1. (25 points) Refer to the diagram. Object 1 has a constant given velocity in the downward direction as shown. Object 2 is moving to the right starting from rest but accelerating to the right with a given value of a_{2}. Find the distance between 1 and 2 as a function of time (i.e., find the magnitude of the position vector of 1 relative to 2 as a function of time). Gravity is irrelevant in the problem.
2. (25 points) There is no friction in this problem. Find the magnitude of the upward acceleration of an elevator relative to the ground (i.e. find a_{EG}) such that the mass, as shown in the diagram, slides along the inclined plane (angle given as 45 degrees) with a zero acceleration in the vertical direction only, relative to the ground. Under this condition, also find the magnitude of the horizontal acceleration of the mass relative to the ground.

3. (25 points) Consider the diagram. A fixed non-rotating sphere of radius R is in a uniform gravity field (the sphere is not a planet). Static friction is present and μ_{s} is given. Find the maximum angle from the vertical where the mass can be placed on the sphere before it $j u s t$ starts to slip.

4. (25 points) A mass m is tied to a string of length L and is rotating in a horizontal circle such that the string makes a constant given angle of θ with respect to the vertical as shown. Under these conditions, find the time it would take for the mass to complete one circle. There is gravity in the problem.

