1. (25 points) Over level horizontal ground, a projectile is launched with a given initial speed, V_{i}, and initial launch angle, θ_{i}. Find the magnitude of its tangential acceleration at a time equal to one quarter of its full time of flight.
2. (25 points) A research balloon of given total mass M is descending vertically with a given downward acceleration a $(a<g)$. How much mass, $\boldsymbol{m}^{\prime}\left(\boldsymbol{m}^{\prime}<M\right)$, must be released to give the balloon an upward acceleration of the same magnitude \boldsymbol{a} ? In this problem there is an upward force on the balloon, that never changes, but it is not in your final answer. But for doing the problem, you can just refer to this upward force as F_{A}; the exact nature of the upward force is irrelevant.
3. (25 points) Refer to the diagram. Find the magnitude of the tension force on the mass M that is supported at a latitude θ above the equator of a rotating planet of radius R and rotational period of T. Let the gravity field at the surface be g radially inward toward the center of the planet.

4. (25 points) Refer to the diagram. Find the acceleration magnitude of block M_{1} relative to block \mathbf{M}_{2}. There is no friction between M_{2} and the table it rests on but there is slipping between M_{1} and M_{2} with a given coefficient of kinetic friction μ_{k} between the two surfaces. The given applied force F_{A} is acting to the left on M_{1}.

