

1

3

5

Distribution of Sample Mean

- Random Sample: $X_{1}, X_{2}, X_{3}, \ldots, X_{n}$
- Each X_{i} is a Random Variable from the same population
- All X_{i}^{\prime} 's are Mutually Independent
- \bar{X} is a function of Random Variables, so \bar{X} is itself Random Variable.
- In other words, the Sample Mean can change if the values of the Random Sample change.
- What is the Probability Distribution of \bar{X} ?

Example - Roll 2 Dice
Probability Distribution of Sample Mean - 2 Die Rolls

4

6

7

Central Limit Theorem - Part 2

- IF a random sample of sufficiently large size is taken from a population with any Distribution with mean $=\mu$ and standard deviation $=\sigma$

- THEN the distribution of the sample mean has approximately a Normal Distribution with:

$$
\mu_{\bar{X}}=\mu \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
$$

9

11

Central Limit Theorem - Part 1

- IF a Random Sample of any size is taken from a population with a Normal Distribution with mean $=\mu$ and standard deviation $=\sigma$

- THEN the distribution of the sample mean has a Normal Distribution with:
$\mu_{\bar{X}}=\mu \quad \sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}$

8

Central Limit Theorem

3 important results for the distribution of \bar{X}

- Mean Stays the same

$$
\mu_{\bar{X}}=\mu
$$

- Standard Deviation Gets Smaller

$$
\sigma_{\bar{X}}=\frac{\sigma}{\sqrt{n}}
$$

- If n is sufficiently large, \bar{X} has a Normal Distribution

12

13

15

17

Binomial Distribution and
Sample Proportion

- Let X have a binomial distribution
- n independent trials
- p is the probability of success on a single trial
- X is the number of successes in sample
- Sample proportion
- \hat{p} is the proportion of successes in sample

$$
\hat{p}=\frac{X}{n}
$$

16

18

Central Limit Theorem
 Sample Proportion

- The sample proportion of successes from a sample from a Binomial distribution is a random variable.
- If X is a random variable from a Binomial distribution with parameters n and p, and $n p \geq 10$ and $n(1-p) \geq 10$, then the following is true for the Sample Proportion, \hat{P} :

$$
\mu_{\hat{p}}=p \quad \sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}
$$

- The Distribution of \hat{P} is approximately Normal.

Example

- 45% of all community college students in California receive fee waivers.
- Suppose you randomly sample 1000 community college students to determine the proportion of students with fee waivers in the sample.
- 483 of the sampled students are receiving fee waivers.
- Determine \hat{P}. Is the result unusual?

$$
\begin{array}{rl}
\hat{P}=\frac{483}{1000}=0.483 \quad \sigma_{\hat{p}}=\sqrt{\frac{0.45(1-0.45)}{1000}}=0.0157 & Z \\
=\frac{\hat{p}-p}{\sigma_{\hat{p}}}=\frac{0.483-0.45}{0.0157} \\
Z & =2.10
\end{array}
$$

- Result is unusual (more than 2 standard deviations from the expected value of the sample proportion).

