

Measures of Central Tendency

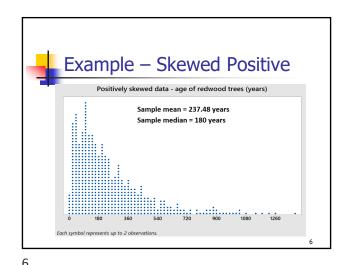
• Mean
• Arithmetic Average $\overline{X} = \frac{\sum X_i}{n}$ • Median
• "Middle" Value after ranking data
• Not affected by "outliers"

• Mode
• Most Occurring Value
• Useful for non-numeric data

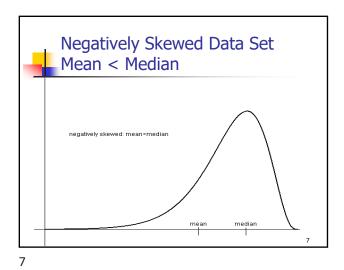
Positively Skewed Data Set
Mean > Median

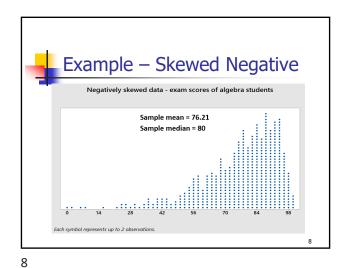
positively skewed: mean>median

median mean



5

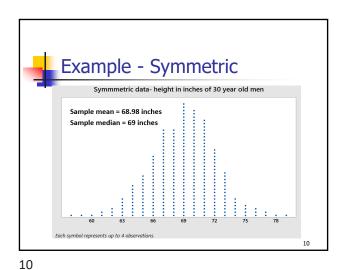




Symmetric Data Set
Mean = Median

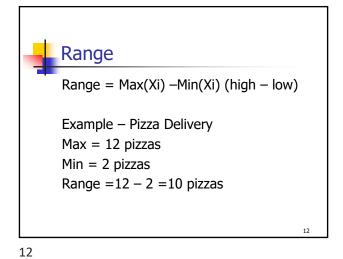
Symmetric: mean=median

mean equals median



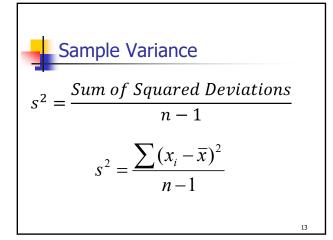
Measures of Variability

Range
Variance
Standard Deviation
Interquartile Range (percentiles)



2

15



Sample Standard Deviation $s = \sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$

14

16

Variance and Standard Deviation $\begin{array}{ccc}
X_i & X_i - \overline{X} & (X_i - \overline{X})^2 \\
2 & & & \\
2 & & & \\
5 & & & \\
9 & & & \\
12 & & & \\
30 & & & \\
\end{array}$

Variance and Standard Deviation X_i $X_i - \overline{X}$ $(X_i - \overline{X})^2$ 2 -4 16
2 -4 16 $s^2 = \frac{78}{4} = 195$ 5 -1 1
9 3 9
12 6 36
30 0 78

Interpreting the Standard
Deviation

Empirical Rule (68-95-99 rule)
For bell shaped data
68% within 1 standard deviation of mean
95% within 2 standard deviations of mean
99.7% within 3 standard deviations of mean

Empirical Rule

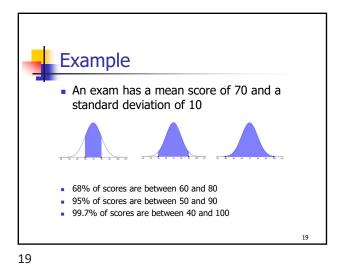
99.78

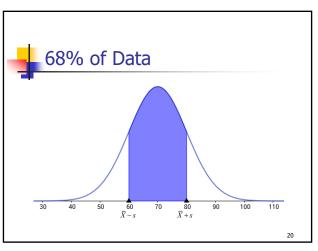
95.8

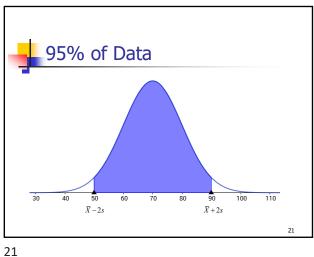
68.8

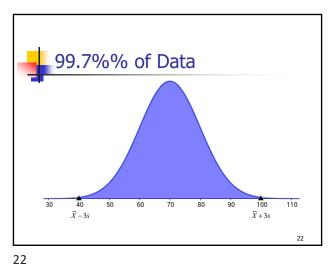
-3 -2 -1 0 1 2 3

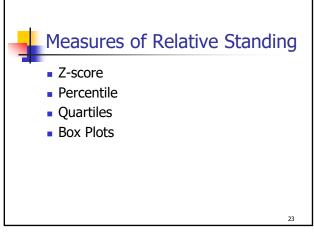
18

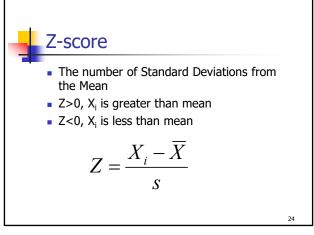












Percentile Rank

Formula for ungrouped data

- The location is (n+1)p (interpolated or rounded)
- n= sample size
- p = percentile

25

:

25

Alternate method to find Quartiles

- First find median of data. This splits the data into two groups, the lower half and the upper half.
- The median of the lower half of the data is the first quartile.
- The median of the upper half of the data is the third quartile.

27

Quartiles

25th percentile is 1st quartile

the Interquartile Range which represents the "middle 50%"

■ 75th percentile – 25th percentile is called

50th percentile is median
 75th percentile is 3rd quartile

Daily Minutes upload/download on the Internet - 30 students

102	104	85	67	101
71	116	107	99	82
103	97	105	103	95
105	99	86	87	100
109	108	118	87	125
124	112	122	78	92

28

28

27

Stem and Leaf Graph

6 7

7 18

8 25677

9 25799

10 01233455789

11 268

12 245

29

IQR Time on Internet data

n+1=31

.25 x 31 = 7.75 location 8 = **87** ← 1st Quartile

.75 x 31 = 23.25 location 23 = 108 ← 3rd Quartile

Interquartile Range (IQR) = 108 - 87 = 21

30

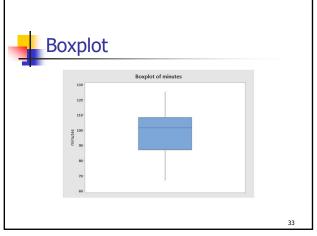
29

30

Alternate method to find Quartiles

- The median of the data is 101.5
- Q1: The median of the 15 values below 101.5 is 87.
- Q3: The median of the 15 values above 101.5 is 108.
- IQR = 108 87 = 21

31



32

Outliers

Box Plots

Minimum ValueFirst Quartile

Third QuartileMaximum Value.

Median

 An outlier is data point that is far removed from the other entries in the data set.

A box plot is a graphical display, based on quartiles,

• Five pieces of data are needed to construct a box

that helps to picture a set of data.

- Outliers could be
 - Mistakes made in recording data
 - Data that don't belong in population
 - True rare events

34

33

34

Outliers have a dramatic effect on some statistics

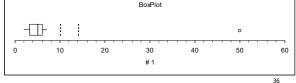
 Example quarterly home sales for 10 realtors:

2	2	3	4	5	5	6	6	7	50	
		with outlier			without outlier					
Mean		9.00		4.44						
Media	an	5.00		5.00						
Std D	ev	14.51				1.81				
IQR		3.00			3.50					

7

Using Box Plot to find outliers

- The "box" is the region between the 1st and 3rd quartiles.
- Possible outliers are more than 1.5 IQR's from the box (inner fence)
- Probable outliers are more than 3 IQR's from the box (outer fence)
- In the box plot below, the dotted lines represent the "fences" that are 1.5 and 3 IQR's from the box. See how the data point 50 is well outside the outer fence and therefore an almost certain outlier.



35 36

Using Z-score to detect outliers

- Calculate the mean and standard deviation without the suspected outlier.
- Calculate the Z-score of the suspected outlier.
- If the Z-score is more than 3 or less than -3, that data point is a probable outlier.

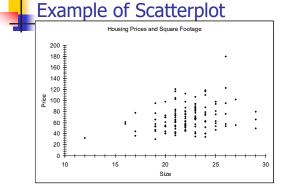
$$Z = \frac{50 - 4.4}{1.81} = 25.2$$

37

Bivariate Data

- Ordered numeric pairs (X,Y)
- Both values are numeric
- Paired by a common characteristic
- Graph as Scatterplot

39



41

Outliers - what to do

- Remove or not remove, there is no clear answer.
- For some populations, outliers don't dramatically change the overall statistical analysis. Example: the tallest person in the world will not dramatically change the mean height of 10000
- However, for some populations, a single outlier will have a dramatic effect on statistical analysis (called "Black Swan" by Nicholas Taleb) and inferential statistics may be invalid in analyzing these populations. Example: the richest person in the world will dramatically change the mean wealth of 10000

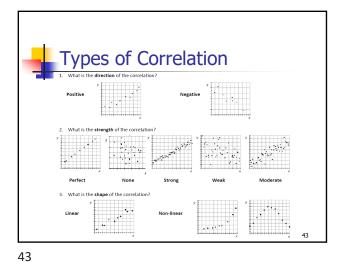
38

Example of Bivariate Data

- Housing Data
 - X = Square Footage
 - Y = Price

40

Another Example



Correlation Analysis

Correlation Analysis: A group of st

- Correlation Analysis: A group of statistical techniques used to measure the strength of the relationship (correlation) between two variables.
- Scatter Diagram: A chart that portrays the relationship between the two variables of interest
- Dependent Variable: The variable that is being predicted or estimated. "Effect"
- Independent Variable: The variable that provides the basis for estimation. It is the predictor variable. "Cause?" (Maybe!)

..

44

The Coefficient of Correlation, r
 The Coefficient of Correlation (r) is a measure of the strength of the relationship between two variables.
 It requires interval or ratio-scaled data (variables).
 It can range from -1 to 1.
 Values of -1 or 1 indicate perfect and strong correlation.
 Values close to 0 indicate weak correlation.
 Negative values indicate an inverse relationship and positive values indicate a direct relationship.

Perfect Positive Correlation

Y

6

10

9

8

7

4

3

2

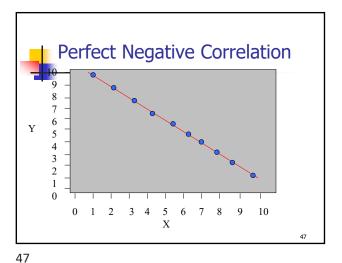
10

0 1 2 3 4 5 6 7 8 9 10

X

45

46



Zero Correlation

Y

6

5

4

3

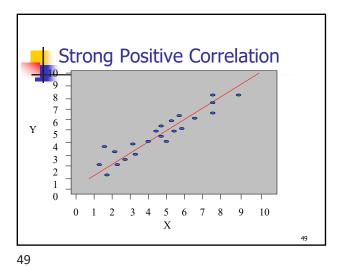
2

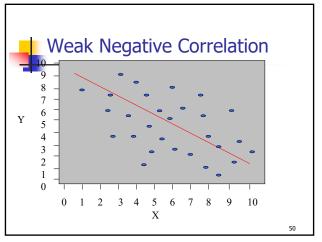
10

0 1 2 3 4 5 6 7 8 9 10

X

48





Causation

- Correlation does not necessarily imply causation.
- There are 4 possibilities if X and Y are correlated:
 - 1. X causes Y
 - 2. Y causes X
 - 3. X and Y are caused by something else.
 - 4. Confounding The effect of X and Y are hopelessly mixed up with other variables.

E1

Causation - Examples

- City with more police per capita have more crime per capita.
- As Ice cream sales go up, shark attacks go up.
- People with a cold who take a cough medicine feel better after some rest.

52

51

Formula for correlation coefficient r

$$r = \frac{SSXY}{\sqrt{SSX \cdot SSY}}$$

$$SSX = \sum X^2 - \frac{1}{n} (\sum X)^2$$

$$SSY = \sum Y^2 - \frac{1}{n} (\sum Y)^2$$

$$SSXY = \Sigma XY - \frac{1}{n} (\Sigma X \cdot \Sigma Y)$$

53

52

Example

- X = Average Annual Rainfall (Inches)
- Y = Average Sale of Sunglasses/1000
- Make a Scatter Diagram
- Find the correlation coefficient

Х	10	15	20	30	40
Υ	40	35	25	25	15

54

53

