

1

3

5

Mathematical Model

- You have a small business producing custom t-shirts.
- Without marketing, your business has revenue (sales) of $\$ 1000$ per week.
- Every dollar you spend marketing will increase revenue by 2 dollars.
- Let variable X represent amount spent on marketing and let variable Y represent revenue per week.
- Write a mathematical model that relates X to Y

Mathematical Linear Model

Linear Model
Example

$Y=\beta_{0}+\beta_{1} X$	$Y=1000+2 X$
$Y:$ Dependent Variable	$Y:$ Revenue
$X:$ Independent Variable	$X:$ Marketing
$\beta_{0}: Y$-intercept	$\beta_{0}: \$ 1000$
$\beta_{1}:$ Slope	$\beta_{1}: \$ 2$ per $\$ 1$ marketing

Statistical Model

- You have a small business producing custom t-shirts.
- Without marketing, your business has expected revenue (sales) of $\$ 1000$ per week.
- Every dollar you spend marketing will increase revenue by an expected value of 2 dollars.
- Let variable X represent amount spent on marketing and let variable Y represent revenue per week.
- Let ε represent the difference between Expected Revenue and Actual Revenue (Residual Error)
- Write a statistical model that relates X to Y

8

Statistical Linear Model

Regression Model
$Y=\beta_{0}+\beta_{1} X+\varepsilon$
Y : Dependent Variable
X : Independent Variable
$\beta_{0}: Y$-intercept
β_{1} : Slope
$\varepsilon: \operatorname{Normal}(0, \sigma)$

Example

$Y=1000+2 X+\varepsilon$
Y : Revenue
X : Marketing
$\beta_{0}: \$ 1000$
β_{1} : \$2 per \$1marketing

9

10

Regression Analysis

urpose: to determine the regression equation; it is used to predict the value of the dependent response variable (Y) based on the independent explanatory variable (X).

- Procedure:
- select a sample from the population
- list the paired data for each observation
- draw a scatter diagram to give a visual portrayal of the relationship
- determine the regression equation.

13

Regression Analysis

the regression equation: $\hat{Y}=b_{0}+b_{1} X$, where:

- \hat{Y} is the average predicted value of Y for any X.
- b_{0} is the Y -intercept, or the estimated Y value when $X=0$
- b_{1} is the slope of the line, or the average change in \hat{Y} for each change of one unit in X
- the least squares principle is used to obtain b_{1} and b_{0}

$$
\begin{array}{ll}
S S X=\Sigma X^{2}-\frac{1}{n}(\Sigma X)^{2} & b_{1}=\frac{S S X Y}{S S X} \\
S S Y=\Sigma Y^{2}-\frac{1}{n}(\Sigma Y)^{2} & b_{0}=\bar{Y}-b_{1} \bar{X}
\end{array}
$$

15

17

Estimation of Population Parameters

- From sample data, find statistics that will estimate the 3 population parameters
- Slope parameter
- b_{1} will be an estimator for β_{1}
- Y-intercept parameter
- b_{0} will be an estimator for β_{0}
- Standard deviation
- S_{e} will be an estimator for σ

Assumptions Underlying Linear Regression

- For each value of X, there is a group of Y values, and these Y values are normally distributed.
- The means of these normal distributions of Y values all lie on the straight line of regression.
- The standard deviations of these normal distributions are equal.
- The Y values are statistically independent. This means that in the selection of a sample, the Y values chosen for a particular X value do not depend on the Y values for any other X values.

18

19

21

23

Example continued

- Find the Regression line
- SSX = 580
- SSY = 380
- SSXY = -445
- $b_{1}=-.767$
- $b_{0}=45.647$
. $\hat{Y}=45.647-.767 \mathrm{X}$

20

Determining Regression Line

- Residual error for any observation is the difference between the observed and expected values of $Y \mid X$.
- For a given point $(\mathrm{X}, \mathrm{Y}), \hat{Y}=b_{0}+b_{1} X$
- Residual error for this point $=\mathrm{Y}-\hat{Y}$
- We then minimize total error by combing all residuals
- Regression Line minimizes SSE = the sum of the squared residual errors

$$
S S E=\sum(Y-\hat{Y})^{2}
$$

Interpreting Regression Line

- Slope is the change in Y per the change in X.
- Example
- $\hat{Y}=45.647-.767 \mathrm{X}$

Each increase of 1 inch of rainfall decreases Sales by 0.767

25

ANOVA Table for Simple Linear Regression				
Source SS df MS Regression SSR 1 SSR/dfR MSR/MSE Error/Residual SSE $\mathrm{n}-2$ SSE/dfE TOTAL SSY $\mathrm{n}-1$				

27

29

Hypothesis Testing Example

- H_{0} : There is no difference in Sales of Sunglasses due to Rainfall
- H_{a} : There is a difference in Sales of Sunglasses due to Rainfall
- H_{0} : Sales of Sunglasses and Rainfall are uncorrelated
- H_{a} : Sales of Sunglasses and Rainfall are correlated
- $\mathrm{H}_{0}: \beta_{1}=0$
- $\mathrm{H}_{\mathrm{a}}: \beta_{1} \neq 0$

Example continued

- Test the Hypothesis $\mathrm{H}_{0}: \beta_{1}=0, \alpha=5 \%$

Source	SS	df	MS	F	p -value
Regression	341.422	1	341.422	26.551	0.0142
Error	38.578	3	12.859		
TOTAL	380.000	4			

- Reject Ho p-value < α

28

Example continued

- Find SSE and the

standard error:	x	y	\hat{y}	$y-\hat{y}$	$(y-\hat{y})^{2}$
	1040	37.97	2.03	4.104	
- SSR $=341.422$	1535	34.14	0.86	0.743	
- SSE $=38.578$	2025	30.30	-5.30	28.108	
- MSE $=12.859$	3025	22.63	2.37	5.620	
- $\mathrm{S}_{\mathrm{e}}=3.586$	4015	14.96	0.04	0.002	
			Total	38.578	

33

35

The Coefficient of Correlation, r

- The Coefficient of Correlation (r) is a measure of the strength of the relationship between two variables.
- It requires interval or ratio-scaled data (variables).
- It can range from -1.00 to 1.00 .
- Values of -1.00 or 1.00 indicate perfect and strong correlation.
- Values close to 0.0 indicate weak correlation.
- Negative values indicate an inverse relationship and positive values indicate a direct relationship.

32

34

36

37

Example continued

$$
r^{2}=\frac{341.422}{380.000}=0.8985=89.85 \%
$$

- 89.85% of the variability of Sales of Sunglasses is explained by Rainfall
- 10.15% of the variability of Sales of Sunglasses is unexplained

r^{2} : Coefficient of Determination

- r^{2} is the proportion of the total variation in the dependent variable Y that is explained or accounted for by the variation in the independent variable X .

$$
r^{2}=\frac{\text { SSR }}{\text { SSTotal }}
$$

Example continued

X	Y	X^{2}	Y^{2}	XY
10	40	100	1600	400
15	35	225	1225	525
20	25	400	625	500
30	25	900	625	750
40	15	1600	225	600
115	140	3225	4300	2775

$$
\bullet \text { SSX }=3225-115^{2} / 5=580
$$

$$
\cdot \text { SSY }=4300-140^{2} / 5=380
$$

$$
\cdot \operatorname{SSXY}=2775-(115)(140) / 5=-445
$$

Prediction Interval

- The prediction interval for an individual value of Y for a given value of X is given by:

$$
\hat{Y} \pm t \cdot s_{e} \cdot \sqrt{1+\frac{1}{n}+\frac{(X-\bar{X})^{2}}{S S X}}
$$

- Degrees of freedom for $t=n-2$

43

45

47

Example - Minitab output

- Sales $=$ 45.65-0.767 Rainfall
- Variable Setting
- Rainfall 25
- Fit SE Fit 95\% CI 95\% PI
- $26.46551 .63111(21.2746,31.6564)(13.9282,39.0028)$

Residual Analysis

- Residuals for Simple Linear Regression
- The residuals should represent a linear model.
- The standard error (standard deviation of the residuals) should not change when the value of X changes.
- The residuals should follow a normal distribution.
- Look for any potential extreme values of X.
- Look for any extreme residual errors

46

48

Chapter 13 Slides

49

51

53

50

52

54

Select Statistics $>$ Regression $>$ Regression, then choose the Response (Y-variable) and model (Xvariable)

55

Using Minitab to Run Regression

The results at the beginning are the regression equation, the intercept and slope, the standard error of the residuals, and the r^{2}
The regression equation is
$\mathrm{mpg}=30.2$ - 0.0466 EngineSize

$$
\begin{array}{lrrrr}
\text { Predictor } & \text { Coef } & \text { SE Coef } & \text { T } & \text { P } \\
\text { Konstant } & 30.203 & 1.361 & 22.20 & 0.000 \\
\text { EngineSize } & -0.046598 & 0.005378 & -8.66 & 0.000 \\
& & & & \\
S=2.95688 & \text { R-Sq }=80.78 & \text { R-Sq }(\text { adj })=79.68
\end{array}
$$

57

Using Minitab to Run Regression

Finally, the residuals show the potential outliers.

Obs	EngineSize	mpg	Fit	SE Fit	Residual	St Resid
1	400	15.000	11.564	1.167	3.436	1.26
2	455	14.000	9.001	1.421	4.999	1.93
3	113	24.000	24.937	0.880	-0.937	-0.33
4	198	22.000	20.976	0.673	1.024	0.36
5	199	18.000	20.930	0.672	-2.930	-1.02
6	200	21.000	20.883	0.671	0.117	0.04
7	97	27.000	25.683	0.939	1.317	0.47
8	97	26.000	25.683	0.939	0.317	0.11
9	110	25.000	25.077	0.891	-0.077	-0.03
10	107	24.000	25.217	0.902	-1.217	-0.43
11	104	25.000	25.357	0.913	-0.357	-0.13
12	121	26.000	24.565	0.853	1.435	0.51
13	199	21.000	20.930	0.672	0.070	0.02
14	360	10.000	13.427	0.998	-3.427	-1.23
15	307	10.000	15.897	0.807	-5.897	-2.07R
16	318	11.000	15.385	0.842	-4.385	-1.55
17	400	9.000	11.564	1.167	-2.564	-0.94
18	97	27.000	25.683	0.939	1.317	0.47
19	140	28.000	23.679	0.792	4.321	1.52
20	400	15.000	11.564	1.167	3.436	1.26

59

59

Using Minitab to Run Regression

Click the results box, and choose the fits and residuals to get all predictions.

Using Minitab to Run Regression

Next is the ANOVA table, which tests the significance of the regression model.

Analysis of Variance

Source	DF	SS	MS	F	P
Regression	1	656.42	656.42	75.08	0.000
Residual Error	18	157.38	8.74		
Total	19	813.80			

Using Minitab to Run Regression

- Find a 95\% confidence interval for the expected MPG of a car with an engine size of 250 ci .
- Find a 95\% prediction interval for the actual MPG of a car with an engine size of 250 ci .
mpg $=30.20-0.04660$ EngineSize

Variable Setting
EngineSize 250 $\begin{array}{rrcc}\text { Fit } & \text { SE Fit } & \text { 95\% CI } & \text { 95\% PI } \\ 18.5533 & 0.679201 & (17.1264,19.9803) & \text { (12.1793, 24.9273) }\end{array}$

60

