	al velocity of 100 meters per second. The height in meters at time t					
seconds after launch is given by the equation	$s(t) = 100t - 5t^2$					
1. Find the height of the cannonball at t=2.01 seconds, t=2 seconds and t=1.99 seconds.						
t s(t)						
2. Use this information to estimate the veloc	city of the cannonball at t=2seconds.					
3. Sketch a single function that meets the						
following criteria:						
f(2) = 0						
$\int (2) = 0$						
$\lim_{x \to 2} f(x) = 1$						
$\lim_{x \to \infty} f(x) = 4$	┋╍┋╌╄┈╎╌╎╍╄┈╎╴╄╌╎┲╌╊╌╋╌╄╌╎╌┥╌╇╌┿╌╎╌┨					
$\lim_{x \to -\infty} f(x) = -4$						
$\lim_{x \to -1^+} f(x) = \infty$ $\lim_{x \to -1^-} f(x) = -\infty$						
$\lim_{x \to \infty} f(x) = -\infty$						
$\lambda \rightarrow -1$						
	Tan adama ina dan atau atau dan dan dan dan dina dina dina dina din					

Evaluate the following limits algebraically:

4. $\lim_{x \to 2^{+}} f(x) \qquad f(x) = \begin{cases} x^{2} - 1 & \text{if } x > 2\\ 3x - 4 & \text{if } x \le 2 \end{cases}$	5. $\lim_{x \to 2^{-}} \frac{ x-2 }{ x-2 }$
$x \to 2^{-1}$ $(3x - 4 if x \le 2)$	$x \rightarrow z$ $\chi - Z$

6. Evaluate $\lim_{x\to 0} x^2 \sin(\frac{1}{x})$ using the Squeeze Theorem.

A bicycle starts from rest and its distance traveled is recorded in the following table in one second intervals:

t (secs)	0	1	2	3	4	5	6	7	8
d (feet)	0	10	24	42	63	85	100	100	100

7. Compute the average speed of the bike between 1 and 2 seconds and between 2 and 3 seconds. Use this information to estimate the instantaneous speed at 2 seconds.

8. At what time shown on the table does the bike seem to be moving the fastest?

9. Determine the instantaneous speed at 7 seconds. What has happened to the bicycle?

. Consider the following function.

Х	0.3	0.35	0.4	0.45	0.5
f(x)	1.67	1.69	1.78	1.99	2.67

10. Estimate f'(.45)

11. During the interval shown in the table $(0.3 \le x \le 0.5)$, is f'(x) positive, negative, or both? Explain how you can tell.

Let $f(x) = \sqrt[4]{x}$ 12. Determine f'(1)

13. Use linear approximation to estimate $\sqrt[4]{1.1}$

Find the derivative of each of the following:

15. $3\sin x + 4e^x$	16. $x \tan x$	17. $\frac{3x^2}{5x^2 + 7x}$
		$5x^2 + 7x$

Evaluate the functions using the information in the following table:			•		18. $h'(3)$ if $h(x) = f(x)g(x)$
x	1	2	3	4	
f(x)	4	1	3	2	f(2)
g(x)	3	2	1	4	19. $m'(2)$ if $m(x) = \frac{f(2)}{g(2)}$
f'(x)	1	2	3	4	
g'(x)	2	1	4	3	
					20. $p'(1)$ if $p(x) = \sqrt{f(x)}$

21. Find the 199th derivative of $f(x) = \sin x - 2\cos x + 3e^x$

Find $\frac{dy}{dx}$ for the following equations:

22. $y = \sqrt{2x - x^2}$	23. $y = e^{\sqrt{1-x^2}}$

Find $\frac{dy}{dx}$ for the following equations:	
24. $y = \sin^{-1}(x^2)$	25. $2xy = y^2$

26. $y = \ln \left[\frac{(x+2)^8 (x+3)^6}{(2x-4)^3} \right]$	27. $y = (\sin x)^{2x}$

28. Consider the function of f(x) shown below:

If g(x) = f(f(x)), find g'(4) from the graph.

29. Find critical points for the following functions and determine if they are local minima or maxima: $f(x) = x \ln x$

30. Find the absolute minimum and maximum for the following functions over the given ranges: $2x^3 + 3x^2 + 4$ over [2,-1]

31.	Steven's Creek Blvd and De Anza Blvd meet at a 90 degree intersection. Car A is on Steven's Creek Blvd and
	moving towards the intersection at a speed of 50 miles per hour. Car B is traveling on De Anza Blvd. towards the
	intersection at a speed of 40 miles per hour. When Car A is 4 miles from the intersection and Car B is 2 miles
	from the intersection, how fast are the cars approaching each other?

Find the exact limits algebraically

32. $\lim_{x \to 1} \frac{2^x - 2}{1 - x}$	33. $\lim_{x\to 0} x^{2x}$

34. A farmer wants to fence of an area in the shape of a rectangle. One side of the fence will cost \$40 per linear foot while the other three sides will cost \$20 per linear foot. The farmer can spend \$6000 on fencing. Find the dimensions of rectangle that maximize area.

35. Necklaces cost each to \$6 to make. You can sell 20 necklaces when the price is \$10 per necklace. For every increase of \$1, you will lose 2 sales. Find the price that will generate maximum profit.

36.	. You decide to use Newton's method to determine a root for	$f(x) = x^4$	-20. If your initia	al guess is x_1	= 2, find the
	value for x_2 .				

37. Find f(x) when $f'(x) = 3\cos x + 5\sin x$ and f(0) = 4

38. Find the equation of the tangent to the parametric curve $x = e^{\sqrt{t}}$, $y = t - \ln t^9$ at the point (x,y) when t=1.