A cannonball is shot straight up with an initial velocity of 100 meters per second. The height in meters at time t seconds after launch is given by the equation: $s(t)=100 t-5 t^{2}$

1. Find the height of the cannonball at $t=2.01$ seconds, $t=2$ seconds and $t=1.99$ seconds.

t	$\mathrm{s}(\mathrm{t})$

2. Use this information to estimate the velocity of the cannonball at $\mathrm{t}=2$ seconds.
3. Sketch a single function that meets the following criteria:
$f(2)=0$
$\lim _{x \rightarrow 2} f(x)=1$
$\lim _{x \rightarrow \infty} f(x)=4$
$\lim _{x \rightarrow-\infty} f(x)=-4$
$\lim _{x \rightarrow-1^{+}} f(x)=\infty$
$\lim _{x \rightarrow-1^{-}} f(x)=-\infty$

Evaluate the following limits algebraically:
4. $\lim _{x \rightarrow 2^{-}} f(x)$
$f(x)= \begin{cases}x^{2}-1 \text { if } & x>2 \\ 3 x-4 \text { if } & x \leq 2\end{cases}$
5. $\lim _{x \rightarrow 2^{-}} \frac{|x-2|}{x-2}$
6. Evaluate $\lim _{x \rightarrow 0} x^{2} \sin \left(\frac{1}{x}\right)$ using the Squeeze Theorem.

A bicycle starts from rest and its distance traveled is recorded in the following table in one second intervals:

t (secs)	0	1	2	3	4	5	6	7	8
d (feet)	0	10	24	42	63	85	100	100	100

7. Compute the average speed of the bike between 1 and 2 seconds and between 2 and 3 seconds. Use this information to estimate the instantaneous speed at 2 seconds.
8. At what time shown on the table does the bike seem to be moving the fastest?
9. Determine the instantaneous speed at 7 seconds. What has happened to the bicycle?

Consider the following function.

x	0.3	0.35	0.4	0.45	0.5
$f(x)$	1.67	1.69	1.78	1.99	2.67

10. Estimate $f^{\prime}(.45)$
11. During the interval shown in the table $(0.3 \leq x \leq 0.5)$, is $f^{\prime}(x)$ positive, negative, or both? Explain how you can tell.

Let $f(x)=\sqrt[4]{x}$
12. Determine $f^{\prime}(1)$
13. Use linear approximation to estimate $\sqrt[4]{1.1}$

Find the derivative of each of the following:

15. $3 \sin x+4 e^{x}$	16. $x \tan x$	17. $\frac{3 x^{2}}{5 x^{2}+7 x}$

Evaluate the functions using the information in the following table:

x	1	2	3	4
$f(x)$	4	1	3	2
$g(x)$	3	2	1	4
$f^{\prime}(x)$	1	2	3	4
$g^{\prime}(x)$	2	1	4	3

19. $m^{\prime}(2)$ if $m(x)=\frac{f(2)}{g(2)}$
20. $p^{\prime}(1)$ if $p(x)=\sqrt{f(x)}$
21. Find the $199^{\text {th }}$ derivative of $f(x)=\sin x-2 \cos x+3 e^{x}$

Find $\frac{d y}{d x}$ for the following equations:
22. $y=\sqrt{2 x-x^{2}}$
23. $y=e^{\sqrt{1-x^{2}}}$

Find $\frac{d y}{d x}$ for the following equations:
24. $y=\sin ^{-1}\left(x^{2}\right)$
25. $2 x y=y^{2}$
26. $y=\ln \left[\frac{(x+2)^{8}(x+3)^{6}}{(2 x-4)^{3}}\right]$
27. $y=(\sin x)^{2 x}$
28. Consider the function of $f(x)$ shown below:

If $g(x)=f(f(x))$, find $g^{\prime}(4)$ from the graph.
29. Find critical points for the following functions and determine if they are local minima or maxima: $f(x)=x \ln x$
30. Find the absolute minimum and maximum for the following functions over the given ranges: $2 x^{3}+3 x^{2}+4$ over $[2,-1]$
31. Steven's Creek Blvd and De Anza Blvd meet at a 90 degree intersection. Car A is on Steven's Creek Blvd and moving towards the intersection at a speed of 50 miles per hour. Car B is traveling on De Anza Blvd. towards the intersection at a speed of 40 miles per hour. When Car A is 4 miles from the intersection and Car B is 2 miles from the intersection, how fast are the cars approaching each other?

Find the exact limits algebraically
32. $\lim _{x \rightarrow 1} \frac{2^{x}-2}{1-x}$
33. $\lim _{x \rightarrow 0} x^{2 x}$
34. A farmer wants to fence of an area in the shape of a rectangle. One side of the fence will cost $\$ 40$ per linear foot while the other three sides will cost $\$ 20$ per linear foot. The farmer can spend $\$ 6000$ on fencing. Find the dimensions of rectangle that maximize area.
35. Necklaces cost each to $\$ 6$ to make. You can sell 20 necklaces when the price is $\$ 10$ per necklace. For every increase of $\$ 1$, you will lose 2 sales. Find the price that will generate maximum profit.
36. You decide to use Newton's method to determine a root for $f(x)=x^{4}-20$. If your initial guess is $x_{1}=2$, find the value for x_{2}.
37. Find $f(x)$ when $f^{\prime}(x)=3 \cos x+5 \sin x$ and $f(0)=4$
38. Find the equation of the tangent to the parametric curve $x=e^{\sqrt{t}}, y=t-\ln t^{9}$ at the point (x, y) when $\mathrm{t}=1$.

