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Inferential Statistics and Probability 
a Holistic Approach 

Chapter 13 
Correlation and Linear Regression 

 
 

This Course Material by Maurice Geraghty is licensed under a Creative Commons 
Attribution-ShareAlike 4.0 International License.  

Conditions for use are shown here: https://creativecommons.org/licenses/by-sa/4.0/ 

 

Mathematical Model 
 You have a small business producing custom t-shirts. 
 Without marketing, your business has revenue 

(sales) of $1000 per week. 
 Every dollar you spend marketing will increase 

revenue by 2 dollars. 
 Let variable X represent amount spent on marketing 

and let variable Y represent revenue per week. 
 Write a mathematical model that relates X to Y 
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Mathematical Model - Table 
X=marketing Y=revenue 

$0 $1000 

$500 $2000 

$1000 $3000 

$1500 $4000 

$2000 $5000 

3 
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Mathematical Model - Scatterplot 
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Mathematical Model - Linear 
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Mathematical Linear Model 
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Linear  Model Example 
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Statistical Model 
 You have a small business producing custom t-shirts. 
 Without marketing, your business has revenue 

(sales) of $1000 per week. 
 Every dollar you spend marketing will increase 

revenue by an expected value of 2 dollars. 
 Let variable X represent amount spent on marketing 

and let variable Y represent revenue per week. 
 Let ε represent the difference between Expected 

Revenue and Actual Revenue (Residual Error) 
 Write a statistical model that relates X to Y 
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Statistical Model - Table 
X=Marketing Expected 

Revenue 
Y=Actual 
Revenue 

ε=Residual 
Error 

$0 $1000 $1100 +$100 

$500 $2000 $1500 -$500 

$1000 $3000 $3500 +$500 

$1500 $4000 $3900 -$100 

$2000 $5000 $4900 -$100 
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Statistical Model - Scatterplot 
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Statistical Model - Linear 
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Statistical Linear Model 
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Regression  Model Example 
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Regression Analysis 
 Purpose: to determine the regression equation; it is 

used to predict the value of the dependent response 
variable (Y) based on the independent explanatory 
variable (X). 

 Procedure:  
 select a sample from the population 
 list the paired data for each observation 
 draw a scatter diagram to give a visual portrayal of the 

relationship 
 determine the regression equation. 

12-15 
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Simple Linear Regression Model 
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Estimation of Population Parameters 

 From sample data, find statistics that will 
estimate the 3 population parameters 

 Slope parameter 
 b1 will be an estimator for β1 

 Y-intercept parameter 
 bo 1 will be an estimator for βo  

 Standard deviation 
 se will be an estimator for σ 
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Regression Analysis 

 the regression equation:              , where:  
    is the average predicted value of Y for any X. 
     is the Y-intercept, or the estimated Y value when 

X=0 
     is the slope of the line, or the average change     

in     for each change of one unit in X 
 the least squares principle is used to obtain 
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Assumptions Underlying Linear 
Regression 

 For each value of X, there is a group of Y values, 
and these Y values are normally distributed. 

 The means of these normal distributions of Y 
values all lie on the straight line of regression. 

 The standard deviations of these normal 
distributions are equal. 

 The Y values are statistically independent.  This 
means that in the selection of a sample, the Y 
values chosen for a particular X value do not 
depend on the Y values for any other X values. 

12-19 
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Example  
 X = Average Annual Rainfall (Inches) 
 Y = Average Sale of Sunglasses/1000 

 Make a Scatterplot 
 Find the least square line 
 
 X 10 15 20 30 40 

Y 40 35 25 25 15 

18 

Example  continued 
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Example  continued 
X Y X2 Y2 XY

10 40 100 1600 400
15 35 225 1225 525
20 25 400 625 500
30 25 900 625 750
40 15 1600 225 600

  Σ 115 140 3225 4300 2775

20 

Example  continued 
 Find the least square line 

 SSX = 580 
 SSY = 380 
 SSXY = -445 
 
     = -.767 
     = 45.647 
    = 45.647 - .767X 
 

Ŷ

1b
0b

21 

The Standard Error of 
Estimate 
 The standard error of estimate measures the scatter, 

or dispersion, of the observed values around the line 
of regression 

 The formulas that are used to compute the standard 
error:  
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Example continued 
 Find SSE and the 

standard error: 
 
 SSR = 341.422 
 SSE = 38.578 
 MSE = 12.859 
 se = 3.586 

  

x y ŷ y - ŷ (y - ŷ)2 
10 40 37.97 2.03 4.104 
15 35 34.14 0.86 0.743 
20 25 30.30 -5.30 28.108 
30 25 22.63 2.37 5.620 
40 15 14.96 0.04 0.002 

      Total 38.578 
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Correlation Analysis 
 Correlation Analysis: A group of statistical 

techniques used to measure the strength of the 
relationship (correlation) between two variables. 

 Scatter Diagram: A chart that portrays the 
relationship between the two variables of 
interest. 

 Dependent Variable: The variable that is being 
predicted or estimated. “Effect” 

 Independent Variable: The variable that 
provides the basis for estimation.  It is the 
predictor variable. “Cause?” (Maybe!) 

12-3 
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The Coefficient of Correlation, r 

 The Coefficient of Correlation (r) is a 
measure of the strength of the 
relationship between two variables. 
 It requires interval or ratio-scaled data (variables).  
 It can range from -1.00 to 1.00. 
 Values of -1.00 or 1.00 indicate perfect and strong 

correlation. 
 Values close to 0.0 indicate weak correlation. 
 Negative values indicate an inverse relationship 

and positive values indicate a direct relationship. 

12-4 
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Perfect Positive Correlation 
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Perfect Negative Correlation 
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Zero Correlation 
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Strong Positive Correlation 
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Weak Negative Correlation 
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Causation 
 Correlation does not necessarily imply 

causation.  
 There are 4 possibilities if X and Y are 

correlated: 
1. X causes Y 
2. Y causes X 
3. X and Y are caused by something else. 
4. Confounding - The effect of X and Y are 

hopelessly mixed up with other variables. 
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Causation - Examples 
 City with more police per capita have 

more crime per capita. 
 As Ice cream sales go up, shark attacks 

go up. 
 People with a cold who take a cough 

medicine feel better after some rest. 

32 

r2: Coefficient of Determination 

 r2 is the proportion of the total variation in 
the dependent variable Y that is explained 
or accounted for by the variation in the 
independent variable X.  

 The coefficient of determination is the 
square of the coefficient of correlation, and 
ranges from 0 to 1. 

12-10 
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Formulas for r and r2 
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Example 
 X = Average Annual Rainfall (Inches) 
 Y = Average Sale of Sunglasses/1000 

 
X 10 15 20 30 40 

Y 40 35 25 25 15 

35 

Example continued 
 Make a Scatter Diagram 
 Find r and r2 

36 

Example continued 
X Y X2 Y2 XY

10 40 100 1600 400
15 35 225 1225 525
20 25 400 625 500
30 25 900 625 750
40 15 1600 225 600

115 140 3225 4300 2775

• SSX  = 3225 - 1152/5          =  580           
• SSY  = 4300 - 1402/5          =  380              
• SSXY= 2775 - (115)(140)/5 = -445 
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Example continued 
 

 r = -445/sqrt(580 x 330) = -.9479 
 Strong negative correlation 

 
 r2 = .8985 

 About 89.85% of the variability of sales is 
explained by rainfall. 

 

38 

Example continued 

39 

Characteristics of F-
Distribution 
 There is a “family” of F  Distributions. 
 Each member of the family is determined by two 

parameters: the numerator degrees of freedom 
and the denominator degrees of freedom. 

 F cannot be negative, and it is a continuous 
distribution. 

 The F distribution is positively skewed. 
 Its values range from 0 to ∞ .  As F → ∞ the 

curve approaches the X-axis. 
 

11-3 
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Hypothesis Testing in Simple 
Linear Regression 
 The following Tests are equivalent: 

 
 H0: X and Y are uncorrelated 
 Ha: X and Y are correlated 

 
 H0: 
 Ha: 

 
 Both can be tested using ANOVA 

 

01 =β
01 ≠β

41 

ANOVA Table for Simple 
Linear Regression 

Source SS df MS F 
Regression SSR 1 SSR/dfR MSR/MSE 

Error/Residual SSE n-2 SSE/dfE 

TOTAL SSY n-1 

42 

Example  continued 
 Test the Hypothesis Ho:       , α=5% 

 
 
 
 
 

 Reject Ho p-value < α 
 

Source SS df MS F p-value 
Regression 341.422 1 341.422 26.551 0.0142 

Error 38.578 3 12.859 

TOTAL 380.000 4 

01 =β
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Confidence Interval 

 The confidence interval for the mean 
value of Y for a given value of X is 
given by: 
 
 
 

 Degrees of freedom for t =n-2 
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Prediction Interval 

 The prediction interval for an individual 
value of Y for a given value of X is 
given by: 
 
 
 

 Degrees of freedom for t =n-2 
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Example  continued 
 Find a 95% Confidence Interval for 

Sales of Sunglasses when rainfall = 25 
inches. 

 Find a 95% Prediction Interval for Sales 
of Sunglasses when rainfall = 25 
inches. 
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Example – Minitab output 
 Sales = 45.65 - 0.767 Rainfall 

 
 

 Variable  Setting 
 Rainfall       25 

 
 

     Fit   SE Fit        95% CI              95% PI 
 26.4655  1.63111  (21.2746, 31.6564)  (13.9282, 39.0028) 

 

46 
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Example  continued 
 95% Confidence Interval 

 
 

 95% Confidence Interval 
 
 
 

60.663.22 ±

18.1363.22 ±

Residual Analysis 
 Residuals should 

 have a normal distribution with constant σ 
 be mutually independent 
 not follow a pattern 
 be checked for outliers  

 with respect the line 
 with respect to X 

48 
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Example A 
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Example B 

50 

 

Example C 
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Example D 

52 

Example E 

53 

 

Example F 

54 
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Using Minitab to Run Regression 
 Data shown is engine size in cubic inches (X) and 

MPG (Y) for 20 cars. 
x y x y

400 15 104 25
455 14 121 26
113 24 199 21
198 22 360 10
199 18 307 10
200 21 318 11
97 27 400 9
97 26 97 27

110 25 140 28
107 24 400 15

56 

Using Minitab to Run Regression 
Select Graphs>Scatterplot with regression line 
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Using Minitab to Run Regression 
Select Statistics>Regression>Regression, then 
choose the Response (Y-variable) and model (X-
variable) 
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Using Minitab to Run Regression 
Click the results box, and choose the fits and 
residuals to get all predictions. 
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Using Minitab to Run Regression 
The results at the beginning are the regression 
equation, the intercept and slope, the standard 
error of the residuals, and the r2 
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Using Minitab to Run Regression 
Next is the ANOVA table, which tests the 
significance of the regression model. 
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Using Minitab to Run Regression 
Finally, the residuals show the potential outliers. 
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Using Minitab to Run Regression 
 
 

 Find a 95% confidence interval for the expected 
MPG of a car with an engine size of 250 ci.  

 Find a 95% prediction interval for the actual MPG of 
a car with an engine size of 250 ci. 

 

Residual Analysis 
 Residuals for Simple Linear Regression 

 The residuals should represent a linear model. 
 The standard error (standard deviation of the 

residuals) should not change when the value of X 
changes.  

 The residuals should follow a normal distribution. 
 Look for any potential extreme values of X. 
 Look for any extreme residual errors 
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