

Rule of Complement
Complement of an event
The event does not occur
A' is the complement of A
P(A) + P(A') = 1
P(A) = 1 - P(A')

<section-header><section-header><section-header><section-header><text>

E	vamnle					
	zampie					
Then a gende	apply the cros r. Make sure	ss tabulate	ed perc ers add	entages up.	for each	
		GEND	ER			
	VOTED FOR	Female	Male	Total	_	
	Trump	2173	<mark>2444</mark>			
	Clinton	2862	<mark>1927</mark>			
	Other	<mark>265</mark>	<mark>329</mark>			
	Total	5300	4700	10000		

Multiplicative Rule – Tree Diagram $P(A) = \frac{3}{7}$ $P(B|A) = \frac{2}{6}$ $P(B|A) = \frac{2}{6}$ $P(B|A) = \frac{2}{6}$ $P(B|A) = \frac{3}{6}$ $P(B|A) = \frac{3}{6}$ $P(B|A) = \frac$

		Accident	No Accident	Total	1
	DUI	70	130	200	-
	Non- DUI	30	770	800	
	Total	100	900	1000	
: Acc (A) =	ident .10 P(A	D:DUI (D) = .35 ('	Driver 70/200) NDENT eve	nto og D (A)	

_	F	1.			
	Examp	le			
-		Accident	No Accident	Total	
	Domestic Car	60	540	600	
	Import Car	40	360	400	
	Total	100	900	1000	
A: Ao P(A)	ecident = .10 P(A	D:Dom D) = .10 (nestic Car 60/600)		
There	efore A and D	are INDE	PENDENT	events as P(A	$\mathbf{A}) = \mathbf{P}(\mathbf{A} \mathbf{D})$
Also	P(A and D) =	P(A)xP(D) = (.1)(.6) =	.06	
					22

32

Switching the Conditionality
 Often there are questions where you desire to change the conditionality from one variable to the other variable
 First construct a tree diagram.
 Second, create a Contingency Table using a convenient radix (sample size)

• From the Contingency table it is easy to calculate all conditional probabilities.

38

