
\qquad
\qquad
\qquad
\qquad
\qquad

1

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
2

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

4

5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

7

\qquad

8

\qquad
\qquad
\qquad
\qquad
\qquad
9

10
90\%, 95\% and 99\% Confidence
Intervals for μ

- The 90\%, 95\% and 99\% confidence intervals for μ are constructed as follows when $n \geq 30$
- $90 \% \mathrm{CI}$ for the population mean is given by

$$
\bar{X} \pm 1.645 \frac{\sigma}{\sqrt{n}}
$$

- 95% CI for the population mean is given by

$$
\bar{X} \pm 1.96 \frac{\sigma}{\sqrt{n}}
$$

- $99 \% \mathrm{CI}$ for the population mean is given by

$$
\bar{X} \pm 2.58 \frac{\sigma}{\sqrt{n}}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
11

- In general, a confidence interval for the mean is computed by:

$$
\bar{X} \pm Z \frac{\sigma}{\sqrt{n}}
$$

- This can also be thought of as:
Point Estimator \pm Margin of Error
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
12

13
The Dean wants to estimate the mean number of hours
worked per week by students. A sample of 49 students showed a sample mean of 24 hours with a population standard deviation of 4 hours.

- The point estimate is 24 hours (sample mean).
- What is the 95\% confidence interval for the average number of hours worked per week by the students?
$24 \pm 1.96\left(\frac{4}{\sqrt{49}}\right)=24 \pm 1.12$
$22.88 \frac{\mid}{24} 25.12$
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
14

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
15

16

Selecting a Sample Size

- There are 3 factors that determine the size of a sample, none of which has any direct relationship to the size of the population. They are:
- The degree of confidence selected.
- The maximum allowable error. \qquad
- The variation of the population.

17

18

EXAMPLE

- The Dean wants to estimate with 99% confidence the mean number of hours worked per week by students with a margin of error (E) of 0.5 hours. Assume population standard deviation of 4 hours.
$n=\left(\frac{(2.58)(24)}{0.5}\right)=426.0096=427$
- Note: round up to next whole number
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
19

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
20

Characteristics of Student's t Distribution

- The t-distribution has the following properties:
- It is continuous, bell-shaped, and symmetrical about zero like the z-distribution.
- There is a family of t-distributions sharing a mean of zero but having different standard deviations based on degrees of freedom.
- The t-distribution is more spread out and flatter at the center than the z-distribution, but approaches the z-distribution as the sample size gets larger.

21

22

23

24

25

Confidence Intervals, Population Proportions

- Point estimate for proportion $\begin{aligned} & \text { of successes in population is: }\end{aligned} \hat{p}=\frac{X}{n}$
- X is the number of successes
in a sample of size n.
- Standard deviation of \hat{p} is $\sqrt{\frac{(p)(1-p)}{n}}$
- Confidence Interval for p :

$$
\hat{p} \pm Z \cdot \sqrt{\frac{p(1-p)}{n}} \approx \hat{p} \pm Z \cdot \sqrt{\frac{\hat{p}(1-\hat{p})}{n}}
$$

26

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
27

28

Sample Size for the Proportion

- A convenient computational formula for determining n is:

$$
n=(p(1-p))\left(\frac{Z}{E}\right)^{2}
$$

- where E is the allowable margin of error, Z is the z-score associated with the degree of confidence selected, and p is the population proportion.
- If p is completely unknown, p can be set equal to $1 / 2$ which maximizes the value of $(p)(1-p)$ and guarantees the confidence interval will fall within the margin of error.
\qquad

29

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

31
Example

- In polling, determine the minimum sample size needed to have a margin of error of 3% when p is known to be close to $1 / 4$.

$$
n=(.25)(1-.25)\left(\frac{1.96}{.03}\right)^{2}=801
$$

\qquad

32

33

34

35

- $\mathrm{n}-1$ is degrees of freedom
$-\mathrm{s}^{2}$ is sample variance
- σ^{2} is population variance

\qquad
36

Confidence interval for σ^{2}

- Confidence is NOT symmetric since chi-square distribution is not symmetric. You must find separate left and right bounds.
- We can construct a confidence interval for σ^{2}

$$
\left(\frac{(n-1) s^{2}}{\chi_{R}^{2}}, \frac{(n-1) s^{2}}{\chi_{L}^{2}}\right)
$$

- Take square root of both endpoints to get confidence interval for σ, the population standard deviation.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
37

\qquad
\qquad

38

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

