Math 10 - GW 22 Answers

1. A random sample of 25 waiting times (in minutes) before patients saw a medical professional in a hospital's minor emergency department had a standard deviation of 0.7 minute. After a new admissions procedure was implemented, a random sample of 21 waiting times had a standard deviation of 0.5 minute. At a = 0.10, can you support the hospital's claim that the standard deviation of the waiting times has decreased?

(a) (DESIGN) State your Hypothesis
Pop 1 = new procedure
Pop 2 = current procedure
Pop 2 = current procedure(d) (DESIGN) Determine decision rule
(critical value method)Ho: The standard deviation of the waiting times
has not decreased
Ha: The standard deviation of the waiting times
has decreased(DATA) Conduct the test and circle your decision(b) (DESIGN) State Significance Level of the test and
explain what it means.
$$\alpha = :10$$
, the maximum probability of making
Type I error, which would be incorrectly
claiming standard deviation was reduced.(DATA) Conduct the test and circle your decision(c) (DESIGN) Determine the statistical model (test
statistic) $F = \frac{0.7^2}{0.5^2} = 1.96$ Reject Ho(f) (CONCLUSION) Determine the statistical model (test
statistic)(DESIGN) Determine the statistical model (test
statistic)The new procedure reduces the standard deviation of
the waiting time, which means the wait per patient is
more consistent, less variable.(d) = 24num, 20 dendf = 24num, 20 denHo

2. An engineer wants to compare the tensile strengths of steel bars that are produced using a conventional method and an experimental method. (The tensile strength of a metal is a measure of its ability to resist tearing when pulled lengthwise.) To do so, the engineer randomly selects steel bars that are manufactured using each method and records the following tensile strengths (in Newtons per square millimeter). At a = 0.10, can the engineer claim that the experimental method produces steel with greater mean tensile strength? Should the engineer recommend using the experimental method? First use the F test to determine whether or not to use equal variances in choosing the model.

Experimental	395	389	421	394	407	411	389	402	422	416	402	408	400	386	411	405	389
Conventional	362	352	380	382	413	384	400	378	419	379	384	388	372	383			

Hypothesis Test: Independent Groups (t-test, pooled variance) Hypothesis Test: Independent Groups (t-test, unequal variance)

Experimental Conventional		Experimental priventional	
402.76 384.00	mean	402.76 384.00	mean
11.34 17.70	std. dev.	11.34 17.70	std. dev.
17 14]n	17 14]n
29	df	21	df
18.765	difference (Experimental - Conventional)	18.765	difference (Experimental - Conventional)
211.416	pooled variance	5.472	standard error of difference
14.540	pooled std. dev.		
5.248	standard error of difference		
0	hypothesized difference	0	hypothesized difference
3.58	t	3.43	t
.0012	p-value (two-tailed)	.0025	p-value (two-tailed)
.0006	p-value (one-tailed, upper)	.0013	p-value (one-tailed, upper)
.9994	p-value (one-tailed, lower)	.9987	p-value (one-tailed, lower)
			CL .
F-test for equality of variance	e		
313.23	variance: Conventional		
128.69	variance: Experimental		
2.43	F		
.0944	p-value		

(a) (DESIGN) State your Hypothesis	(d) (DESIGN) Determine decision rule					
	(pvalue method)					
Pop 1 = experimental method	Paiast Haif a values 10					
Pop 2 = conventional method	Reject no il p-value<.10					
 Ho: The experimental method does not produce steel with greater mean tensile strength Ha: The experimental method produces steel with greater mean tensile strength Ho: μ1≤ μ2 Ha: μ1> μ2 	(a) (DATA) Conduct the test and circle your desision					
	(c) (DATA) conduct the test and chile your decision					
 (b) (DESIGN) State Significance Level of the test and explain what it means, α=.10, the maximum probability of making Type I error, which would be incorrectly claiming the experimental steel is stronger. 	Pvalue = 0.0013 (2 nd pvalue on right side above)					
	Reject Ho					
(c) (DESIGN) Determine the statistical model (test statistic)	(f) (CONCLUSION) State your overall conclusion in language that is clear, relates to the original problem and is consistent with your decision.					
Since the F-test for equality of variance has a p-value of 0.0944 <.10, we should use the unequal variance test for comparing two independent samples.	The experimental steel is stronger and the engineer should recommend the change.					