

Maurice Geraghty, 2022

Statistical Model

- You have a small business producing custom t-shirts.
- Without marketing, your business has expected revenue (sales) of \$1000 per week.
- Every dollar you spend marketing will increase revenue by an expected value of 2 dollars.
- Let variable X represent amount spent on marketing and let variable Y represent revenue per week.
- Let ε represent the difference between Expected Revenue and Actual Revenue (Residual Error)
- Write a statistical model that relates X to Y

0 00 000	Statistical Model - Table				
X=Marketing	Expected Revenue	Y=Actual Revenue	ε=Residual Error		
\$0	\$1000	\$1100	+\$100		
\$500	\$2000	\$1500	-\$500		
\$1000	\$3000	\$3500	+\$500		
\$1500	\$4000	\$3900	-\$100		
\$2000	\$5000	\$4900	-\$100		

8

Statistical Model - Linear Scatterplot of Revenue vs Marketing 1000 Marketing

10

Statistical Linear Model

Regression Model

 $Y = \beta_0 + \beta_1 X + \varepsilon$

Y: Dependent Variable

X: Independent Variable

 β_0 : Y-intercept

 β_1 : Slope

 ε : Normal(0, σ)

Example

 $Y=1000+2X+\varepsilon$

Y: Revenue

X: Marketing

 β_0 : \$1000

 β_1 : \$2 per \$1 marketing

Regression Analysis

Purpose: to determine the regression equation; it is used to predict the value of the dependent response variable (Y) based on the independent explanatory variable (X).

- Procedure:
 - select a sample from the population
 - list the paired data for each observation
 - draw a scatter diagram to give a visual portrayal of the
 - determine the regression equation.

12

Maurice Geraghty, 2022

Simple Linear Regression Model

 $Y = \beta_0 + \beta_1 X + \varepsilon$

Y: Dependent Variable

X: Independen t Variable

 β_0 : Y - intercept

 β_1 : Slope

 ε : Normal $(0,\sigma)$

13

Estimation of Population Parameters

- From sample data, find statistics that will estimate the 3 population parameters
- Slope parameter
 - b₁ will be an estimator for β₁
- Y-intercept parameter
 - b_o will be an estimator for β_o
- Standard deviation
 - s_e will be an estimator for σ

14

13

3

Regression Analysis

- the regression equation: $\hat{Y} = b_0 + b_1 X$, where:
- Ŷ is the average predicted value of Y for any X.
- b₀ is the Y-intercept, or the estimated Y value when X=0
- b_1 is the slope of the line, or the average change in \hat{Y} for each change of one unit in X
- the least squares principle is used to obtain b_1 and b_0

$$SSX = \sum X^{2} - \frac{1}{n} (\sum X)^{2}$$
$$SSY = \sum Y^{2} - \frac{1}{n} (\sum Y)^{2}$$

$$b_1 = \frac{SSXY}{SSX}$$

$$SSXY = \Sigma XY - \frac{1}{n} (\Sigma X \cdot \Sigma y)$$

$$b_0 = \overline{Y} - b_1 \overline{X}$$

14

Assumptions Underlying Linear Regression

- For each value of X, there is a group of Y values, and these Y values are *normally distributed*.
- The means of these normal distributions of Y values all lie on the straight line of regression.
- The standard deviations of these normal distributions are equal.
- The Y values are statistically independent. This means that in the selection of a sample, the Y values chosen for a particular X value do not depend on the Y values for any other X values.

16

16

15

Example

- X = Average Annual Rainfall (Inches)
- Y = Average Sale of Sunglasses/1000
 - Make a Scatterplot
 - Find the least square line

Х	10	15	20	30	40
Υ	40	35	25	25	15

17

17

Example continued

• Find the Regression line
• SSX = 580
• SSY = 380
• SSXY = -445

• b_1 = -.767
• b_0 = 45.647
• \hat{Y} = 45.647 - .767X

20

19

Determining Regression Line

Residual error for any observation is the difference between the observed and expected values of Y|X.

For a given point (X,Y), $\hat{Y} = b_0 + b_1 X$ Residual error for this point = $\hat{Y} - \hat{Y}$ We then minimize total error by combing all residuals

Regression Line minimizes SSE = the sum of the squared residual errors $SSE = \sum \left(Y - \hat{Y}\right)^2$

Example continued Find SSE and the $(y - \hat{y})^2$ SSR = 341.422 10 40 37.97 2.03 4.104 ■ SSE = 38.578 15 35 34.14 0.86 0.743 20 25 30.30 -5.30 28.108 30 25 22.63 2.37 5.620

40 15 14.96

Interpreting Regression Line

Slope is the change in Y per the change in X.
Example $\hat{Y} = 45.647 - .767X$

Each increase of 1 inch of rainfall decreases Sales by 0.767

23 24

0.04

Total

0.002

38.578

Hypothesis Testing in Simple **Linear Regression**

- The following Tests are equivalent:
 - H₀: There is no difference in Response(Y) due to Explanatory(X)
 - H_a: There is a difference in Response(Y) due to Explanatory(X)

ANOVA Table for Simple

df

1 n-2 MS

SSR/dfR

SSE/dfE

F

MSR/MSE

Linear Regression

SS

SSR

SSE

SSY

- H₀: X and Y are uncorrelated
- H_a: X and Y are correlated
- H₀:
- H_a: $\beta_1 \neq 0$

25

26

Example continued

■ Test the Hypothesis H_0 : $\beta_1 = 0$, $\alpha = 5\%$

Hypothesis Testing Example

H₀: There is no difference in Sales of Sunglasses

H₀: Sales of Sunglasses and Rainfall are uncorrelated

H_a: Sales of Sunglasses and Rainfall are correlated

H_a: There is a difference in Sales of Sunglasses

due to Rainfall

• H_0 : $\beta_1 = 0$

• H_a : $\beta_1 \neq 0$

		, 1	0	. ,	
Source	SS	df	MS	F	p-value
Regression	341.422	1	341.422	26.551	0.0142
Error	38.578	3	12.859		
TOTAL	380.000	4			

Reject Ho p-value < α</p>

27

Source

TOTAL

Regression

Error/Residual

The Standard Error of **Estimate**

- The standard error of estimate measures the scatter, or dispersion, of the observed values around the line of regression
- The formulas that are used to compute the standard error:

$$SSR = b_1 \cdot SSXY$$

$$SSE = \sum (Y - \hat{Y})^2 = SSY - SSR$$

$$MSE = \frac{SSE}{(n-2)}$$

 $s_e = \sqrt{MSE}$

28

Example continued

Find SSE and the standard error:

х у $(y - \hat{y})^2$ 10 40 37.97 2.03 4.104

- SSR = 341.422 ■ SSE = 38.578
- 15 35 34.14 0.86 0.743 20 25 30.30 -5.30 28.108
- MSE = 12.859 $s_e = 3.586$
- 30 25 22.63

 - 2.37 5.620 40 15 14.96 0.04 0.002 38.578 Total

29

Correlation Analysis

- Correlation Analysis: A group of statistical techniques used to measure the strength of the relationship (correlation) between two variables.
- Scatter Diagram: A chart that portrays the relationship between the two variables of
- Dependent Variable: The variable that is being predicted or estimated. "Effect"
- Independent Variable: The variable that provides the basis for estimation. It is the predictor variable. "Cause?" (Maybe!)

32

31

Perfect Negative Correlation 2 2 3 X

The Coefficient of Correlation, r

• It requires interval or ratio-scaled data (variables).

Values of -1.00 or 1.00 indicate perfect and strong

Values close to 0.0 indicate weak correlation.

 Negative values indicate an inverse relationship and positive values indicate a direct relationship.

The Coefficient of Correlation (r) is a

relationship between two variables.

measure of the strength of the

It can range from -1.00 to 1.00.

correlation.

34

Maurice Geraghty, 2022

r²: Coefficient of Determination

 r² is the proportion of the total variation in the dependent variable Y that is explained or accounted for by the variation in the independent variable X.

$$r^2 = \frac{SSR}{SSTotal}$$

8

38

Example continued

$$r^2 = \frac{341.422}{380.000} = 0.8985 = 89.85\%$$

- 89.85% of the variability of Sales of Sunglasses is explained by Rainfall
- 10.15% of the variability of Sales of Sunglasses is unexplained

39

Example continued

Х	Υ	X ²	Y ²	XY
10	40	100	1600	400
15	35	225	1225	525
20	25	400	625	500
30	25	900	625	750
40	15	1600	225	600
115	140	3225	4300	2775

- SSX = $3225 115^2/5$
- = 580
- SSY = $4300 140^2/5$
- = 380
- SSXY= 2775 (115)(140)/5 = -445

40

40

39

Confidence Interval

The confidence interval for the mean value of Y for a given value of X is given by:

$$\hat{Y} \pm t \cdot s_e \cdot \sqrt{\frac{1}{n} + \frac{(X - \overline{X})^2}{SSX}}$$

Degrees of freedom for t =n-2

41

Prediction Interval

The prediction interval for an individual value of Y for a given value of X is given by:

$$\hat{Y} \pm t \cdot s_e \cdot \sqrt{1 + \frac{1}{n} + \frac{\left(X - \overline{X}\right)^2}{SSX}}$$

Degrees of freedom for t =n-2

42

41

Example continued

- Find a 95% Confidence Interval for Sales of Sunglasses when rainfall = 25 inches.
- Find a 95% Prediction Interval for Sales of Sunglasses when rainfall = 25 inches.

43

Example — Minitab output

Sales = 45.65 - 0.767 Rainfall

Variable Setting
Rainfall 25

Fit SE Fit 95% CI 95% PI
26.4655 1.63111 (21.2746, 31.6564) (13.9282, 39.0028)

Residual Analysis

Residuals for Simple Linear Regression
 The residuals should represent a linear model.

 The standard error (standard deviation of the residuals) should not change when the value of X

Look for any potential extreme values of X.Look for any extreme residual errors

• The residuals should follow a normal distribution.

43

Example continued

- 95% Confidence Interval 22.63 ± 6.60
- 95% Confidence Interval22.63±13.18

45

45

46

44

48

Maurice Geraghty, 2022

	cina N	linitak	to Run	Rear	accion
0	Siriy i	militai	to ixuii	rcgr	C331011
•	Data show	_	ine size in cul s.	oic inches	(X) and
	x	у	X	у	
	400	15	104	25	1
	455	14	121	26	
	113	24	199	21	
	198	22	360	10	
	199	18	307	10	
	200	21	318	11	
	97	27	400	9	1
	97	26	97	27	1
	110	25	140	28	1
	107	24	400	15	

Maurice Geraghty, 2022

57

59 60

Maurice Geraghty, 2022