Math 10 – Independence/Bayesian Statistics

gw7 answers

- 1. The probability a student arrives late to class is 20% on Monday and 10% on Tuesday. Assume being late on these days are independent events.
 - a. Find the probability the student is late both Monday and Tuesday.

(.2)(.1)=.02=2%

b. Find the probability the student is late either Monday or Tuesday (or both days).
.2+.1-.02=.28 = 28%

- 2. 1% of the population of a country has disease X. A test for the disease has been developed that has a 95% of correctly detecting the disease (true positive). However, the test will come out positive in 2% of people who do not have disease X (false positive).
 - a. Construct a tree diagram where the first set of branches are people with and without the disease, and the 2nd set is whether or not they test positive.
 - b. From the tree diagram create a contingency table.

/ \		T+	T-	total
.01 / \.99	D+	95	5	100
(D+) (D-)	D-	198	9702	9900
/ \ / \	total	293	9707	10000
.95 / \.05 .02/ \.98 (T+) (T-) (T+) (T-) .0095 .0005 .0198 .9702	P(D+ T+) = 95/293=32.4%			

- c. What percentage of the population will test positive for disease X? 2.93%
- d. If a person tests positive, what is the probability that the person really has disease X? .0095/.0293=32.4%