

1

3

5

Probability Distribution

Example

- Students are asked 4 questions and the number of correct answers are determined.
- Assign probabilities to each event.

x	$\mathrm{P}(\mathrm{x})$
0	.1
1	.1
2	.2
3	.4
4	

6

Random Variable

- The value of the variable depends on an experiment, observation or measurement.
- The result is not known in advance.
- For the purposes of this class, the variable will be numeric.

2

Discrete Random Variable

- List Sample Space
- Assign probabilities $P(x)$ to each event x
- Use "relative frequencies"
- Must follow two rules
- $P(x) \geq 0$
- $\Sigma P(x)=1$
- $P(x)$ is called a Probability Distribution Function or pdf for short.

4

Probability Distribution
 Example

- Students are asked 4 questions and the number of correct answers are determined.
- Assign probabilities to each event.

x	$\mathrm{P}(\mathrm{x})$
0	.1
1	.1
2	.2
3	.4
4	.2

7

9

11

Example of Mean and Variance

x	$P(x)$
0	0.1
1	0.1
2	0.2
3	0.4
4	0.2
Total	$\mathbf{1 . 0}$

8

Example of Mean and Variance

x	$P(x)$	$x P(x)$	$x-\mu$
0	0.1	0.0	-2.5
1	0.1	0.1	-1.5
2	0.2	0.4	-0.5
3	0.4	1.2	0.5
4	0.2	0.8	1.5
Total	$\mathbf{1 . 0}$	$\mathbf{2 . 5}=\mu$	

10

12

13

15

Example - Binomial

- A basket player makes 70% of free throws. three shots are taken. Find the probability of making exactly 2 Shots
- $\mathrm{p}=\mathrm{P}$ (Success) $=0.70$
- $q=P($ Failure $)=1-p=0.30$
- $\mathrm{n}=$ number of independent trials $=3$
- $\mathrm{P}(\mathrm{SSF})=\mathrm{P}(\mathrm{S}) \mathrm{P}(\mathrm{S}) \mathrm{P}(\mathrm{F})=(0.70)(0.70)(0.30)=0.147$
- $\mathrm{P}(\mathrm{SFS})=\mathrm{P}(\mathrm{S}) \mathrm{P}(\mathrm{F}) \mathrm{P}(\mathrm{S})=(0.70)(0.30)(0.70)=0.147$
- $\mathrm{P}(\mathrm{FSS})=\mathrm{P}(\mathrm{F}) \mathrm{P}(\mathrm{S}) \mathrm{P}(\mathrm{S})=(0.30)(0.70)(0.70)=0.147$
- $P(X=2)=3(0.147)=0.441$

Example - Bernoulli

- A basket player makes 70% of free throws. One shot is taken.
- $p=P$ (success) $=0.70$
- $\mathrm{q}=\mathrm{P}$ (failure) $=1-\mathrm{p}=0.30$

x	$\mathrm{P}(\mathrm{x})$	$\mathrm{xP}(\mathrm{x})$	$(\mathrm{x}-\mu)$	$(\mathrm{x}-\mu)^{2}$	$(\mathrm{x}-\mu)^{2} \mathrm{P}(\mathrm{x})$
0	0.30	0	-0.70	0.49	0.147
1	0.70	0.70	0.30	0.09	0.063
Total	$\mathbf{1 . 0}$	$\mu=\mathbf{0 . 7 0}=\mathbf{p}$			$\boldsymbol{\sigma}^{2}=\mathbf{0 . 2 1 = \mathbf { p q }}$

Binomial Distribution

- n identical trials
- Two possible outcomes (success/failure)
- Probability of success in a single trial is p
- Trials are mutually independent
- X is the number of successes
- Note: X is a sum of n independent identically distributed Bernoulli distributions

Binomial Distribution

- n independent Bernoulli trials
- Mean and Variance of Binomial Distribution is just sample size times mean and variance of Bernoulli Distribution

$$
\begin{aligned}
& p(x)={ }_{n} C_{x} p^{x}(1-p)^{n-x} \\
& \mu=E(X)=n p \\
& \sigma^{2}=\operatorname{Var}(X)=n p(1-p)
\end{aligned}
$$

Binomial Examples

- The number of defective parts in a fixed sample.
- The number of adults in a sample who support the war in Iraq.
- The number of correct answers if you guess on a multiple choice test.

Binomial Example

- 90% of super duplex globe valves manufactured are good (not defective). A sample of 10 is selected.
- Find the probability of exactly 8 good valves being chosen.
- Find the probability of 9 or more good valves being chosen.
- Find the probability of 8 or less good valves being chosen.

21

23

Poisson Distribution

- Occurrences per time period (rate)
- Rate (μ) is constant
- No limit on occurrences over time period

$$
P(x)=\frac{e^{-\mu} \mu^{x}}{x!} \quad \begin{array}{ll}
\mu=\mu \\
\sigma=\sqrt{\mu}
\end{array}
$$

Poisson Example

- Earthquakes of Richter magnitude 3 or greater occur on a certain fault at a rate of twice every year.
- Find the probability of at least one earthquake of RM 3 or greater in the next year.

$$
\begin{aligned}
P(X>0) & =1-P(0) \\
& =1-\frac{e^{-2} 2^{0}}{0!} \\
& =1-e^{-2} \approx .8647
\end{aligned}
$$

Chapter 5 Slides

Poisson Example (cont)

- Earthquakes of Richter magnitude 3 or greater occur on a certain fault at a rate of twice every year.
- Find the probability of exactly 6 earthquakes of RM 3 or greater in the next $\mathbf{2}$ years.

$$
\begin{aligned}
& \mu=2(2)=4 \\
& P(X=6)=\frac{e^{-4} 4^{6}}{6!} \approx .1042
\end{aligned}
$$

