Chapter 2 Slides

\qquad
\qquad
\qquad
\qquad

1

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
3

Chapter 2 Slides

\qquad
\qquad
\qquad
\qquad
\qquad

4

\qquad
5

Chapter 2 Slides

7

8

9

\qquad
\qquad
\qquad
\qquad
10

\qquad
\qquad
\qquad
\qquad
\qquad

11

\qquad
\qquad

12

16

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

17

18

Chapter 2 Slides

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

\qquad
\qquad
\qquad
22

\qquad
\qquad
\qquad

Percentile Rank

Formula for ungrouped data

- The location is ($\mathrm{n}+1$)p (interpolated or rounded) \qquad
- $\mathrm{n}=$ sample size \qquad
- $p=$ percentile
\qquad
\qquad
\qquad
\qquad
\qquad
25

Quartiles

- $25^{\text {th }}$ percentile is $1^{\text {st }}$ quartile
- $50^{\text {th }}$ percentile is median
- $75^{\text {th }}$ percentile is $3^{\text {rd }}$ quartile
- $75^{\text {th }}$ percentile $-25^{\text {th }}$ percentile is called the Interquartile Range which represents the "middle 50\%"

Alternate method to find Quartiles

- First find median of data. This splits the data into two groups, the lower half and the upper half.
- The median of the lower half of the data is the first quartile.
- The median of the upper half of the data is the third quartile.
\qquad
27

Daily Minutes upload/download on the Internet - 30 students				
	102 104 85 67 101 71 116 107 99 82 103 97 105 103 95 105 99 86 87 100 109 108 118 87 125 124 112 122 78 92			

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

28

\qquad
\qquad
\qquad

29

30

Alternate method to find Quartiles

- The median of the data is 101.5
- Q1: The median of the 15 values below 101.5 is 87.
- Q3: The median of the 15 values above 101.5 is 108.
- $\mathrm{IQR}=108-87=21$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
31

\qquad
\qquad
\qquad
\qquad

33

Chapter 2 Slides

Outliers

- An outlier is data point that is far removed from the other entries in the data set.
- Outliers could be
- Mistakes made in recording data
- Data that don't belong in population
- True rare events
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
34

\qquad
35

Using Box Plot to find outliers

- The "box" is the region between the $1^{\text {st }}$ and $3^{\text {rd }}$ quartiles.
- Possible outliers are more than 1.5 IQR's from the box (inner fence)
- Probable outliers are more than 3 IQR's from the box (outer fence)
- In the box plot below, the dotted lines represent the "fences" that are 1.5 and 3 IQR's from the box. See how the data point 50 is well outside the outer fence and therefore an almost certain outlier.

Chapter 2 Slides

Using Z-score to detect outliers

- Calculate the mean and standard deviation without the suspected outlier.
- Calculate the Z-score of the suspected outlier.
- If the Z-score is more than 3 or less than -3 , that data point is a probable outlier.

$$
Z=\frac{50-4.4}{1.81}=25.2
$$

37

Outliers - what to do

- Remove or not remove, there is no clear answer.
- For some populations, outliers don't dramatically change the overall statistical analysis. Example: the tallest person in the world will not dramatically change the mean height of 10000 people.
\qquad
\qquad
\qquad
\qquad
- However, for some populations, a single outlier will have a dramatic effect on statistical analysis (called "Black Swan" by Nicholas Taleb) and inferential statistics may be invalid in analyzing these populations. Example: the richest person in the world will dramatically change the mean wealth of 10000 people.

Bivariate Data

- Ordered numeric pairs (X,Y)
- Both values are numeric
- Paired by a common characteristic
- Graph as Scatterplot
\qquad
\qquad
\qquad

Chapter 2 Slides

\qquad
\qquad
Housing Data
X = Square Footage \qquad

- $Y=$ Price

40

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
41

42

Chapter 2 Slides

\qquad
\qquad
\qquad
\qquad
\qquad
43

Correlation Analysis

- Correlation Analysis: A group of statistical techniques used to measure the strength of the relationship (correlation) between two variables. \qquad
- Scatter Diagram: A chart that portrays the relationship between the two variables of \qquad interest.
- Dependent Variable: The variable that is being predicted or estimated. "Effect" \qquad
Independent Variable: The variable that provides the basis for estimation. It is the \qquad predictor variable. "Cause?" (Maybe!)
\qquad
44

The Coefficient of Correlation, r

- The Coefficient of Correlation (r) is a measure of the strength of the relationship between two variables.
- It requires interval or ratio-scaled data (variables). \qquad
- It can range from -1 to 1 .
- Values of -1 or 1 indicate perfect and strong correlation.
- Values close to 0 indicate weak correlation.
- Negative values indicate an inverse relationship and positive values indicate a direct relationship.

Chapter 2 Slides

Chapter 2 Slides

49
49

50
50

51

Causation - Examples

- City with more police per capita have more crime per capita.
- As Ice cream sales go up, shark attacks go up.
- People with a cold who take a cough
\qquad medicine feel better after some rest.
\qquad
\qquad
\qquad
\qquad
\qquad
52
Formula for correlation coefficient r

$$
\begin{aligned}
& r=\frac{S S X Y}{\sqrt{S S X \cdot S S Y}} \\
& S S X=\Sigma X^{2}-\frac{1}{n}(\Sigma X)^{2} \\
& S S Y=\Sigma Y^{2}-\frac{1}{n}(\Sigma Y)^{2} \\
& S S X Y=\Sigma X Y-\frac{1}{n}(\Sigma X \cdot \Sigma Y)
\end{aligned}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

53

54

Chapter 2 Slides

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
55
Example continued

X	Y	X^{2}	Y^{2}	XY
10	40	100	1600	400
15	35	225	1225	525
20	25	400	625	500
30	25	900	625	750
40	15	1600	225	600
115	140	3225	4300	2775
- SSX = 3225-115 $/ 5=580$				
- SSY = 4300-140²/5 $=380$				
- $\mathrm{SSXY}=2775-(115)(140) / 5=-445$				

\qquad

56

57

\qquad

59

