

1

3

5

Classical Probability

- Event
- A result of an experiment, usually expressed as a letter (A, B, \ldots)
- Outcome
- A result of the experiment that cannot be broken down into smaller events
- Sample Space
- The set of all possible outcomes
- Probability Event A Occurs - written as P(A)
- Number of Outcomes in Event A / Number of Outcomes in Sample Space
- Example - flip two coins, find the probability of exactly 1 head.
- Sample Space $=\{H H, H T, T H, T T\} \quad A=\{H T, T H\}$
- $P(A)=2 / 4=0.50$

4

6

7

9

Example

- In a group of students, 40\% are taking Math, 20\% are taking History.
- 10% of students are taking both Math and History.
- Find the Probability of a Student taking either Math or History or both.
- $\mathrm{P}(\mathrm{M}$ or H$)=40 \%+20 \%-10 \%=50 \%$

11
11

Empirical Probability

- Historical Data
- Relative Frequencies
- Example: What is the chance someone rates their community as good or better?
- $0.51+0.32=0.83$

8

8

Joint Probability

- The UNION of two events A and B is that either A or B occur (or both). (All colored parts)
- The INTERSECTION of two events A and B is that both A and B will occur.
 (Purple Part only)
- Additive Rule: $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)$

Mutually Exclusive

- Mutually Exclusive
- Both cannot occur
- If A and B are mutually exclusive, then
- $P(A$ or $B)=P(A)+P(B)$
- Example roll a die
- A: Roll 2 or less B: Roll 5 or more
- $P(A)=2 / 6 \quad P(B)=2 / 6$
- $P(A$ or $B)=P(A)+P(B)=4 / 6$

Conditional Probability

- The probability of an event occuring GIVEN another event has already occurred.
- $P(A \mid B)=P(A$ and $B) / P(B)$
- Example: Of all smart phone users in the US, 21% have an Apple iPhone and AT\&T. 35\% of all smart phone users have AT\&T. Given a selected smart phone user has AT\&T, find the probability the user also has an Apple iPhone.
- A=AT\&T subscriber $\quad B=A p p l e ~ i P h o n e ~$
- $P(A$ and $B)=0.21$ $P(A)=0.35$
- $P(B \mid A)=0.21 / 0.35=0.60$

Contingency Tables

- Two data items can be displayed in a contingency table.
- Example: auto accident during year and DUI of driver.

	Accident	No Accident	Total
DUI	70	130	200
Non- DUI	30	770	800
Total	100	900	1000

Marginal, Joint and

 Conditional Probability- Marginal Probability means the probability of a single event occurring.
- Joint Probability means the probability of the union or intersection of multiple events occurring (and/or statements).
- Conditional Probability means the probability of an event occurring given that another event has already occurred.

16

18

Creating Contingency Tables

- You can create a hypothetical contingency table from reported cross tabulated data.
- First choose a convenient sample size (called a radix) like 10000.
- Then apply the reported marginal probabilities to the radix of one of the variables.
- Then apply the reported conditional probabilities to the total values of one of the other variable.
- Complete the table with arithmetic.

Example

Then apply the cross tabulated percentages for each gender. Make sure the numbers add up.

GENDER			
VOTED FOR	Female	Male	Total
Trump	2173	2444	
Clinton	2862	1927	
Other	265	329	
Total	5300	4700	10000

Example

Create a two-way table from the cross tabulation of gender from the 2016 election results (from CNN)

20

Example

Then apply the marginal probabilities to the radix (53\% female, 47% male)

GENDER			
VOTED FOR	Female	Male	Total
Trump			
Clinton			
Other			
Total	5300	4700	10000

Example

Finally, complete the table using arithmetic.

GENDER			
VOTED FOR	Female	Male	Total
Trump	2173	2444	4617
Clinton	2862	1927	4789
Other	265	329	594
Total	5300	4700	10000

25

27

29

26

28

Independence

- If A is not dependent on B, then they are INDEPENDENT events, and the following statements are true:
- $P(A \mid B)=P(A)$
- $P(B \mid A)=P(B)$
- $P(A$ and $B)=P(A) \times P(B)$

31

33

35

Example

	Accident	No Accident	Total
Domestic Car	60	540	600
Import Car	40	360	400
Total	100	900	1000

$$
\begin{array}{lr}
\text { A: Accident } & \text { D:Domestic Car } \\
\mathrm{P}(\mathrm{~A})=.10 & \mathrm{P}(\mathrm{~A} \mid \mathrm{D})=.10(60 / 600)
\end{array}
$$

Therefore A and D are INDEPENDENT events as $P(A)=P(A \mid D)$
Also $\mathrm{P}(\mathrm{A}$ and D$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{D})=(.1)(.6)=.06$

Tree Diagram method

- Alternative Method of showing probability
- Example: Flip Three Coins
- Example: A Circuit has three switches. If at least two of the switches function, the Circuit will succeed. Each switch has a 10% failure rate if all are operating, and a 20% failure rate if one switch has already failed. Find the probability the circuit will succeed.

Switching the Conditionality

- Often there are questions where you desire to change the conditionality from one variable to the other variable
- First construct a tree diagram.
- Second, create a Contingency Table using a convenient radix (sample size)
- From the Contingency table it is easy to calculate all conditional probabilities.

37

38

Example

	HIV+ \mathbf{A}	HIV- \mathbf{A}^{\prime}	Total
Test+ \mathbf{B}	950	1350	2300
Test- \mathbf{B}^{\prime}	50	7650	7700
Total	1000	9000	10000

$$
P(A \mid B)=\frac{950}{2300} \approx .413
$$

