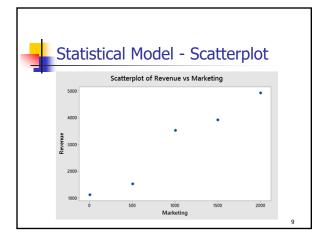
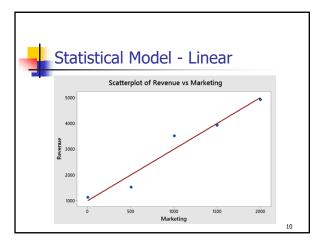


	Mathematical Model - Table								
-	X=marketing	Y=revenue							
	\$0	\$1000							
	\$500	\$2000							
	\$1000	\$3000							
	\$1500	\$4000							
	\$2000	\$5000							
			3						

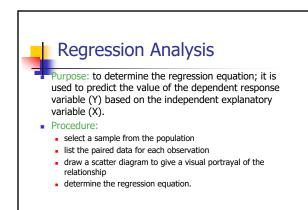
	Linear Model
Linear Model	Example
$Y = \beta_0 + \beta_1 X$	Y = 1000 + 2X
Y: Dependent Variable	Y: Revenue
X: Independent Variable	X: Marketing
β_0 : Y-intercept	β_0 : \$1000
β : Slope	β : \$2 per \$1 marketing

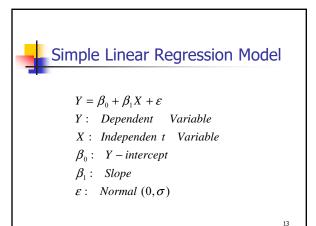

L

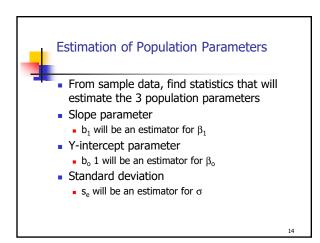
Statistical Model

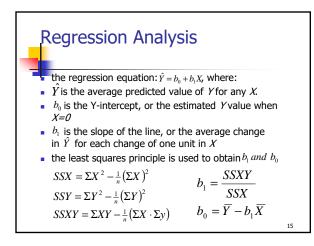

- You have a small business producing custom t-shirts.
- Without marketing, your business has revenue (sales) of \$1000 per week.
- Every dollar you spend marketing will increase revenue by an <u>expected value</u> of 2 dollars.
- Let variable X represent amount spent on marketing and let variable Y represent revenue per week.
- Let ϵ represent the difference between Expected Revenue and Actual Revenue (Residual Error)
- Write a statistical model that relates X to Y

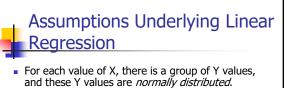
Statistical Model - Table								
X=Marketing	Expected Revenue	Y=Actual Revenue	ε=Residual Error					
\$0	\$1000	\$1100	+\$100					
\$500	\$2000	\$1500	-\$500					
\$1000	\$3000	\$3500	+\$500					
\$1500	\$4000	\$3900	-\$100					
\$2000	\$5000	\$4900	-\$100					

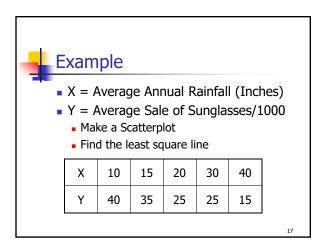


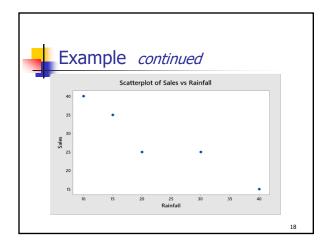




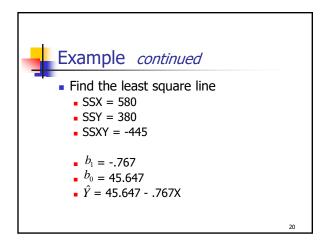


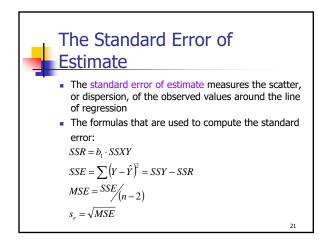

Statistical Line	
Regression Model	Example
$Y = \beta_0 + \beta_1 X + \varepsilon$	$Y = 1000 + 2X + \varepsilon$
Y: Dependent Variable	Y: Revenue
X: Independent Variable	X: Marketing
β_0 : Y -intercept	β_0 : \$1000
β_1 : Slope	β_0 : \$1000
ε : Normal(0, σ)	β_1 : \$2 per \$1 marketing



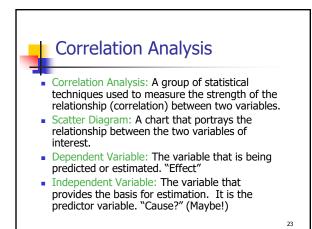


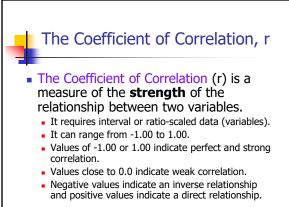
- The *means* of these normal distributions of Y values all lie on the straight line of regression.
- The *standard deviations* of these normal distributions are equal.
- The Y values are statistically independent. This means that in the selection of a sample, the Y values chosen for a particular X value do not depend on the Y values for any other X values.

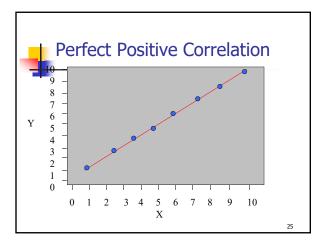




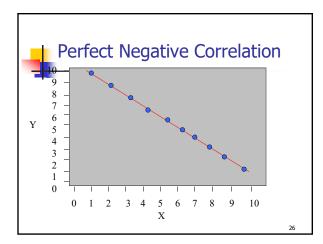
-	Exa	mple	cont	tinued	1		
		Х	Y	X ²	Y ²	XY	
		10	40	100	1600	400	
		15	35	225	1225	525	
		20	25	400	625	500	
		30	25	900	625	750	
		40	15	1600	225	600	
	Σ	115	140	3225	4300	2775	
							19

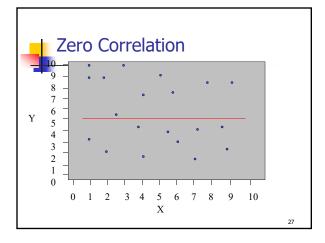


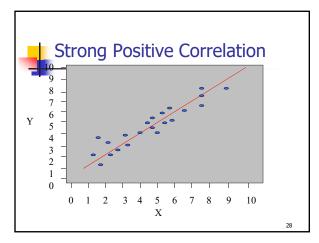


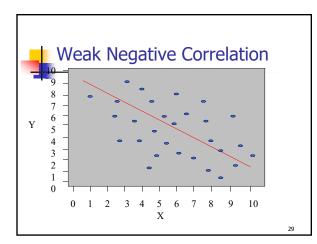


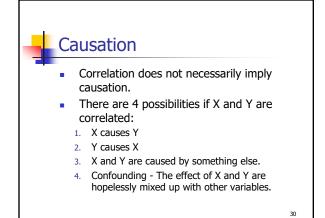
Example <i>co</i>	nti	nu	ed		
 Find SSE and the 					
standard error:	х	у	ŷ	y - ŷ	$(y - \hat{y})^2$
	10	40	37.97	2.03	4.104
SSR = 341.422	15	35	34.14	0.86	0.743
SSE = 38.578	20	25	30.30	-5.30	28.108
MSE = 12.859	30	25	22.63	2.37	5.620
■ s _e = 3.586	40	15	14.96	0.04	0.002
				Total	38.578
					22











Maurice Geraghty, 2019

Causation - Examples

- City with more police per capita have more crime per capita.
- As Ice cream sales go up, shark attacks go up.

31

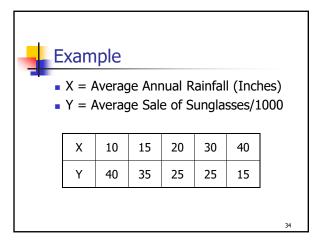
32

 People with a cold who take a cough medicine feel better after some rest.

r²: Coefficient of Determination

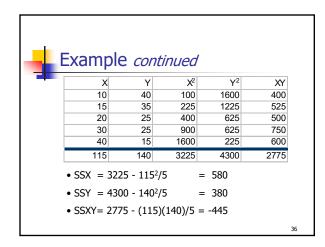
- r² is the proportion of the total variation in the dependent variable Y that is explained or accounted for by the variation in the independent variable X.
- The coefficient of determination is the square of the coefficient of correlation, and ranges from 0 to 1.

Formulas for r and r²

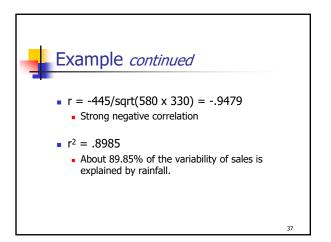

$$r = \frac{SSXY}{\sqrt{SSX \cdot SSY}} \qquad r^{2} = \frac{SSR}{SSY}$$

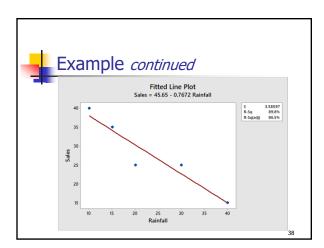
$$SSX = \Sigma X^{2} - \frac{1}{n} (\Sigma X)^{2}$$

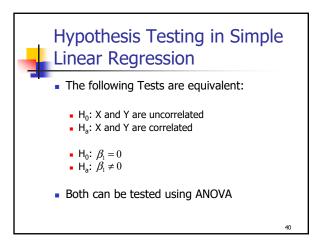
$$SSY = \Sigma Y^{2} - \frac{1}{n} (\Sigma Y)^{2}$$


$$SSXY = \Sigma XY - \frac{1}{n} (\Sigma X \cdot \Sigma Y)$$

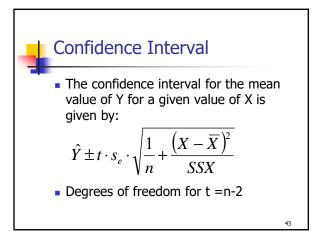
$$SSR = SSY - \left(\frac{SSXY^{2}}{SSX}\right)$$
³³

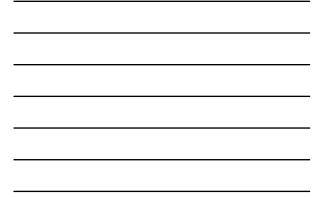


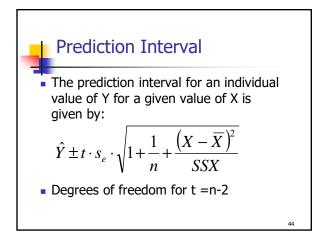


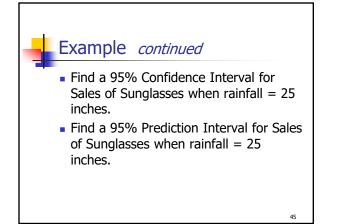


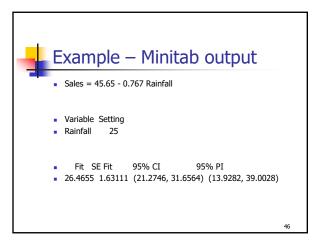
- There is a "family" of *F* Distributions.
- Each member of the family is determined by two parameters: the numerator degrees of freedom and the denominator degrees of freedom.
- *F* cannot be negative, and it is a continuous distribution.
- The *F* distribution is positively skewed.
- Its values range from 0 $to \infty$. As $F \to \infty$ the curve approaches the X-axis.

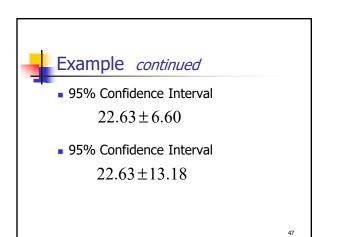


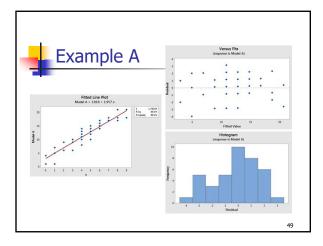

Linear Regression							
Source	SS	df	MS	F			
Regression	SSR	1	SSR/dfR	MSR/MSE			
Error/Residual	SSE	n-2	SSE/dfE				
TOTAL	SSY	n-1					

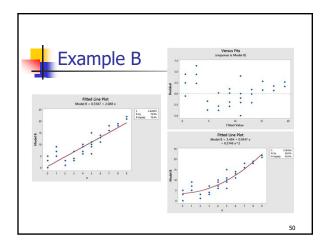



Example <i>continued</i>								
• Test the Hypothesis $H_0: \beta_1 = 0$, $\alpha = 5\%$								
Source	SS	df	MS	F	p-value			
Regression	341.422	1	341.422	26.551	0.0142			
Error	38.578	3	12.859					
TOTAL	380.000	4						
Reject Ho p-value < α								

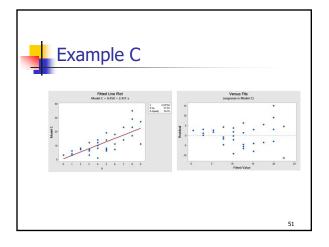


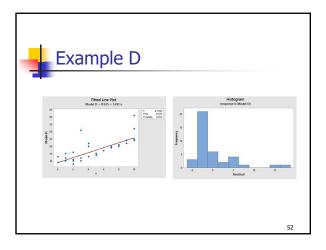


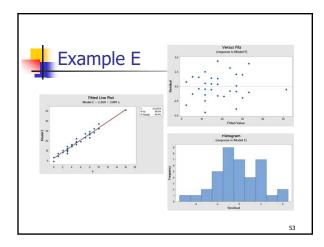


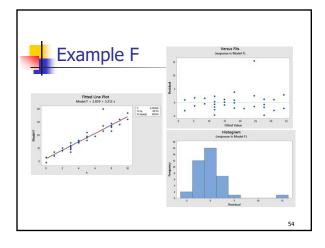


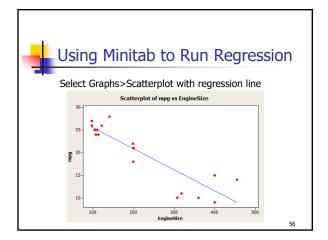
Residual Analysis Residuals should have a normal distribution with constant σ be mutually independent not follow a pattern be checked for outliers with respect the line with respect to X

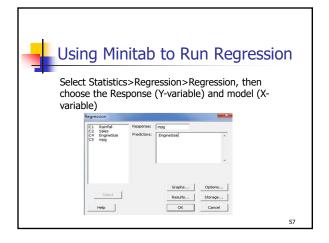

Maurice Geraghty, 2019











U	sing №	linital	o to	Run	Regre	ession
	Data shov MPG (Y) f			e in cub	ic inches	(X) and
	x	У		x	У	
	400	15		104	25	
	455	14		121	26	
	113	24		199	21	
	198	22		360	10	
	199	18		307	10	
	200	21		318	11	
	97	27		400	9	
	97	26		97	27	
	110	25		140	28	
	107	24		400	15	
						55



Using Minitab to Run Regression
The results at the beginning are the regression equation, the intercept and slope, the standard error of the residuals, and the r ²
The regression equation is mpg = 30.2 - 0.0466 EngineSize
Predictor Coef SE Coef T P Constant 30.203 1.361 22.20 0.000 EngineSize -0.046598 0.005378 -8.66 0.000
S = 2.95688 R-Sq = 80.7% R-Sq(adj) = 79.6%
59

Next is the <i>i</i>		VA tahlo	which t	octs the	2
significance					-
Analysis of Var	iand	e			
-	DF	SS	MS	F	P
Source					
	1	656.42	656.42	75.08	0.000
Source Regression Residual Error				75.08	0.000

Г

Hci	na Mi	nita	h ta	ר Pi	in R	egres	sion
-	-						
Finall	y, the re	siduals	s shov	v the	potentia	al outliers	i.
Obs	EngineSize	mpg	Fit		Residual	St Resid	
1	400 kinginesize	15,000	11.564	1.167	3.436	1.26	
2	455	14.000	9.001	1.421	4.999	1.93	
3	113	24.000	24.937	0.880	-0.937	-0.33	
4	198	22.000	20.976		1.024	0.36	
5	199	18.000	20.930	0.672	-2.930	-1.02	
6	200	21.000	20.883	0.671	0.117	0.04	
7	97	27.000	25.683	0.939	1.317	0.47	
8	97	26.000	25.683	0.939	0.317	0.11	
9	110	25.000	25.077	0.891	-0.077		
10	107	24.000	25.217	0.902	-1.217		
11	104	25.000	25.357	0.913	-0.357	-0.13	
12	121	26.000	24.565	0.853	1.435	0.51	
13	199	21.000	20.930		0.070		
14	360		13.427				
15	307	10.000	15.897	0.807	-5.897	-2.07R	
16	318	11.000	15.385	0.842	-4.385		
17	400	9.000	11.564	1.167	-2.564		
18	97	27.000	25.683	0.939	1.317	0.47	
19	140	28.000	23.679	0.792	4.321	1.52	
20	400	15.000	11.564	1.167	3.436	1.26	61

Using Minitab to Run Regression

- Find a 95% confidence interval for the **expected** MPG of a car with an engine size of 250 ci.
- Find a 95% prediction interval for the actual MPG of a car with an engine size of 250 ci.
 mpg = 30.20 - 0.04660 EngineSize

Variable Setting EngineSize 250

Fit SE Fit 95% CI 95% PI 18.5533 0.679201 (17.1264, 19.9803) (12.1793, 24.9273)

62

Residual Analysis

Residuals for Simple Linear Regression

- The residuals should represent a linear model.
- The standard error (standard deviation of the residuals) should not change when the value of X changes.
- The residuals should follow a normal distribution.
- Look for any potential extreme values of X.
- Look for any extreme residual errors