

Exa	mple o	of Me	an an	d Variance
x	P(x)	xP(x)	<mark>x</mark> -μ]
0	0.1	0.0	-2.5	-
1	0.1	0.1	-1.5	-
2	0.2	0.4	-0.5	-
3	0.4	1.2	0.5	-
4	0.2	0.8	1.5	-
Total	1.0	2.5 =μ		-
				1
				10

Exa	mple	of Me	an ar	d Vari	ance
x	• P(x)	xP(x)	Х-μ	(x-μ) ²	(x-μ) ² P(x)
0	0.1	0.0	-2.5	6.25	.625
1	0.1	0.1	-1.5	2.25	.225
2	0.2	0.4	-0.5	0.25	.050
3	0.4	1.2	0.5	0.25	.100
4	0.2	0.8	1.5	2.25	.450
Total	1.0	2.5=µ			1.450 =σ

Mean and Variance of Bernoulli P(x)xP(x) $(x-\mu)^{2}P(x)$ х (1-p) 0.0 p²(1-p) 0 1 р р p(1-p)² Total 1.0 **p(1-p)**=σ² **p**=μ ■ μ = p • $\sigma^2 = p(1-p) = pq$ 15

15

16

20

21

<section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Poisson Example • Earthquakes of Richter magnitude 3 or greater occur on a certain fault at a rate of twice every year. • Find the probability of at least one earthquake of RM 3 or greater in the next year. P(X > 0) = 1 - P(0) $= 1 - \frac{e^{-2}2^{0}}{0!}$ $= 1 - e^{-2} \approx .8647$ 24