1. (25 points) Starting at the surface of a dielectric sphere, a charge +q is fired with an initial velocity radially inward toward the center of the sphere. The sphere has a uniform charge density with the radius R and total charge on the sphere Q . What minimum initial speed of the charge is necessary so that the charge could penetrate just to the center of the sphere? To imagine this, pretend that there is a small hole, a tunnel, that the charge travels through to get to the center, but the tunnel is so small that its existence does not influence any electrical effects.
2. ( 25 points) There is gravity in this problem. A circular ring of mass $m$, radius, $R$, and unknown negative charge - Q is suspended below an infinitely long charged wire of given charge density $\lambda$ by a distance of 2 R from circle's top point. The plane of the circle is parallel to the length of wire. Find the magnitude of charge $Q$ on the ring such that it would not accelerate in the given position.

3. (25 points) An infinitely long dielectric cylinder has a radius R and a charge density $\rho$. Along its length is an offset cylindrical hollow of charge as shown in the diagram. Find the electric field vector at the point indicated in the diagram, within the hollow, $3 / 4$ of the way radially outward from the center axis.

4. (25 points) A bead of mass $m$ and charge $q$ is constrained to move along the x axis by a frictionless wire in the presence of a fixed charge distribution as shown in the diagram. Find the period of the bead's oscillation about the origin (for small displacements from equilibrium only). Treat the ring as a point mass. Recall that if a restoring force is linear in a Hooke's Law style form (i. e., $\mathrm{F}=\mathrm{k} \Delta \mathrm{x}$ ) then its oscillation's period is given by $\mathrm{T}=2 \pi[\mathrm{~m} / \mathrm{k}]^{1 / 2}$. You can use symmetry arguments if you want. There is no gravity in this problem.

