Name

1. (20 points) A package is to be dropped from a bridge a distance H above the ground. A car is traveling at constant velocity given as V_{C} toward the bridge. Find the horizontal distance L the car would be at such that if the package is dropped at just the right time, it hits the car.
2. (20 points) A speeding car moving at constant velocity given as V_{c} passes a police car at rest. After a given time of t' seconds, the police car accelerates with a given value of a_{p} from rest. Find the distance the police car catches the speeding car with respect to where the speeding car first passed the police car.
3. (20 points) Vector \mathbf{A} is given as $\left(12,120^{\circ}\right)$ and vector \mathbf{B} is given as $\left(4,250^{\circ}\right)$ and vector \mathbf{C} is given as $\left(13,330^{\circ}\right)$. Find the resultant (in polar form) of $\mathbf{2 A} \mathbf{- 3 B}+\mathbf{C}$. Is it ok to plug numbers in early here as was done in the lecture.
4. (20 points) A projectile is fired horizontally toward a wall with a given initial velocity v_{i}. The wall is a given distance L away from where it is fired. By the time the projectile has actually hit the wall, it has traveled downward sucht that it strikes the wall a vertical distance below where it was aimed.
Find that vertical distance, D.
5. (20 points) A helicopter is traveling upward at a give speed of V_{h}. A package is dropped from the helicopter when it is a distance H above the ground. Find the time it takes for the package to hit the ground.
