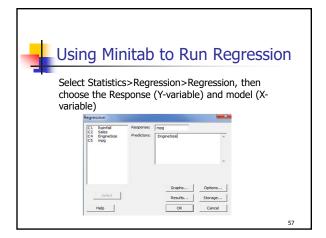


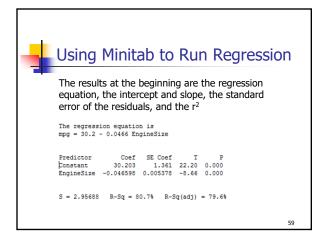


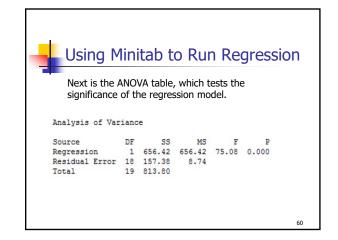












Using Minitab to Run Regression

Finally, the residuals show the potential outliers.

ıı ıuıı	y, the ic	Jiuuui	3 31101	v ciic	poteriti	ai outileis.
Obs	EngineSize	mpg	Fit	SE Fit	Residual	St Resid
1	400	15.000	11.564	1.167	3.436	1.26
2	455	14.000	9.001	1.421	4.999	1.93
3	113	24.000	24.937	0.880	-0.937	-0.33
4	198	22.000	20.976	0.673	1.024	0.36
5	199	18.000	20.930	0.672	-2.930	-1.02
6	200	21.000	20.883	0.671	0.117	0.04
7	97	27.000	25.683	0.939	1.317	0.47
8	97	26.000	25.683	0.939	0.317	0.11
9	110	25.000	25.077	0.891	-0.077	-0.03
10	107	24.000	25.217	0.902	-1.217	-0.43
11	104	25.000	25.357	0.913	-0.357	-0.13
12	121	26.000	24.565	0.853	1.435	0.51
13	199	21.000	20.930	0.672	0.070	0.02
14	360	10.000	13.427	0.998	-3.427	-1.23
15	307	10.000	15.897	0.807	-5.897	-2.07R
16	318	11.000	15.385	0.842	-4.385	-1.55
17	400	9.000	11.564	1.167	-2.564	-0.94
18	97	27.000	25.683	0.939	1.317	0.47
19	140	28.000	23.679	0.792	4.321	1.52
20	400	15,000	11.564	1.167	3.436	1.26

Using Minitab to Run Regression

- Find a 95% confidence interval for the expected MPG of a car with an engine size of 250 ci.
- Find a 95% prediction interval for the actual MPG of a car with an engine size of 250 ci.

```
mpg = 30.20 - 0.04660 EngineSize

Variable Setting
EngineSize 250

Fit SE Fit 95% CI 95% PI
18.5533 0.679201 (17.1264, 19.9803) (12.1793, 24.9273)
```


Residual Analysis

- Residuals for Simple Linear Regression
 - The residuals should represent a linear model.
 - The standard error (standard deviation of the residuals) should not change when the value of X changes.
 - The residuals should follow a normal distribution.
 - Look for any potential extreme values of X.
 - Look for any extreme residual errors