

1

5

Discrete vs Continuous

- Countable	- Uncountable
- Discrete Points	- Continuous Intervals
- $p(x)$ is probability	- $f(x)$ is probability
distribution function	density function
- $p(x) \geq 0$	- $f(x) \geq 0$
- $\Sigma p(x)=1$	- Total Area under

3

2

4

6

Relationship between Poisson and Exponential Distributions

- If occurrences follow a Poisson Process with mean $=\mu$, then the waiting time for the next occurrence has Exponential distribution with mean $=1 / \mu$.
- Example: If accidents occur at a plant at a constant rate of 3 per month, then the expected waiting time for the next accident is $1 / 3$ month.

7

9

11

The time until a screen is cracked on a smart phone has exponential distribution with $\mu=500$ hours of use.
(a) Find the probability screen will not crack for at least 600 hours.
$\mathrm{P}(\mathrm{x}>600)=\mathrm{e}^{-600 / 500}=\mathrm{e}^{-1.2}=.3012$
(b) Assuming that screen has already lasted 500 hours without cracking, find the chance the display will last an additional 600 hours.
$\mathrm{P}(\mathrm{x}>1100 \mid \mathrm{x}>500)=\mathrm{P}(\mathrm{x}>600)=.3012$

8

Uniform Distribution

- Rectangular distribution
- Example: Random number generator

$$
\begin{aligned}
& f(x)=\frac{1}{b-a} \quad a \leq x \leq b \\
& \mu=E(X)=\frac{b+a}{2} \\
& \sigma^{2}=\operatorname{Var}(X)=\frac{(b-a)^{2}}{12}
\end{aligned}
$$

10

12

Uniform Example 1

- Find mean, variance, $P(X<3)$ and $70^{\text {th }}$ percentile for a uniform distribution from 1 to 11 .

$$
\begin{aligned}
& \mu=\frac{1+11}{2}=6 \quad \sigma^{2}=\frac{(11-1)^{2}}{12}=8.33 \\
& P(X<3)=\frac{3-1}{11-1}=0.3 \\
& X_{70}=1+0.7(11-1)=8
\end{aligned}
$$

Uniform Example 3

- A bus arrives at a stop every 20 minutes.
- Find the probability of waiting more than 15 minutes for the bus after arriving randomly at the bus stop.
- If you have already waited 5 minutes, find the probability of waiting an additional 10 minutes or more. (Hint: recalculate parameters a and b)

Uniform Example 2

- A tea lover orders 1000 grams of Tie Guan Yin loose leaf when his supply gets to 50 grams.
- The amount of tea currently in stock follows a uniform random variable.
- Determine this model
- Find the mean and variance
- Find the probability of at least 700 grams in stock.

- Find the $80^{\text {th }}$ percentile

16

The Standard Normal
 Probability Distribution

- A normal distribution with a mean of 0 and a standard deviation of 1 is called the standard normal distribution.
- Z value: The distance between a selected value, designated x , and the population mean μ, divided by the population standard deviation, σ

$$
Z=\frac{X-\mu}{\sigma}
$$

19

21

23

EXAMPLE

The daily water usage per person in a town is normally distributed with a mean of 20 gallons and a standard deviation of 5 gallons.

- About 68% of the daily water usage per person in New Providence lies between what two values?
- $\mu \pm 1 \sigma=20 \pm 1(5)$. That is, about 68% of the daily water usage will lie between 15 and 25 gallons.

EXAMPLE

- The daily water usage per person in a town is normally distributed with a mean of 20 gallons and a standard deviation of 5 gallons.
What is the probability that a person from the town selected at random will use less than 18 gallons per day?
- The associated Z value is $Z=(18-$ $20) / 5=0$.
- $P(X<18)=P(Z<-0.40)=\mathbf{0 . 3 4 4 6}$

22

24

- Given: probability or percentile desired.
- Use table or technology that corresponds to probability to get Z
- Convert to X by the formula:

$$
X=\mu+Z \sigma
$$

27

EXAMPLE

- The daily water usage per person in a town is normally distributed with a mean of 20 gallons and a standard deviation of 5 gallons. A special tax is going to be charged on the top 5% of water users.
- Find the value of daily water usage that generates the special tax
- The Z value associated with $95^{\text {th }}$ percentile $=1.645$
- $X=20+5(1.645)$
$=28.2$ gallons per day

26

28

