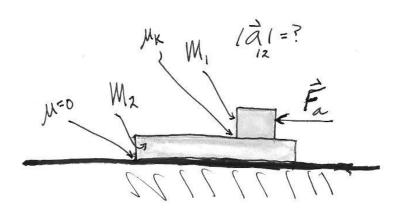

Physics 4A Exam 1 Winter 2013

1. (25 points) Over level horizontal ground, a projectile is launched with a given initial speed, V_i , and initial launch angle,


 $\theta_{i\cdot}$ Find the magnitude of its tangential acceleration at a time equal to one quarter of its full time of flight.

2. (25 points) A research balloon of given total mass M is descending vertically with a given downward acceleration a (a < g). How much mass, m'(m' < M), must be released to give the balloon an upward acceleration of the same magnitude a? In this problem there is an upward force on the balloon, *that never changes*, but it is not in your final answer. But for doing the problem, you can just refer to this upward force as $F_{A;}$ the exact nature of the upward force is irrelevant.

3. (25 points) Refer to the diagram. Find the magnitude of the tension force on the mass M that is supported at a latitude θ above the equator of a rotating planet of radius R and rotational period of T. Let the gravity field at the surface be *g* radially inward toward the center of the planet.

4. (25 points) Refer to the diagram. Find the acceleration magnitude of block M_1 relative to block M_2 . There is no friction between M_2 and the table it rests on but there is slipping between M_1 and M_2 with a given coefficient of kinetic friction μ_k between the two surfaces. The given applied force F_A is acting to the left on M_1 .

