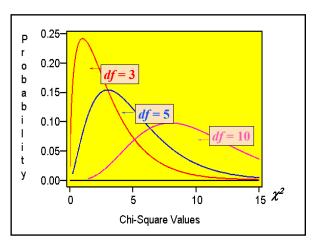


 The major characteristics of the chisquare distribution are:

- It is positively skewed
- It is non-negative
- $\, \blacksquare \,$ It is based on degrees of freedom
- When the degrees of freedom change a new distribution is created

2



Goodness-of-Fit Test: Equal Expected Frequencies

- Let O_i and E_i be the observed and expected frequencies respectively for each category.
- $\quad \hbox{$\stackrel{\bullet}{$}$ H_0: there is no difference between Observed and Expected Frequencies }$
- $\begin{tabular}{ll} \blacksquare & H_a: there is a difference between Observed and Expected Frequencies \\ \end{tabular}$
- The test statistic is: $\chi^2 = \sum \frac{(O_i E_i)^2}{E_i}$
- The critical value is a chi-square value with (k-1) degrees of freedom, where k is the number of categories

4

EXAMPLE 1

The following data on absenteeism was collected from a manufacturing plant. At the .01 level of significance, Can you support the claim that there is a difference in the absence rate by day of the week?

Day	Frequency
Monday	95
Tuesday	65
Wednesday	60
Thursday	80
Friday	100

5

EXAMPLE 1 continued

Assume equal expected frequency: (95+65+60+80+100)/5=80

Day	O_i	$\mathbf{p_i}$
Mon	95	0.20
Tues	65	0.20
Wed	60	0.20
Thur	80	0.20
Fri	100	0.20
Total	400	1

EXAMPLE 1 continued

Assume equal expected frequency: (95+65+60+80+100)/5=80

Day	O_{i}	$\mathbf{p_i}$	Ei
Mon	95	0.20	80
Tues	65	0.20	80
Wed	60	0.20	80
Thur	80	0.20	80
Fri	100	0.20	80
Total	400	1	400

7

EXAMPLE 1 continued

Assume equal expected frequency: (95+65+60+80+100)/5=80

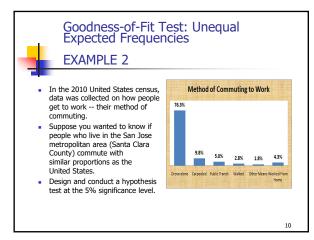
Day	Oi	p _i	Ei	(O-E)^2/E
Mon	95	0.20	80	2.8125
Tues	65	0.20	80	2.8125
Wed	60	0.20	80	5.0000
Thur	80	0.20	80	0.0000
Fri	100	0.20	80	5.0000
Total	400	1	400	15.625

8

EXAMPLE 1 continued

- H_o: There is no difference absenteeism due to day of the week.
- H_a: There is a difference absenteeism due to day of the week.
- H_o: p₁=p₂=p₃=p₄=p₅
 H_a: At least one proportion is different
- Test statistic: chi-square=Σ(O-E)²/E=15.625
- Decision Rule: reject H₀ if test statistic is greater than the critical value of 13.277. (4 df, α =.01)
- Conclusion: reject H₀ and conclude that there is a difference absenteeism due to day of the week.

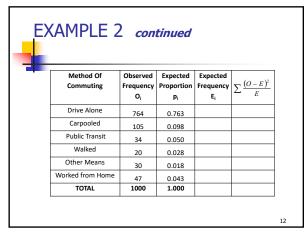
Chapter 11 Slides



10

(AMPLE 2		umueu		
Method Of	Observed	Expected	Expected	
Commuting	Frequency	Proportion	Frequency	$\sum \frac{(O-E)^2}{E}$
	O _i	P _i	E,	_ E
Drive Alone	764			
Carpooled	105			
Public Transit	34			
Walked	20			
Other Means	30			
Worked from Home	47			
TOTAL	1000			

11

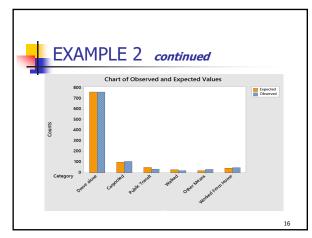


Method Of Observ	ed Expected	Expected	
Commuting Frequer	1 1		$\sum \frac{(O-E)^2}{P}$
O _i	pi	E,	E
Drive Alone 764	0.763	763	
Carpooled 105	0.098	98	
Public Transit 34	0.050	50	
Walked 20	0.028	28	
Other Means 30	0.018	18	
Worked from Home 47	0.043	43	
TOTAL 1000	1.000	1000	

EXAMPLE 2 continued						
Method Of	Observed	Expected	Expected			
Commuting	Frequency	Proportion	Frequency	$\sum \frac{(O-E)^2}{E}$		
	O _i	$\mathbf{p_i}$	E,	E		
Drive Alone	764	0.763	763	0.0013		
Carpooled	105	0.098	98	0.5000		
Public Transit	34	0.050	50	5.1200		
Walked	20	0.028	28	2.2857		
Other Means	30	0.018	18	8.0000		
Worked from Home	47	0.043	43	0.3721		
TOTAL	1000	1.000	1000	16.2791		

14

EXAMPLE 2 continued • **Design:**Ho: $p_1 = .763$ $p_2 = .098$ $p_3 = .050$ $p_4 = .028$ $p_5 = .018$ $p_6 = .043$ Ha: At least one p_i is different than what was stated in Ho • $\alpha = .05$ Model: Chi-Square Goodness of Fit, df=5 • H_o is rejected if $\chi^2 > 11.071$ • **Data:**• $\chi^2 = 16.2791$, Reject Ho • **Conclusion:**Workers in Santa Clara County do not have the same frequencies of method of commuting as workers in the entire United States.



Explanatory/Response Models

- The remaining models covered in the course can be used for testing claims of the following form:
- Ho: There is no difference in the Response
 Variable due to the Explanatory Variable
- Ha: There is a difference in the Response
 Variable due to the Explanatory Variable
- If both the explanatory and categorical variables are categorical, then use the Chi-square Test of Independence Model

17

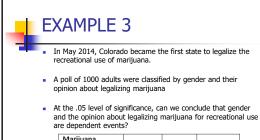
17

Chi-square Test of Independence

- Contingency table analysis is used to test whether two traits or variables are related.
- Each observation is classified according to two categorical variables (Explanatory and Response).
- Ha: The variables are dependent
- The degrees of freedom is equal to: (number of rows-1)(number of columns-1).
- The expected frequency is computed as: Expected Frequency = (row total)(column total)/grand total

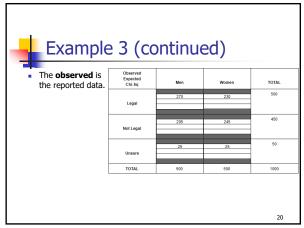
18

Chapter 11 Slides



Marijuana			
should be	Men	Women	Total
Legal	270	230	500
Not Legal	205	245	450
Unsure	25	25	50
Total	500	500	1000

19



20

Example	e 3 (cc	ontinu	ed)	
 The observed is the reported data. 	Observed Expected Chi-Sq	Men	Women	TOTAL
■ The expected is Row Total × Column Total	Legal	270 250	230 250	500
Grand Total (n)	Not Legal	205 225	245 225	450
	Unsure	25 25	25 25	50
	TOTAL	500	500	1000
				21

