


SOME PHYSICAL CONSTANTS

1See Appendix B for a more complete list, showing also the best experi-

mental values.)

Speed of light C
Mass-energy relation c?
Gravitational constant G
Universal gas constant* R
Permeability constant Ma
Permittivity constant €0
Avogadro constant* _ Ny
Boltzmann constant k
Planck constant h
Elementary charge e
Electron rest mass m,
Electron charge to mass ratio e/me
Proton rest mass m,

*Here, and throughout this book, ‘1 mole” =
molecular weight).

3.00 % 10® m/s
1.86 x 105 mi/s

8.99 X 10 J/kg
931 MeV/u

6.67 X 10~ N-m?/kg?
3.44'x 10 ® 1b-ft2/slug?

8.31 J/mol-K
0.0823 li-atm/mol-K

1.26 X 10 ¢ H/m
8.85 X 10 2 F/m
6.02 x 102 molecules/mol

1.38 X 10 23 J/molecule-K
8.63 x 10 * eV/molecule-K

6.63 X 1073 J-s
4.14 X 10 ¥ eV:'s

1.60 X 101 C
9.11 X 10 ™ kg
1.76 x 101 C/kg

1.67 X 102 kg

‘1 gram molecular weight” = 10 3 kg



Air (dry, at 20° C and 1 atm)

Density
Specific heat at constant pressure

Ratio of specific heats (y)
Speed of sound

Water (20° C and 1 atm)

Density
Speed of sound

Index of refraction (A = 5890}0\)
Specific heat at constant pressure

Heat of fusion (0° C)

Heat of vaporization {100° C)

The Earth

Mass
Mean radius

Mean earth-sun distance
Mean earth-moon distance
Standard gravity

Standard atmosphere

SOME PHYSICAL PROPERTIES

1.29 kg/m?

1.00 x 108 J/kg-K
0.240 cal/gm-K
1.40

331 m/s

1090 ft/s

1.00 X 10 kg/m3
1.00 gm/cm?®
1460 m/s

4790 ft/s

1.33

4180 J/kg-K
1.00 cal/gm-K
3.33 x 105 J/kg
79.7 cal/gm
2.26 % 10° J/kg
539 cal/gm

5.98 x 10% kg
6.37 X 10° m
3960 mi

1.49 X 108 km
9.29 x 107 mi
3.80 x 10° km
2.39 X 10° mi
9.81 m/s?
32.2 ft/s?

1.01 X 105 Pa
14.7 1b/in?
760 mm-Hg
29.9 in-Hg


















preface to
the third edition
of part one

Physics is available in a single volume or in two separate parts; Part I
includes mechanics, sound and heat, and Part II includes electromagne-
tism, optics and quantum physics. The first edition was published in
1960 (Physics for Students of Science and Engineering) and the second
in 1966 (Physics).

The text is intended for students studying calculus concurrently,
such as students of science and engineering. The emphasis is on build-
ing a strong foundation in the principles of classical physics and on
solving problems. Attention is given, however, to practical application,
to the most modern theories, and to historical and philosophic issues
throughout the book. This is accomplished by inclusion of special sec-
tions and thought questions, and by the entire manner of presentation
of the material. There is a large set of worked-out examples, interspersed
throughout the book, and an extensive collection of problems at the end
of each chapter. Much care has been given to pedagogic devices that
have proved effective for learning,

It has been eleven years since the publication of the second edition
of Physics. During that time the book has continued to be well received
throughout the world. We have had abundant correspondence with users
over those years and concluded that a new edition is now appropriate.

In accordance with the increasing use of metric units in the United
States and their general use throughout the world, we have greatly in-
creased the emphasis on the metric system, using the Systeme Inter-
nationale (SI) units and nomenclature throughout. Where it seems to be
sensible, in this transition period for the United States, we retain some
features of the British Engineering system. To help the student making
the transition to the SI to get a physical feeling for its units, we have
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stressed equivalencies between the two systems, especially in problems
and worked-out examples, by frequently presenting the same data in
both systems.

The entire book was carefully reviewed for pedagogic improvement,
based chiefly on the experience of users and on the most recent scien-
tific literature. As a result, we have rewritten selected areas significantly
for improvements in presentation, accuracy, or physics. We have in-
cluded new worked-out examples for topics or areas needing them. We
have modernized all references, added new ones, and have improved
many figures for greater clarity. The tables and the appendices have
been expanded and updated to give newer data and more information
than before. And we have added a supplementary topic on special rela-
tivity.

Major improvements have been made in the questions and problems.
Overall in Part I there has been a net increase over the second edition of
35% in their number, with 430 out of the total of 1567 being new. The
set of questions, now numbering 611 compared with 413 before, covers
a wider range of ideas, puts somewhat more stress on current and ap-
plied topics, and contains a large increase in up-to-date useful references
to the popular scientific literature. We encourage students and teachers
to make use of them. As with the questions, most of the previous prob-
lems have been retained, though some have been revised for greater
clarity. But 225 new tested problems have been added to Part I to im-
prove the coverage of the material and the spread of level for the student
and to give the teacher a fresher choice.

To assist students and teachers in organizing and evaluating this large
number of problems, 956 now compared with 746 before, we have done
several things. First, we have grouped problems within each chapter by
section number; namely the first section needed to be covered in order
to be able to work out the problem. Then, within each set of section
problems, we have arranged the problems in the approximate order of in-
creasing difficulty. Naturally, neither the assignment by section nor by
difficulty is absolute, given different ways of solving some problems and
different pedagogic values and tastes. Finally, we have coded the illus-
trations to the problems and have put the answers to the odd-numbered
problems right at the end of these problems rather than at the end of
the book.

Lastly, we have restyled the physical layout of the book to give it a
less crowded appearance than formerly, making it easier now for the
student to read the material, to make notations and to differentiate be-
tween the various components of each chapter (text, figures, examples,
tables, quotes, references, questions, problems, and so forth).

We are gratetul to John Wiley and Sons and to Donald Deneck, phy-
sics editor, for outstanding cooperation. We acknowledge the valuable
assistance of Dr. Edward Derringh with the problem sets and of Mrs.
Carolyn Clemente with the wide range of secretarial services required.

We hope that this third edition of Physics will contribute to the im-
provement of physics education.

January 1977 ROBERT RESNICK

Troy, New York 12181 Department of Physics
Rensselaer Polytechnic Institute

Hanover, New Hampshire 03755 DAVID HALLIDAY

3 Clement Road
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measurement

The building blocks of physics are the physical quantities that we use to
express the laws of physics. Among these are length, mass, time, force,
velocity, density, resistivity, temperature, luminous intensity, magnetic
field strength, and many more. Many of these words, such as length and
force, are part of our everyday vocabulary. You might say for example:
“I will go to any length to satisfy you as long as you do not force me to
do so.” In physics, however, we must define words that we associate
with physical quantities, such as force and length, clearly and precisely
and we must not confuse them with their everyday meanings. In this
example the precise scientific definitions of length and force have no
connection at all with the uses of these words in the quoted sentence.

We say that we have defined a physical quantity such as mass, for
example, when we have laid down a set of procedures, a recipe if you
will, for measuring that quantity and assigning a unit, such as the kilo-
gram, to it. That is, we set up a standard. The procedures are quite ar-
bitrary. We can define the kilogram in any way we want. The important
thing is to define it in a useful and practical way, and to obtain inter-
national acceptance of the definition.

There are so many physical quantities that it becomes a problem as to
how to organize them. They are not independent of each other. For a
simple example, a speed is the ratio of a length to a time. What we do is
select from all possible physical quantities a certain small number that
we choose to call basic, all others being derived from them. We then
assign standards to each of these basic quantities and to no others. If,
for example, we select length as a basic quantity, we choose a standard
called the meter (see Section 1-3) and we define it in terms of precise
laboratory operations.

1-1
THE PHYSICAL
QUANTITIES,
STANDARDS, AND
UNITS




Table 1-1
SI base units

Quantity Name Symbol

Length meter® m
Mass kilogram kg
Time second s
Electric current ampere A
Thermodynamic temperature kelvin K
Amount of substance mole mol
Luminous intensity candela cd

«The officially recommended spelling is “metre.” However, many
SI supporters in this country prefer “meter,” which we adopt. We
will also use “liter” in preference to the recommended “litre.”

Often if we express physical properties such as the radius of the earth
or the time interval between two nuclear events in SI units (base or
derived), we end up with very large or very small numbers. For conve-
nience, the 14th General Conference on Weights and Measures, again
building on previous work, recommended the prefixes shown in Table
1-2. Thus we can write the mean radius of the earth (=6.37 X 105 m) as
6.38 Mm and a time interval of the size often encountered in nuclear
physics, 2.35 X 10-? s say, as 2.35 ns. Prefixes for factors greater than
unity have Greek roots; those for factors less than unity have Latin
roots (except that femto and atto, recently added, have Danish roots).

Table 1-2

SI prefixes

Factor Prefix Symbol Factor Prefix Symbol
10! deka da 10! deci d
102 hecto h 10 2 centi c
103 kilo k 10 3 milli m
10° mega M 1o micro n
10° giga G (0} nano n
1012 tera T - pico p
10w peta P 10 » femto f
11(0p exa E 0= atto a

To fortify Table 1-1 we need seven sets of operational procedures that
tell us how to produce in the laboratory the seven SI base units. We will
explore those for length, mass, and time in the next three sections.

Two other major systems of units compete with the International
System (SI). One is the Gaussian system, in terms of which much of the
literature of physics is expressed. We will not use this system in this
book. Appendix G gives conversion factors to SI units.

The second is the British system, still in daily use in this country,
Britain, and elsewhere. The basic units, in mechanics, are length (the
foot), force (the pound), and time (the second). Again Appendix G gives
conversion factors to SI units. We will use SI units in this book except
that in mechanics we will sometimes use the British system, especially
in the early chapters. The British system is being phased out in Britain
in favor of the officially adopted International System. In fact, as of
1970, the countries Ceylon (later renamed Sri Lanka), Gambia, Guyana,
Jamaica, Liberia, Malawi, Nigeria, Sierra Leone, and the United States
had in common the fact that they had not by that date adopted the

C

SLIN(! 40 WALSAS TVNOILVNYILNI JHL

@ U OIS



G

MEASUREMENT

1

CHAP.

metric system [which later emerged as SI), or officially indicated that
they intended to do so.*

The first international standard of length was a bar of a platinum-
iridium alloy called the standard meter, and was kept at the International
Bureau of Weights and Measures. The distance between two fine lines
engraved on gold plugs near the ends of the bar, when the bar was held
at a temperature of 0°C and supported mechanically in a prescribed way,
was defined to be one meter. Historically, the meter was intended to be
one ten-millionth of the distance from the north pole to the equator
along the meridian line through Paris. However, accurate measure-
ments taken after the standard meter bar was constructed showed that
1t differs slightly (about 0.023%) from its intended value.

Because the standard meter is not very accessible, accurate master
copies of it were made and sent to standardizing laboratories throughout
the world. These secondary standards were used to calibrate other, still
more accessible, measuring rods. Thus until recently every measuring
rod or device derived its authority from the standard meter through a
complicated chain of comparisons using microscopes and dividing en-
gines. Since 1959 this statement had also been true for the yard, whose
legal definition in this country was adopted in that year to be

1 yard = 0.9144 meter (exactly)
which is equivalent to
1 in. = 2.54 cm (exactly) '

There are several objections to the meter bar as the primary standard
of length: It is potentially destructible, by fire or war for example, and it
i1s not very accessible. These are not idle threats. When the British
Houses of Parliament burned in 1834 the British standard yard and stan-
dard pound were destroyed. The International Bureau of Weights and
Measures was established by France as a neutral international zone and
was, fortunately, so respected by the Nazis during World War IL.

Most important, the accuracy with which the necessary intercom-
parisons of length can be made by the technique of comparing fine
scratches using a microscope is no longer satisfactory for modern sci-
ence and technology. Evidence of this is suggested by the trifling mid-
course corrections required on space missions. If, among other things,
we did not know the distance to the moon in meters as a function of
time with some precision, these missions would be much more difficult.

The suggestion that the length of a light wave be used as a length
standard was first made in 1828 by ]. Babinet. The later development of
the interferometer {see Chapter 45) provided scientists with a precision
optical device in which a light wave can be used as a length comparison
probe. Visible light has a wavelength of about 0.5 um (see Table 1-2)
and length measurements of bars of even many centimeters long can be

' made to a small fraction of a wavelength. An accuracy of 1 partin 10? in

the intercomparison of lengths using light waves is possible.

See “Conversion to the Metric System, ' Lord Ritchie-Calder Scientific Amencan. July
1970. The journal Metric News |Swani Publishing Company, P.O. Box 248, Roscoe, Illinois
610731 gives up-tordate information about “metrification” problems, as does the Metric
System Courde = Bulletin 1], J. Keller Associates, 145 W. Wisconsin Avenue, Neenah, Wis-
consin 54956

See The Metre,” He Barrell. Contemporary Physics 3, 415 [1962).

1-3
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In 1960 the 11th General Conference on Weights and Measures
adopted an atomic standard for the meter. The wavelength in vacuum of
a particular orange-red radiation, identified by the spectroscopic nota-
tion 2pio — 5d; and emitted by atoms of a particular isotope of krypton,
K%, in electrical discharge was chosen (see Fig. 1-1). Specifically, one
meter is now defined to be 1,650,763.73 wavelengths of this light. This
number of wavelengths was arrived at by carefully measuring the length
of the standard meter bar in terms of these light waves. This comparison
was done so that the new standard, based on the wavelength of light,
would be as consistent as possible with the old standard based on the
meter bar. The new standard permits length comparisons to a factor of
ten better than is possible with the meter bar.

The choice of an atomic standard offers advantages other than in-
creased precision in length measurements. The Kr® atoms are available
everywhere, are identical, and emit light of the same wavelength. The
particular wavelength chosen is uniquely characteristic of Kr and is
sharply defined. The isotope can readily be obtained in pure form.

Given the atomic length standard as basic we still need convenient
secondary standards calibrated against it for practical use. Often, as in
measuring intramolecular or interstellar distances, we cannot make a
direct comparison to a standard. We must use indirect methods to relate
the distance in question to the primary standard of length. For example,
we know the distances to nearby stars because their positions against
the background of much more distant stars shift as the earth moves
around its orbit. If we measure this angular shift (parallax), and if we

figure 1-1

A Kr® light source shown removed
from the container in which it is
housed. In operation the lamp is
cooled with liquid nitrogen. (Cour-
tesy the National Physical
Laboratories, Teddington, England.
Crown copyright reserved.)
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know the diameter of the earth’s orbit in meters, we can calculate the
distance to the nearby star.

Table 1-3 shows some measured lengths. Note that they vary by a
factor of about 1057

Table 1-3
Some measured lengths

Length Meters
Distance to the nearest galaxy |in Andromeda) 2 X 1022
Radius of our galaxy 6 x 10
Distance to the nearest star (Alpha Centauri) 4.3 x 10
Mean orbit radius for our most distant planet [Pluto) 5.9 x 1012
Radius of the sun 6.9 x 108
Radius of the earth 6.4 x 108

Height of Mt. Everest 8.9 x 107

Height of a typical person 1.8 x 10°

Thickness of a page in this book 1 x 104
Size of a poliomyelitis virus 1.2 x 108
Radius of a hydrogen atom 50x10 1
Effective radius of a proton 1.2 x 1015

The SI standard of mass is a platinum-iridium cylinder kept at the Inter-
national Bureau of Weights and Measures and assigned, by international
agreement, a mass of one kilogram. Secondary standards are sent to stan-
dardizing laboratories in other countries and the masses of other bodies
can be found by an equal-arm balance technique to a precision of two
parts in 10%.

The U.S. copy of the international standard of mass, known as Proto-
type Kilogram No. 20, is housed in a vault at the National Bureau of
Standards (see Fig. 1-2). It is removed no more than once a year for
checking the values of tertiary standards. Since 1889 Prototype No. 20
has been taken to France twice for recomparison with the master kilo-
gram. When it is removed from the vault two people are always present,
one to carry the kilogram in a pair of forceps, the second to catch the
kilogram if the first person should fall.

Table 1-4 shows some measured masses. Note that they vary by a
factor of about 107. Most masses have been measured in terms of the
standard kilogram by indirect methods. For example, we can measure
the mass of the earth (sce Section 16.3) by measuring in the laboratory
the gravitational force of attraction between two lead spheres. Their
masses must be known by direct comparison with the standard kilo-
gram, using, say, an equal-arm balance.

On the atomic scale we have a second standard of mass, not an Sl
unit. It is the mass of the C'2 atom which, by international agreement,
has been assigned an atomic mass of 12 unified atomic mass units
abbreviation u), exactly and by definition. We can find the masses of
other atoms to considerable accuracy by using a mass spectrometer.
Table 1-5 shows some selected atomic masses, including the probable
errors of measurement. We need a second standard of mass because
present laboratory techniques permit us to compare atomic masses to
cach other with greater precision than we can compare them to the
standard kilogram. The relationship is approximately

1 u= 1.660 x 10 27 kg.

1-4
THE STANDARD
OF MASS

figure 1-2

This is national standard kilogram
No. 20 which is kept at the United
States National Burcau of Standards.
It 1s an accurate copy of the
International standard kept at the
International Bureau of Weights and
Measures near Paris. The standard
kilogram is the platinum cylinder
housed under the double bell-jar.



Table 1-4 Table 1-3
Some measured masses Some measured atomic masses
Object Kilograms Mass in Atomic
Isotope mass units
Our galaxy 2.2 X 101
The sun 2.0 x 103¢ H! 1.00782522 #+0.00000002
The earth 6.0 x 102 Cz 12.00000000 (exactly)
The moon 7.4 X 1022 Cus4 63.9297568 =+0.0000035
The waters of the Aglo2 101.911576 +0.000024
oceans 1.4 x 102t Cs137 136.907074 +0.000005
An ocean liner 7.2 x 107 Py190 189.959965 +0.000026
An elephant 4.5 x 103 Puz¥  238.049582 +0.000011
A person 59 x 10t
A grape 3.0x 103
A speck of dust 6.7 X 1010
A tobacco mosaic
virus 2.3 x 10 18
A penicillin
molecule 5.0x 10 v
A uranium atom 4.0 x 1028
A proton 1.7 X 10-%*
An electron 9.1 x 103

The measurement of time has two aspects. For civil and for some sci-
entific purposes we want to know the time of day so that we can order
events in sequence. In most scientific work we want to know how long
an event lasts (the time interval). Thus any time standard must be able
to answer the questions “At what time does it occur?”” and “How long
does it last?”” Table 1-6 shows the range of time intervals that can be
measured. They vary by a factor of about 10%.

We can use any phenomenon that repeats itself as a measure of time.
The measurement consists of counting the repetitions. We could use an
oscillating pendulum, a mass spring system, or a quartz crystal, for
example. Of the many repetitive phenomena in nature the rotation of

Table 1-6
Some measured time intervals

Time Interval Seconds
Age of the earth 1.3 X 10%7
Age of the pyramid of Cheops 1.2 x 101
Human life expectancy (USA]) 2 X 10°

Time of earth’s orbit around the sun (1 year) 3

Time of earth’s rotation about its axis (1 day]} 8.6
Period of a typical satellite 5.1
Half-life of the free neutron 7.0 x 102
Time between normal heartbeats 8.0
Period of concert-A tuning fork 2
Half-life of the muon 2

Period of oscillation of 3-cm microwaves 1

Typical period of rotation of a molecule 1 X 10-12
Half-life of the neutral pion 2.2 X 10716
Period of oscillation of a 1-MeV gamma ray

(calculated) 4 x 102
Time for a fast elementary particle to pass

through a medium-sized nucleus (calculated) 2 X102

*See “Accurate Measurement of Time,”” Louis Essen, Physics Today, 1960.

1-5
STANDARD OF TIME*
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the earth on its axis, which determines the length of the day, has been
used as a time standard for centuries. It is still the basis of our civil time
standard, one (mean solar} second being defined to be 1/86,400 of a
{mean solar} day. Time defined in terms of the rotation of the earth is
called universal time (UT).

Universal time must be measured by astronomical observations ex-
tended over several weeks. Thus we need a good terrestrial clock, cali-
brated by the astronomical observations. Quartz crystal clocks based on
the electrically sustained periodic vibrations of a quartz crystal serve
well as secondary time standards. The best of these have kept time for a
year with a maximum error of 0.02 s.

One of the most common uses of a time standard is to measure fre-
quencies. In the radio range frequency comparisons to a quartz clock
can be made electronically to a precision of at least 1 part in 10! and,
indeed, we often need such precision. However this precision is about
100 times greater than that with which a quartz clock itself can be cali-
brated by astronomical observations. To meet the need for a better time
standard, atomic clocks have been developed in several countries, using
periodic atomic vibrations as a standard.

A particular type of atomic clock, based on a characteristic frequency
associated with the Cs isotope, has been in continuous operation at
the National Physical Laboratory in England since 1955. Figure 1-3 shows
a similar clock at the National Bureau of Standards in this country.

In 1967 the second based on the cesium clock was adopted as an in-
ternational standard by the Thirteenth General Conference on Weights
and Mecasures. The second was defined as 9,192,631,770 periods of the
particular Cs' transition selected. This action increased the accuracy
of time measurements to 1 part in 10'2, an improvement over the ac-
curacy associated with astronomical methods of about 103, If two
cesium clocks are operated at this precision, and if there are no other

figure 1-3
Atomic cesium beam frequency

standard at the Boulder laboratories
of the National Bureau of Standards.



sources of error, the clocks will differ by no more than one second after
running for 6000 years. Even better potential atomic clocks are being
studied.

Figure 1-4 shows, by comparison with the cesium clock, variations in
the rate of rotation of the earth over nearly a three-year period. Note
that the earth’s rotation rate is high in summer and low in winter
(northern hemisphere) and decreases steadily from year to year. You
may ask how we can be sure that the rotating earth and not the cesium
clock is at fault. There are two answers. (1) The relative simplicity of the
atom compared to the earth leads us to account for any difference be-
tween these two timekeepers to the earth. Tidal friction between the
water and the land, for example, causes a slowing down of the earth’s
rotation. Also the seasonal motion of the winds introduces a seasonal
variation in the rotation. Other variations may be associated with the
melting and refreezing of polar icecaps. (2] The solar system contains
other timekeepers such as the orbiting planets and the orbiting moons of
the planets. The rotation of the earth shows variations with respect to
these, too, which are similar to but less accurately observable than the
variations shown in Fig. 1-4.

The time standard can be made available at remote locations by radio
transmission.* WWYV in Colorado and WWVH in Hawaii, operated by
the National Bureau of Standards, are examples of such stations. They
broadcast on frequencies of 2.5, 5, 10, 15, 20, and 25 X 10% Hz stabilized
to 1 part in 10! by comparison with a cesium clock. One hertz (abbrevi-
ation Hz) is 1 cycle/s. At 5-min intervals WWV alternately broadcasts an
accurate 440 Hz tone (concert A) and a 600 Hz tone. Ten times per hour
it broadcasts time signals using a binary digit coding system. Two other
stations, WWVB and WWVL, both at Fort Collins, Colorado, provide
standards of even higher accuracy for special purposes.

1. How would you criticize this statement: ““Once you have picked a standard
200

by the very meaning of ‘standard’ it is invariable’”?

2. Many capable investigators, on the evidence, believe in the reality of ex-
trasensory perception. Assuming that ESP is indeed a fact of nature, what
physical quantity or quantities would you seek to define to describe this
phenomenon quantitatively?

3. According to a point of view adopted by some physicists and philosophers,
if we cannot describe procedures for determining a physical quantity, we
say that the quantity is undetectable and should be given up as having no
physical reality. Not all scientists accept this view. What in your opinion
are the merits and drawbacks of this point of view?

4. Do you think that a definition of a physical quantity for which no method of
measurement is given has meaning?

5. List characteristics other than accessibility and invariability that you would
consider desirable for a physical standard.

6. Can you imagine a system of base units (Table 1-1) in which time was not
included?

7. Of the seven base units listed in Table 1-1 only one, the kilogram, has a
prefix (see Table 1-2). Would it be wise to redefine the mass of that platinum-
iridium cylinder at the International Bureau of Weights and Measures as
one gram, rather than one kilogram?

*See “NBS Time and Frequency Dissemination Services; Special Publication 432, Na-
tional Bureau of Standards, January, 1976 (write to the U.S. Government Printing Office,
Washington, D.C. 20402).
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figure 1-4

Variation in the rate of rotation of
the earth as revealed by comparison
with a cesium clock. {Adapted from
L. Essen, Physics Today, July 1960.)
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Can we define temperature as a derived quantity, in terms of length, mass,
and time?® Think of a pendulum.

The meter was originally intended to be one ten-millionth of the meridian
line from the north pole to the equator, passing through Paris. In Section 1-3
we learned that this definition was in disagreement with the standard meter
bar by 0.023%. Does this mean that the standard meter bar is inaccurate to
this extent?

In defining the meter bar as the standard of length why specify its tempera-
ture? Can length be called a fundamental quantity if another physical quan-
tity, such as temperature, must be specified in choosing a standard?

If someone told you that every dimension of every object had shrunk to
half its former value overnight, how could you refute this statement?

Can length be measured along a curved line? If so, how?

. Can you suggest a way to measure (a) the radius of the earth, (b) the dis-

tance between the sun and the earth, {¢) the radius of the sun?

Can you suggest a way to measure (a) the thickness of a sheet of paper,
(b) the thickness of a soap bubble film, (c) the diameter of an atom?

Why do we find it useful to have two standards of mass, the kilogram and
the C* atom?

How does one obtain the relation between the mass of the standard kilo-
gram and the mass of the C'2 atom?

Is the current standard kilogram of mass accessible, invariable, reproduci-
ble, indestructible? Does it have simplicity for comparison purposes’ Would
an atomic standard be better in any respect? Why don’t we use an atomic
standard, as we do for length and time?

Suggest practical ways by which one could determine the mass of the vari-
ous objects listed in Table 1-4.

Suggest objects whose mass would fall in the wide range in Table 1-4 be-
tween that of an ocean liner and all the water in the oceans and estimate
their mass.

Name several repetitive phenomena occurring in nature which could serve
as reasonable time standards.

You could define “one second’’to be 1.20 pulse beats of the current president
of the American Physical Society. Galileo used a similar definition in some
of his work. Putting aside considerations of invariability, why is a definition
based on the atomic clock better?

What criteria should a good clock satisfy?

The time it takes the moon to return to a given position as seen against
the background of the fixed stars is called a sidereal month. The time inter-
val bectween identical phascs of the moon is called a lunar month. The lunar
month is longer than a sidereal month. Why?

From what you know about pendula, citc the drawbacks to using the period
of a pendulum as a time standard.

. Can you think of a way to define a length standard in terms of a time stan-

dard or vice versa? Think about a pendulum clock. If so, can length and time
both be considered as basic quantities?

Critics of the mctric system often cloud the issue by saying things such as
“Instcad of buying one pound of butter you will have to ask for 0.452 kg
of butter.” The implication is that life would be morc complicated. How
would you rcfutc this?

SECTION 1-2

)

Use the prefixes in Table 1-2 and express (a) 10% phones; (b) 10 ¢ phones;
ic) 10" cards; (d) 10* los; (¢) 102 bulls; {f) 10 ' mates; (¢) 10 2 pedes; (h) 10 *
Nannettes; (1) 10 "2 boos; () 10 ™ boys; (k) 2 % 10? withits; (/) 2 X 10° mock-
ingbirds. Now that you have the idea, invent a few more similar cxpres-

problems



sions. (See, in this connection, p. 61 of A Random Walk in Science, edited by
R. L. Weber, Crane, Russak, and Co., Inc., New York, 1974).

SECTION 1-3

. What is your height in meters?
. Calculate the number of kilometers in 20 miles using only the following

conversion factors: 1 mile =5280 ft, 1 ft=12in., 1 in. = 2.54 cm, 1 meter=
100 cm, and 1 km = 1000 meters. Answer: 32.2 km.

. A rocket attained a height of 300 km. What is this distance in miles?
. (a) In track meets both 100 yards and 100 meters are used as distances for

dashes. Which is longer? By how many meters is it longer? By how many

feet? (b) Track and field records are kept for the mile and the so-called

metric mile (1500 meters). Compare these distances.

Answer: (a) 100 meters exceeds 100 yards by 8.56 meters or 28.1 feet. (b)
One mile exceeds one metric mile by 109 m or 358 ft.

. Astronomical distances are so large compared to terrestrial ones that much

larger units of length are used for easy comprehension of the relative dis-
tances of astronomical objects. An astronomical unit (AU) is equal to the
average distance from the earth to the sun, about 92.9 X 10¢ miles. A parsec
is the distance at which one astronomical unit would subtend an angle of
1". A light-year is the distance that light, traveling through a vacuum with
a speed of 186,000 miles/s, would cover in one year. (a) Express the distance
from earth to sun in parsecs and in light years. (b) Express a light year and a
parsec in miles.

. Master machinists would like to have master gauges (1 in. long, for example)

good to 0.0000001 in. Show that the platinum-iridium meter is not measur-

able to this accuracy but that the Kr®* meter is. Use data given in this

chapter.

Answer: Pt-Ir meter bar good to 10 7 meter; Kr® standard good to 10-?
meter; 10 7in. = 2.5 X 10 ® meter; 10 ? meter > 10 meter.

. Give the relation between (a} a square inch and a square centimeter; (b) a

square mile and a square kilometer; (¢} a cubic meter and a cubic centi-
meter; (d) a square foot and a square yard.

. Assume that the average distance of the sun from the earth is 400 times the

average distance of the moon from the earth. Now consider a total eclipse
of the sun and state conclusions that can be drawn about (a) the relation be-
tween the sun’s diameter and the moon’s diameter; (b) the relative volumes
of the sun and the moon. (c) Find the angle intercepted at the eye by a dime
that just eclipses the full moon and from this experimental result and the
given distance between the moon and the earth (= 3.80 X 105 km) estimate
the diameter of the moon.

Answer: (a) dsun/dmoon = 400. (b} Vun/ Vinoon = 6.4 X 107. (c) 3.5 X 103 km.

SECTION 1-4

10.

11

M s

Using appropriate conversions and data in the chapter, determine the num-
ber of hydrogen atoms (isotope number 1) required to obtain one kilogram
of mass.

1f you remember Avogadro’s number, you can think of the mass of the earth
as being 10 moles of kilograms. What does this statement mean, and how
accurate is it? The actual mass of the earth is 5.98 x 102 kg.

Answer: Error = 0.67%.

(a) Assuming that the density (mass/volume) of water is exactly one gram
per cubic centimeter, express the density of water in kilograms per liter.
(b) Suppose that it takes exactly 10 hours to drain a container of 1.00 liter
of water. What is the average mass flow rate, in kilograms per second, of
water from the container?
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SECTION 1-5

13.

14.

16.

17.

18.

19.

20.

A convenient substitution for the number of seconds in a year is = X 107. To
within what percentage error is this correct? Answer: —0.44%.
(a) A unit of time sometimes used in microscopic physics is the shake. One
shake equals 10 * s. Are there more shakes in a second than there are sec-
onds in a year? (b} Mankind has existed for about 10° years, whereas the uni-
verse is about 10 years old. If the age of the universe is taken to be one day,
for how many seconds has mankind existed

. The maximum speeds of various animals are given roughly as follows in

miles per hour: (a) snail, 3 X 10-2; (b) spider, 1.2; (c) squirrel, 12; {d) man,
28, |e) rabbit, 35; (f} fox, 42; (g) lion, 50; and (h) cheetah, 70. Convert these
data to meters per second.

Answer: (a) 0.013. (b) 0.54. (c) 5.4. (d) 13. (e} 16. (f} 19. (g} 22. (h) 31 m/s.
From Fig. 1-2 calculate by what length of time the earth’s rotation period in
midsummer differs from that in the following spring.

Five clocks are being tested in a laboratory. Exactly at noon, as determined
by the WWV time signal, on the successive days of a week the clocks read
as follows:

Clock  Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14
B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03
C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33
D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17
E  12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

How would you arrange these five clocks in the order of their relative value

as good timekeepers? Justify your choice.

Answer: C, D, A, B, E |best to worst). The important criterion is the con-
stancy of the daily variation, not its magnitude.

Assuming that the length of the day uniformly increases by 0.001 s in a

century, calculate the cumulative effect on the measure of time over twenty

centuries. Such a slowing down of the earth’s rotation is indicated by ob-

servations of the occurrences of solar eclipses during this period.

Express the speed of light, 3 X 10® m/s, in (a) feet/nanosecond and (b) in

millimeters/picosecond. Answer: (a) 0.98 ft/ns. (b) 0.3 mm/ps.

An astronomical unit (AU) is the average distance of the earth from the sun,

approximately 149,000,000 km. The speed of light is about 3.0 X 10* m/s.

Express the speed of light in terms of astronomical units per minute.

. A certain spaceship has a speed of 18,600 mi/h. What is its speed in light-

years per century? A light-year is the distance light travels in one year with
a speed of 186,000 mi/s. Answer: 2.8 X 103 light-years/century.

. |a) The radius of the proton is about 10 * m; the radius of the observable

universe is about 102 c¢cm. Identify a physically meaningful distance which
is approximately halfway between these two extremes on a logarithmic
scale. (b) The mean life of a neutral pion (an elementary particle) is about
2 x 10 % s, The age of the universe is about 4 x 10° years. Identify a phy-
sically meaningful time interval that is approximately halfway between
these two extremes on a logarithmic scale.



veclors

A change of position of a particle is called a displacement. If a particle
moves from position A to position B (Fig. 2-1a), we can represent its dis-
placement by drawing a line from A to B; the direction of displacement
can be shown by putting an arrowhead at B indicating that the displace-
ment was from A to B. The path of the particle need not necessarily be a
straight line from A to B; the arrow represents only the net effect of the
motion, not the actual motion.

In Fig. 2-1b, for example, we plot an actual path followed by a particle
from A to B. The path is not the same as the displacement AB. If we
were to take snapshots of the particle when it was at A and, later, when

figure 2-1

Displacement vectors. (a) Vectors AB and A'B’ are identical since they have
the same length and point in the same direction. (b) The actual path of the
particle in moving from A to B may be the curve shown; the displacement
remains the vector AB. At some intermediate point P the displacement from
A is the vector AP. (c) After displacement AB the particle undergoes another
displacement BC. The net effect of the two displacements is represented by
the vector AC.

-

C
B
B, - B
A A A
(a) (b) (c)

2-1
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it was at some intermediate position P, we could obtain the displace-
ment vector AP, representing the net effect of the motion during this in-
terval, even though we would not know the actual path taken between
these points. Furthermore, a displacement such as A’'B’ (Fig. 2-1a),
which is parallel to AB, similarly directed, and equal in length to AB,
represents the same change in position as AB. We make no distinction
between these two displacements. A displacement is therefore char-
acterized by a length and a direction.

In a similar way, we can represent a subsequent displacement from B
to C |Fig. 2-1c). The net effect of the two displacements will be the same
as a displacement from A to C. We speak then of AC as the sum or re-
sultant of the displacements AB and BC. Notice that this sum is not an
algebraic sum and that a number alone cannot uniquely specify it.

Quantities that behave like displacements are called vectors.® Vec-
tors, then, are quantities that have both magnitude and direction and
combine according to certain rules of addition. These rules are stated
below. The displacement vector is a convenient prototype. Some other
physical quantities which are vectors are force, velocity, acceleration,
the electric field, and the magnetic field. Many of the laws of physics
can be expressed in compact form using vectors; derivations involving
these laws are often greatly simplified if we do this.

Quantities that can be completely specified by a number and unit
and that therefore have magnitude only are called scalars. Some physi-
cal quantities which are scalars are mass, length, time, density, energy,
and temperature. Scalars can be manipulated by the rules of ordinary
algebra. '

To represent a vector on a diagram we draw an arrow. We choose the
length of the arrow proportional to the magnitude of the vector (that is,
we choose a scale), and we choose the direction of the arrow to be the
direction of the vector, with the arrowhead giving the sense of the direc-
tion. For example, a displacement of 40 ft north of east on a scale of
1.0 in. per 10 ft would be represented by an arrow 4.0 in. long, drawn at
an angle of 45° above a line pointing east with the arrowhead at the top
right extreme. A vector such as this is represented conveniently in print-
ing by a boldface symbol such as d. In handwriting it is convenient to
put an arrow above the symbol to denote a vector quantity, such as d.

Often we shall be interested only in the magnitude of the vector and
not in its direction. The magnitude of d may be written as |d|, called the
absolutc value of d; morc frequently we represent the magnitude alone
by the italic letter symbol d. The boldface symbol is meant to signify
both properties of the vector, magnitude and direction.

Consider now Fig. 2-2 in which we have redrawn and rclabeled the
veetors of Fig. 2-1¢. The relation among thesc displacements (vectors)

can be written as

a+b=r. (2-1)

The rules to be followed in performing this (vector) addition geometri-
cally are these: On a diagram drawn to scale lay out the displacement

I'he word vector means carrier in Latin, which suggests a displacement. You might
want to review what your analytic geometry and calculus text says about vectors. A good
reference that explores the matter in depth s About Vectors, by Banesh Hoffman, Pren-
tice-Hall. Englewood Cliffs, N.J., 1966.

2.2
ADDITION OF VECTORS,
GEOMETRICAL METHOD

figure 2-2
The vector sum a + b= r. Compare
with Fig. 2-lc.



vector a; then draw b with its tail at the head of a, and draw a line from
the tail of a to the head of b to construct the vector sum r. This is a dis-
placement equivalent in length and direction to the successive displace-
ments a and b. This procedure can be generalized to obtain the sum of
any number of successive displacements.

Since vectors are new quantities, we must expect new rules for their
manipulation. The symbol “+" in Eq. 2-1 simply has a different meaning
from its meaning in arithmetic or scalar algebra. It tells us to carry out
a different set of operations.

Using Fig. 2-3 we can prove two important properties of vector addi-
tion:

at+tb=>b+a, (commutative law) (2-2)

and

d+e+fj=(d+e)+1 (associative law) (2-3)

These laws assert that it makes no difference in what order or in what
grouping we add vectors; the sum is the same. In this respect, vector
addition and scalar addition follow the same rules.

The operation of subtraction can be included in our vector algebra by
defining the negative of a vector to be another vector of equal magnitude
but opposite direction. Then

a—b=a+(—b) (2-4)

as shown in Fig. 2-4.
Remember that, although we have used displacements to illustrate
these operations, the rules apply to all vector quantities.

The geometrical method of adding vectors is not very useful for vectors
in three dimensions; often it is even inconvenient for the two-dimen-
sional case. Another way of adding vectors is the analytical method, in-
volving the resolution of a vector into components with respect to a
particular coordinate system.

Figure 2-5a shows a vector a whose tail has been placed at the origin
of a rectangular coordinate system. If we drop perpendicular lines from
the head of a to the axes, the quantities a, and a, so formed are called
the components of the vector a. The process is called resolving a vector
into its components. Figure 2-5 shows a two-dimensional case for con-
venience; the extension of our conclusions to three dimensions will be
clear.

A vector may have many sets of components. For example, if we ro-
tate the x-axis and y-axis in Fig. 2-5a by 10° counterclockwise, the com-
ponents of a would be different. Furthermore, we may use a nonrec-

figure 2-3

(a) The commutative law for vector
sums, which states thata + b=

b + a. (b) The associative law,
which states that d + (e + f) =
(d+e)+ 1.

figure 2-4
The vector difference a — b=
a + (—b).

2-3

RESOLUTION AND
ADDITION OF VECTORS,
ANALYTIC METHOD
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tangular coordinate system, that is, the angle between the two axes
need not be 90°. Thus the components of a vector are only uniquely
specified if we specify the particular coordinate system being used. The
vector need not be drawn with its tail at the origin of the coordinate
system to find its components —although we have done so for conve-
nience; the vector may be moved anywhere in the coordinate space and,
as long as its angles with the coordinate directions are maintained, its
components will be unchanged.
The components a, and a, in Fig. 2-5a are readily found from

a,=acos 6 and a,=a sin 0, (2-5)

where 6 is the angle that the vector a makes with the positive x-axis,
measured counterclockwise from this axis. Note that, depending on the
angle 6, a. and a, can be positive or negative. For example, in Fig. 2-5b,
b, is negative and b, is positive. The components of a vector behave like
scalar quantities because, in any particular coordinate system, only a
number with an algebraic sign is needed to specify them.

Once a vector is resolved into its components, the components them-
selves can be used to specify the vector. Instead of the two numbers a
(magnitude of the vector) and 6 (direction of the vector relative to the
x-axis), we now have the two numbers a, and a,. We can pass back and
forth between the description of a vector in terms of its components
a., ay and the equivalent description in terms of magnitude and direc-
tion a and 6. To obtain a and 6 from a, and a,, we note from Fig. 2-5a that

0= VarTar 2-6a)
and
tan 6 = ay/a,r. (2-61))

The quadrant in which ¢ lies is determined from the signs of a, and a,.
When resolving a vector into components it is sometimes useful to
introduce a vector of unit length in a given direction. Thus vector a in

Fig. 2-6a may be written, for example, as
a=u,q, (2-7)

where u, is a unit vector in the direction of a. Often it is convenient to

(a) (b)

figure 2-5

Two examples of the resolution of a
vector into its scalar components in a
particular coordinate system.

figure 2-6

{a) The vector a may be written as
u,a 1n which u, is a unit vector in
the direction of a. (b) The unit
vector i, j, and k, used to specify
the positive x-, v-, and z-directions
respectively.



draw unit vectors along the particular coordinate axes chosen. In the
rectangular coordinate system the special symbols i, j, and k are usually
used for unit vectors in the positive x-, y-, and z-directions, respectively;
see Fig. 2-6b. Note that i, j, and k need not be located at the origin. Like
all vectors, they can be translated anywhere in the coordinate space as
long as their directions with respect to the coordinate axes are not
changed.

The vectors a and b of Fig. 2-5 may be written in terms of their com-
ponents and the unit vectors as

a=ia,+ja, (2-8a)
and
b = ib_r + il7!;; \2‘8[7)

see Fig. 2-7. The vector relation Eq. 2-8a is equivalent to the scalar re-
lations of Eq. 2-6; each equation relates the vector (a, or a and 6) to its
components {a, and a,). Sometimes we will call quantities such as ia,
and ja, in Eq. 2-8a the vector components of a; they are drawn as vectors
in Fig. 2-7a. The word component alone will continue to refer to the
scalar quantities a, and a,.

We now consider the addition of vectors by the analytical method.
Let r be the sum of the two vectorsa and b lying in the x-y plane, so that

r=a-+b. (2-9)

In a given coordinate system, two vectors such as r and a+ b can only be
equal if their corresponding components are equal, or

r,r = a,r + b.r \2‘10(1)
and
r, = ay, + b, (2-10b)

These two algebraic equations, taken together, are equivalent to the
single vector relation Eq. 2-9. From Egs. 2-6 we may find r and the angle
6 that r makes with the x-axis; that is,

r=Vr2+rp
and
tan 6 = r,/r,.

Thus we have the following analytic rule for adding vectors: Resolve
each vector into its components in a given coordinate system; the alge-
braic sum of the individual components along a particular axis is the
component of the sum vector along that same axis; the sum vector can
be reconstructed once its components are known. This method for add-
ing vectors may be generalized to many vectors and to three dimensions
(see Problems 13 and 18).

figure 2-7

Two examples of the resolution of a
vector into its vector components
in a particular coordinate system;
compare with Figure 2-5.
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The advantage of the method of breaking up vectors into components,
rather than adding directly with the use of suitable trigonometric rela-
tions, is that we always deal with right triangles and thus simplify the
calculations.

In adding vectors by the analytical method, the choice of coordinate
axes determines how simple the process will be. Sometimes the com-
ponents of the vectors with respect to a particular set of axes are known
to begin with, so that the choice of axes is obvious. Other times a judi-
cious choice of axes can greatly simplify the job of resolution of the
vectors into components. For example, the axes can be oriented so that
at least one of the vectors lies parallel to an axis.

An airplane travels 130 miles (= 209 km) on a straight course making an angle
of 22.5° east of due north. How far north and how far east did the plane travel
from its starting point?

We choose the positive x-direction to be east and the positive y-direction to
be north. Next (Fig. 2-8) we draw a displacement vector from the origin {starting
point), making an angle of 22.5° with the y-axis (north} inclined along the posi-
tive x-direction (east). The length of the vector is chosen to represent a magni-
tude of 130 miles. If we call this vector d, then d, gives the distance traveled
east of the starting point and d, gives the distance traveled north of the starting
point. We have

6 = 90.0°— 22.5°= 67.5°,
so that (see Egs. 2-5)

d, = d cos 6 = (130 miles) cos 67.5° = 50.0 miles (= 80.5 km),

and

(1,, = d sin # = {130 miles) sin 67.5° = 120 miles (= 193 km).

An automobile travels due east on a level road for 30 km. It then turns due north
at an intcrscction and travels 40 km before stopping. Find the resultant dis-
placcment of the car.

We choose a coordinate system fixed with respect to the earth, with the posi-
tive x-direction pointing east and the positive y-direction pointing north. The
two successive displacements, a and b, arc then drawn as shown in Fig. 2-9. The
resultant displacement r is obtained from r=a -+ b. Since b has no x-component
and a has no y-component, we obtain (sce Eqgs. 2-10)

rr=a,+ b,=30 km + 0= 30 km,
r,=a,+ b,=0+40 km = 40 km.

The magnitude and direction of r are then (see Eqs. 2-6)

r=Vr2+r2= \V[30 km} + (40 km]2 = 50 km,

40 km

an f) r =
CBD /== K,/75 30 km

1.33, 0= tan! {1.33) = 53°.

The resultant veetor displacement r has a magnitude of 50 km and makes an
angle of 53 north of east

figure 2-8
Example 1

EXAMPLE 2

40 miles

(¢]

<— 30 miles —>

figure 2-9
Example 2



Three coplanar vectors are expressed, with respect to a certain rectangular co-
ordinate system, as

a=4 —-j,
b= —-3i + 2j,
and ¢ =-3j,

in which the components are given in arbitrary units. Find the vector r which is
the sum of these vectors.
From. Egs. 2-10 we have

r.=4a, +[1_,.+(,‘J_=4_3 +0=1,
and

ry=a,+b,+c,=—1+2-3=-2.
Thus

Figure 2-10 shows the four vectors. From Egs. 2-6 we can calculate that the
magnitude of r is \'5 and that the angle that r makes with the positive x-axis,
measured counterclockwise from that axis, is

tan ! (—2/1) = 297°.

We have assumed in the previous discussion that the vectors being
added together are of like kind; that is, displacement vectors are added
to displacement vectors, or velocity vectors are added to velocity vec-
tors. Just as it would be meaningless to add together scalar quantities of
different kinds, such as mass and temperature, so it would be meaning-
less to add together vector quantities of different kinds, such as dis-
placement and electric field.

However, like scalars, vectors of different kinds can be multiplied by
one another to generate quantities of new physical dimensions. Because
vectors have direction as well as magnitude, vector multiplication can-
not follow exactly the same rules as the algebraic rules of scalar multi-
plication. We must establish new rules of multiplication for vectors.

We find it useful to define three kinds of multiplication operations
for vectors: (1) multiplication of a vector by a scalar, {2) multiplication of
two vectors in such a way as to yield a scalar, and {3) multiplication of
two vectors in such a way as to yield another vector. There are still
other possibilities, but we shall not consider them here.

The multiplication of a vector by a scalar has a simple meaning: The
product of a scalar k and a vector a, written ka, is defined to be a new
vector whose magnitude is k times the magnitude of a. The new vector
has the same direction as a if k is positive and the opposite direction if
k is negative. To divide a vector by a scalar we simply multiply the
vector by the reciprocal of the scalar.

When we multiply a vector quantity by another vector quantity, we
must distinguish between the scalar (or dot) product and the vector

*The material of this section will be used later in the text. The scalar product is used first
in Chapter 7 and the vector product in Chapter 11. The instructor who wishes to post-
pone this section can do so. Its presentation here gives a unified treatment of vector alge-
bra and serves as a convenient reference for later work.

XAMPLE 3

figure 2-10
Three vectors, a, b, and ¢, and their
vector sum r.

2-4
MULTIPLICATION OF
VECTORS”
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\or cross) product. The scalar product of two vectors a and b, written as
a-b,isdefined to be

a-b=ab cos ¢, (2-11)

where a is the magnitude of vector a, b is the magnitude of vector b, and
cos ¢ is the cosine of the (smaller) angle ¢ between the two vectors®
|see Fig. 2-11).

Since a and b are scalars and cos ¢ is a pure number, the scalar prod-
uct of two vectors is a scalar. The scalar product of two vectors can be
regarded as the product of the magnitude of one vector and the com-
ponent of the other vector in the direction of the first. Because of the
notation a - b is also called the dot product of a and b and is spoken as
“a dot b.”

We could have defined a - b to be any operation we want, for example,
to be a'3b'* tan (¢/2), but this would turn out to be of no use to us in
physics. With our definition of the scalar product, a number of impor-
tant physical quantities can be described as the scalar product of two
vectors. Some of them are mechanical work, gravitational potential
energy, electrical potential, electric power, and electromagnetic energy
density. When such quantities are discussed later, their connection with
the scalar product of vectors will be pointed out.

The vector product of two vectors a and b is written as a X b and is
another vector ¢, where ¢ = a X b. The magnitude of ¢ is defined by

¢ = ab sin ¢, (2-12)

where ¢ is the [smaller) angle* between a and'b.

The direction of ¢, the vector product of a and b, is defined to be per-
pendicular to the plane formed by a and b. To specify the sense of the
vector ¢ we must refer to Fig. 2-12. Imagine rotating a right-handed
screw whose axis is perpendicular to the plane formed by aand b so as to
turn it from a to b through the angle ¢ between them. Then the direc-
tion of advance of the screw gives the direction of the vector product
a X b [Fig. 2-12a). Another convenient way to obtain the direction of a
vector product is the following. Imagine an axis perpendicular to the
plane of a and b through their origin. Now wrap the fingers of the right
hand around this axis and push the vector a into the vector b through
the smaller angle between them with the fingertips, keeping the thumb
erect; the direction of the erect thumb then gives the direction of the
vector product a X b (Fig. 2-12b).% Because of the notation, a X b is also
called the cross product of a and b and is spoken as “a cross b.”

Notice that b X a is not the same vector as a X b, so that the order of
factors in a vector product is important. This is not true for scalars be-
cause the order of factors in algebra or arithmetic does not affect the
resulting product. Actually, a x b= —b x a [Fig. 2-12¢). This can be de-
duced from the fact that the magnitude ab sin ¢ equals the magnitude

* There are two different angles between a pair of vectors, depending on the sense of rota-
tion. We always choosce the smaller of the two in vector multiplication. In Eq. 2-11 it does
not matter because cos2a — &) = cos ¢, But in Eq. 2-12 it does matter because sini2r — o)

sin ¢

¢ The procedures described i Fig. 2-12 are a convention. Two vectors such as a and b form
a plane and there are two directions that point away from any plane. We choose the right
hand or nght-handed screw convention; choosing the left hand or a left-handed screw
would have led to the opposite choice for the direction of a x b,

~ -
@Cos g

figure 2-11

The scalar product a - b = ab cos ¢)
is the product of the magnitude of
either vector (a, say) by the
component of the other vector in
the direction of the first vector

(b cos ¢, say).



ba sin ¢, but the direction of a X b is opposite to that of b X a; this is so
because the right-handed screw advances in one direction when rotated
from a to b through ¢ but advances in the opposite direction when ro-
tated from b to a, through ¢. You can obtain the same result by applying
the right-hand rule.

If ¢ is 90°, a, b, and ¢ (= a X b] are all at right angles to one another
and give the directions of a three-dimensional right-handed coordinate
system.

Ac=axb

o Ve =bxa

The reason for defining the vector product in this way is that it proves
to be useful in physics. We often encounter physical quantities that are
vectors whose product, defined as above, is a vector quantity having im-
portant physical meaning. Some examples of physical quantities that
are vector products are torque, angular momentum, the force on a mov-
ing charge in a magnetic field, and the flow of electromagnetic energy.
When such quantities are discussed later, their connection with the
vector product of two vectors will be pointed out.

The scalar product is the simplest product of two vectors. The order
of multiplication does not affect the product. The vector product is the
next simplest case. Here the order of multiplication does affect the
product, but only by a factor of minus one, which implies a direction
reversal. Other products of vectors are useful but more involved. For
example, a tensor can be generated by multiplying each of the three
components of one vector by the three components of another vector.
Hence a tensor (of the second rank) has nine numbers associated with it,
a vector three, and a scalar only one. Some physical quantities that can
be represented by tensors are mechanical and electrical stress, moments
and products of inertia, and strain. Still more complex physical quanti-
ties are possible. In this book, however, we are concerned only with
scalars and vectors.

figure 2-12

The vector product. (@} Inc=a X b,
the direction of ¢ is that in which a
right-handed screw advances when
turned from a to b through the
smaller angle. (b) The direction of

¢ can also be obtained from the
“right-hand rule”: If the right hand
is held so that the curled fingers
follow the rotation of a into b, the
extended right thumb will point in
the direction of c. (¢} The vector
product changes sign when the
order of the factors is reversed:

a Xb=—b x a. Apply the right-hand
rule or the rule for the advance of a
right-handed screw to show that ¢
and ¢’ have opposite directions.
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A certain vector a in the x-y plane is 250° counterclockwise from the positive:

x-axis and has a magnitude 7.4 units. Vector b has magnitude 5.0 units and is
directed parallel to the z-axis. Calculate \a) the scalar product a - b and (b) the
vector product a X b.

la] Because a and b are perpendicular to one another, the angle ¢ between
them is 90° and cos ¢ = cos 90° = 0. Therefore, from Eq. 2-11, the scalar product

| 18

a-b=abcos d=ab cos 90° = (7.4)(5.0) 0 = 0,

consistent with the fact that neither vector has a component in the direction of
the other.
\b) The magnitude of the vector product is, from Eq. 2-12,

a X b| = ab sin ¢ = 7.4)(5.0) sin 90° = 37.

The direction of the vector product is perpendicular to the plane formed by
a and b. Therefore, as shown in Fig. 2-13, it lies in the x-y plane (perpendicular to
b} at an angle of 250° — 90° = 160° from the + x-axis (perpendicular toa) in accor-
dance with the right-hand rule.

Vectors turn out to be very useful in physics. It will be helpful to look a
little more deeply into why this is true. Suppose that we have three
vectors a, b, and r, which have components ar, ay, az; by, by, b;; and r,,
1y, I, respectively, in a particular coordinate system xyz. Let us suppose
further that the three vectors are related so that -

r=a-+b. (2-13)
By a simple extension of Eqs. 2-10 this means that
r.=a,+ b, r,=a,+ by, and r=a.+b; (2-14)

Now consider another coordinate system x'y’z" which has these prop-
erties: (1] its origin does not coincide with the origin of the first, or xyz,
system and (2) its three axes are not parallel to the corresponding axes in
the first system. In other words, the second set of coordinates has been
both translated and rotated with respect to the first.

The components of the vectors a, b, and r in the new system would
all prove, in general, to be different; we may represent them by
Ay Ay, Qe by, by, boy and 1,0, 1y, 1, respectively. These new com-
ponents would be found, however, to be related {see Problem 39) in that

Ty ==age = Dy I Iy T and Ire=ga.+ b.. (2-15)

EXAMPLE 4

figure 2-13
Example 4

2.5
VECTORS AND THE
LAWS OF PHYSICS



That is, in the new system we would find once again (see Eq. 2-13) that
r=a+bh.

In more formal language: Relations among vectors, of which Eq. 2-13
is only one example, are invariant (that is, are unchanged) with respect
to translation or rotation of the coordinates. Now it is a fact of experi-
ence that the experiments on which the laws of physics are based and
indeed the laws of physics themselves are similarly unchanged in form
when we rotate or translate the coordinate system. Thus the language of
vectors is an ideal one in which to express physical laws. If we can ex-
press a law in vector form, the invariance of the law for translation and
rotation of the coordinate system is assured by this purely geometrical
property of vectors.

It was thought until about 1956 that all laws of physics were invariant under
another kind of transformation of coordinates, the substitution of a right-
handed coordinate system for a left-handed one (see Fig. 2-14). In that year, how-
ever, some experiments involving the decay of certain elementary particles
were studied in which the result of the experiment did turn out to depend on the
“handedness’’ of the coordinate system used to express the results. In other
words, the experiment and its image in a mirror would yield different results!*
This surprising result led to a re-examination of the whole question of the sym-
metry of physical laws; these studies remain among the most challenging in
modern physics.

1. Three astronauts leave Cape Canaveral, go to the moon and back, and
splash down in the Pacific Ocean. An Admiral bids them goodby at the Cape
and then sails to the Pacific Ocean in an aircraft carrier where he picks
them up. For their respective journeys do the astronauts or the Admiral
have the larger displacement?

2. Can two vectors of different magnitude be combined to give a zero resul-
tant? Can three vectors?

3. Can a vector have zero magnitude if one of its components is not zero!?

4. Does it make any sense to call a quantity a vector when its magnitude is
zero?

5. If three vectors add up to zero, they must all be in the same plane. Make this
plausible.

6. Does a unit vector have units?

7. Name several scalar quantities. Is the value of a scalar quantity dependent
on the coordinate system chosen?

8. We can order events in time. For example, event b may precede event ¢ but
follow event a, giving us a time order of events a, b, ¢. Hence there is a
sense of time, distinguishing past, present, and future. Is time a vector
therefore? If not, why not?

9. Do the commutative and associative laws apply to vector subtraction?

10. Can a scalar product be a negative quantity?’

11. (a) Ifa - b =0, does it follow that a and b are perpendicular to one another?
(b) Ifa - b=a - ¢, does it necessarily follow that b equals ¢?

12. If a X b = 0, must a and b be parallel to each other? Is the converse true?

13. (a) Show that if all of the components of a vector are reversed in direction,
then the vector itself is reversed in direction. (b) Show that if the compo-

*C. N. Yang and T. D. Lee were awarded the Nobel prize in 1957 for their theoretical pre-
diction that this would be the case. See “The Overthrow of Parity” by Phillip Morrison,
Scientific American, April 1957, for a very readable review of this matter.

M

M

figure 2-14

Showing (a) a left-handed and (b) a
right-handed coordinate system.
Notice that {a) and (b) are related in
that each may be viewed as the
image of the other in mirror MM.
The “handedness’ of a coordinate
system cannot be changed by
rotating it. Note that in (b), i X j =Kk,
whereas in (a), i X j = —k.
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14.

nents of a vector product are all reversed, then the vector product is not
changed. (c] Is a vector product, then, a vector?

Thus far we have discussed addition, subtraction, and multiplication of
vectors. Why do you suppose that we do not discuss the division of vectors?
Is it possible to define such an operation?

. Must you specify a coordinate system when you (a) add two vectors, |b] form

their scalar product, (¢) form their vector product, (d) find their components?

. It 1s conventional to use the right hand in rules for vector algebra. What

changes would be required if a left-hand convention were adopted instead?

SECTION 2-2

1.

6.

Consider two displacements, one of magnitude 3 m and another of magni-

tude 4 m. Show how the displacement vectors may be combined to get a

resultant displacement of magnitude (@) 7 m, (b) 1 m, and (c) 5 m.

Answer: The displacements should be: (a) parallel, (b) antiparallel, (c) per-
pendicular.

What are the properties of two vectors a and b such that

la) a+b=c and a+b=c,

(b)) a+b=a—b,
(c) a+b= and az + bt =2

. Two vectors a and b are added. Show that the magnitude of the resultant

cannot be greater than a + b or smaller than |a — b|, where the vertical bars
signify absolute value.

. A car is driven east for a distance of 50 km, then north for 30 km, and then

in a direction 30° east of north for 25 km. Draw the vector diagram and de-
termine the total displacement of the car from its starting point.

A golfer takes three putts to get his ball into the hole once he is on the green.
The first putt displaces the ball 12 ft north, the second 6.0 ft southeast, and
the third 3.0 ft southwest. What displacement was needed to get the ball
into the hole on the first putt? Answer: 6.0 ft, 20.5° E of N.
Vector a has a magnitude of 5.0 units and is directed east. Vector b is di-
rected 45° west of north and has a magnitude of 4.0 units. Construct vector
diagrams for calculating (a) (a + b} and (b} (b —a). Estimate the magnitudes
and directions of (a + b) and (b — a) from your diagrams.

SECTION 2-3

7.

10.

Find the sum of the vector displacements ¢ and d whose components in
kilometers along three perpendicular directions are

¢;=50,¢,=0,¢c,=-20,d,=—-30,d,=4.0, d. = 6.0.
Answer: r, = 2.0 km; r,=r,=4.0 km.

. la) A man leaves his front door, walks 1000 ft cast, 2000 ft north, and then

takes a penny from his pocket and drops it from a cliff 500 ft high. Set up a
coordinate system and write down an expression, using unit vectors, for the
displacement of the penny. (b) The man then returns to his front door, fol-
lowing a different path on the return trip. What is his resultant displace-
ment for the round trip?

. Two vectors are given by a = 4i —3j + k and b = —i + j + 4k. Find (a)

a+b,(b)a—b,and (c) a vector ¢ such thata —b +¢ =0.

Answer: (a) 3i — 2j + 5k. |b) 51 = 4j — 3k. (c) Negative of (b).

A room has the dimensions 10 ft x 12 ft X 14 ft. A fly starting at one cormer
ends up at a diametrically opposite corner. (a) What is the magnitude of its
displacement? (b) Could the length of its path be less than this distance?
Greater than this distance? Equal to this distance’ (¢) Choose a suitable

problems
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12.

13.

14.

15.

16.

17.

18.

19.

coordinate system and find the components of the displacement vector in
this frame. (d) If the fly walks rather than flies, what is the length of the
shortest path it can take?

Given two vectors 2 = 4i — 3j and b = 6i + 8j, find the magnitude and direc-
tion of a, of b, of a + b, of b —a, and of a — b.

Answer: The magnitudes are 5, 10, 11, 11, and 11. The angles with the posi-
tive x-axis are 323° 53° 27°, 80° and 260°.

Two vectors of lengths a and b make an angle 6 with each other when
placed tail to tail. Prove, by taking components along two perpendicular
axes, that the length of their sum is

r=Va*+ b+ 2ab cos 6.
Generalize the analytical method of resolution and addition to the case of
three or more vectors, in two dimensions.
Two vectors a and b have equal magnitudes, say 10 units. They are oriented
as shown in Fig. 2-15 and their vector sum is r. Find (a) the x- and y-com-
ponents of r; (b} the magnitude of r; and (¢} the angle r makes with the
X-axis.
A particle undergoes three successive displacements in a plane, as follows:
4.0 m southwest, 5.0 m east, 6.0 m in a direction 60° north of east. Choose
the y-axis pointing north and the x-axis pointing east and find (a} the com-
ponents of each displacement, (b) the components of the resultant displace-
ment, (c] the magnitude and direction of the resultant displacement, and
(d) the displacement that would be required to bring the particle back to the
starting point.
Answer: (a) a,=—2.8 m, a,=—2.8 m;
by=+5.0m, b, = 0;
c,=+3.0m, ¢,=+5.2 m.

(b)dr=4+52m, d,=+2.4 m.

(c) 5.7 m, 25° north of east.

(d) 5.7 m, 25° south of west.
Use a scale of 2 m to the inch and add the displacements of Problem 15
graphically. Determine from your graph the magnitude and direction of
the resultant.
A person flies from Washington to Manila. (a) Describe the displacement
vector. (b) What is its magnitude if the latitude and longitude of the two
cities are 39° N, 77° W, and 15° N, 121° E? Answer: (b} 11,230 km.
Generalize the analytical method of resolving and adding two vectors to
three dimensions.

Let N be an integer greater than one; then

2w 4w ) DT
C()SO+C()5W+COSW+~ + cos (N l)N—O;

that is,

2mn
z cos N 0.

n =10
Also

n=\N-1

o Dl
Z sin N"O

Prove these two statements by considering the sum of N vectors of equal
length, each vector making an angle of 2#/N with that preceding.

105°
30°
0 |

figure 2-135
Problems 14 and 25
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SECTION 2-4

20.

A vector d has a magnitude 2.5 m and points north. What are the magni-
tudes and directions of the vectors

{a) —d, (b) d/2.0, (¢} —2.5d and (d) 4.0d?

. In the coordinate system of Fig. 2.6b show that

i-i=j-j=k-k=1
and
i-j=j-k=k-i=0.

22. In the right-handed coordinate system of Fig. 2-6b show that

ixi=jxj=kxk=0
ixj=k;kxi=j;jxk=i.

23. Show for any vector a that (@) a - a = a* and that (b) a X a= 0.

24. Use the standard jright-hand) xyz system of coordinates. Given vector a in

[3%]
w

o
=)

27.

the +x-direction, vector b in the +y-direction, and the scalar quantity d:
(a) What is the direction of a X b? {b) What is the direction of b X a? (c) What
is the direction of b/d? (d) What is a - b?

. For the two vectors in Problem 14, find (a) a - b, and (b) a X b.

Answer: (a) —26. (b} 97k.

A vector a of magnitude ten units and another vector b of magnitude six
units point in directions differing by 60°. Find (a) the scalar product of the
two vectors and (b} the vector product of the two vectors.

Show that the area of the triangle contained between the vectors a and b
is #|a X b, where the vertical bars signify absolute value (see Fig. 2-16).

28. Show that the magnitude of a vector product gives numerically the area of

the parallelogram formed with the two component vectors as sides (see
Fig. 2-16). Does this suggest how an element of area oriented in space could
be represented by a vector?

29. Show that a - |b X ¢] is equal in magnitude to the volume of the parallele-

30.

31

32.

233,

34.

36.

piped formed on the three vectors a, b, and c.

Prove that two vectors must have equal magnitudes if their sum is per-
pendicular to their difference.

Scalar product in unit vector notation. Let two vectors be represented in
terms of their coordinates as

a =1ia, +ja, + ka.
and
b=ib, +jb, + kb.
Show analytically that
a-b=a,b,+ayb,+ a.b..

|Hint: See Problem 21.)

Use the definition of scalar product a - b= ab cos ¢ and thc fact thata - b =

a:b, + a,b, + a:b. (sce Problem 31} to obtain the angle between thc two

vectors given by a = 3i + 3j — 3k and b = 2i +j + 3k.

Vector product in unit vector notation. Show analytically that a X b =

ila,b. = a.b,) + jla.b, — a,b.) + kla.b, = a,b,). (Hint: See Problem 22.)

Threc vectors arc given by a = 3i + 3j — 2k, b= —1i — 4j + 2k, and ¢ = 2i +

2j+ k. Find (a)a - (b xc), (b)a-{b+c)and(c)ax(b+ c).

Let b and ¢ be the intersecting face diagonals of a cubc of edge a, as shown

i Fig. 2-17. (a) Find the components of the vector d, where d = b X c.

(b) Find thc values of b - ¢, of d - ¢, and of d - b.

¢ Find the angle between the body diagonal e, as shown in Fig. 2-17, and
the face diagonal b.

Answer. (a) d,=dy= a?, d, at. (b)b-c=atd-c=d-b=0.|c) 35"

Suppose a, b, and ¢ are any three noncoplanar vectors. They are not neces-

sarily mutually at right angles. |a) show that

figure 2-16
Problems 27 and 28

2
figure 2-17
Problem 35



37.

38.

a-lbxe¢=b:(cxal=c-(axDbh)
(b) Let

X X X
=b c,B:c a’C:a b,
v v v

A

where v=a - (b X ¢). Evaluate the dot product of each of a, b, ¢ with each of
A, B, C. (c) If a, b, ¢ have dimensions of length, what are the dimensions of
A, B, C?

Two vectors a and b have components, in arbitrary units a, = 3.2, a, = 1.6;
b, = 0.50, b, = 4.5. (a) Find the angle between a and b. (b) Find the com-
ponents of a vector ¢ which is perpendicular to a, is in the x-y plane, and
has a magnitude of 5.0 units.

Answer: (a) 57°. (b) ¢, = =£2.2 units; ¢, = F4.5 units.

(a) We have seen that the commutative law does not apply to vector prod-
ucts, that is, a X b does not equal b X a. Show that the commutative law
does apply to scalar products, that is, a - b=Db - a. (b) Show that the dis-
tributive law applies to both scalar products and vector products, that is,
show that

a-b+cJ=a-b+a:-candthataxb+c)=axb+axec

(c) Does the associative law apply to vector products, that is, does a X
(b X ¢) equal (a X b) X ¢? Does it make any sense to talk about an associative
law for scalar products?

SECTION 2-5

39.

Invariance of vector addition under rotation of the coordinate system.
Figure 2-18 shows two vectors a and b and two systems of coordinates which
differ in that the x and x’ axes and the y and y’ axes each make an angle ¢
with each other. Prove analytically that a + b has the same magnitude and
direction no matter which system is used to carry out the analysis.

figure 2-18
Problem 39
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motion
- one dimension

Mechanics, the oldest of the physical sciences, is the study of the Jal

motion of objects. The calculation of the path of a baseball or of aspace MECHANICS
| probe sent from Earth to Mars is among its problems. So too is the
analysis of tracks formed in bubble chambers, representing the colli-
sions, decay, and interactions of elementary particles (see Fig. 10-11 and
Appendix F).

When we describe motion we are dealing with that part of mechanics

called kinematics. When we relate motion to the forces associated with
it and to the propertics of the moving objects, we are dealing with
dynamics. In this chapter we shall define some kinematical quantities
and study them in detail for the special case of motion in one dimen-
sion. In Chapter 4 we discuss some cases of two- and three-dimensional
motion. Chapter 5 deals with the more general case of dynamics.

An object can rotate as it moves. For example, a baseball may be spin- {32
ning while it is moving as a whole in some trajectory. Also, a body may PARTICLE KINEMATICS
vibrate as it moves, as, for example, a falling water droplet. These com-
plications can be avoided by considering the motion of an idealized
body called a particle. Mathematically, a particle is treated as a point,
an object without extent, so that rotational and vibrational considera-
tions are not involved.

Actually, there is no such thing in nature as an object without extent.
The concept of “particle” is nevertheless very useful because real
objects often behave to a very good approximation as though they were
particles. A body need not be “small” in the usual sense of the word in
order to be treated as a particle. For example, if we consider the distance

30



from the earth to the sun, with respect to this distance the earth and
the sun can usually be considered to be particles. We can find out a
great deal about the motion of the sun and planets, without appreciable
error, by treating these bodies as particles. Baseballs, molecules, pro-
tons, and electrons can often be treated as particles. Even if a body is too
large to be considered a particle for a particular problem, it can always
be thought of as made up of a number of particles, and the results of
particle motion may be useful in analyzing the problem. As a simplifi-
cation, therefore, we confine our present treatment to the motion of a
particle.

Bodies that have only motion of translation behave like particles. An
observer will call motion translational if the axes of a reference frame
which is imagined rigidly attached to the object, say x’, y’, and z’,
always remain parallel to the axes of his own reference frame, say x, y,
and z. In Fig. 3-1, for example, we show the translational motion of an
object moving from positions A to B to C. Notice that the path taken is
not necessarily a straight line. Notice too that throughout the motion
every point of the body undergoes the same displacements as every
other point. We can assume the body to be a particle because in de-
scribing the motion of one point on the body we have described the
motion of the body as a whole.

The displacement, the velocity, and the acceleration of a particle are
vectors. Because this chapter deals with motion in one dimension only,
we really do not need the full power of the vector method to deal with
it. Nevertheless we find it useful to begin by considering motion in two
dimensions (the extension to three is not difficult). From this vantage
point we then specialize to the particular case of one-dimensional
motion. This procedure allows us to keep in mind the essential vector
character of all motion.

The velocity of a particle is the rate at which its position changes
with time. The position of a particle in a particular reference frame is
given by a position vector drawn from the origin of that frame to the
particle. At time t¢,, let a particle be at point A in Fig. 3-2a, its position
in the x-y plane being described by position vector r,. At a later time t.
let the particle be at point B, described by position vector r,. The dis-
placement vector describing the change in position of the particle as it
moves from A to B is Ar (= 1. — r,) and the elapsed time for the motion
between these points is At (= t, — t,). The average velocity for the par-
ticle during this interval is defined by

figure 3-1

Translational motion of an object.
Translation can occur in three
dimensions, but only two are
shown for simplicity.

3-3
AVERAGE VELOCITY
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MOTION IN ONE DIMENSION

3

CHAP

7= Ar _ displacement (a vector) 3-1)
At elapsed time (a scalar) '

A bar above a symbol indicates an average value for the quantity in
question.

The quantity V is a vector, for it 1s obtained by dividing the vector
Ar by the scalar At. Velocity, therefore, involves both direction and
magnitude. Its direction is the direction of Ar and its magnitude is
|Ar/At]. The magnitude is expressed in distance units divided by time
units, as, for example, meters per second or miles per hour.

The velocity defined by Eq. 3-1 is called an average velocity because
the measurement of the net displacement and the elapsed time does
not tell us anything at all about the motion between A and B. The path
may have been curved or straight; the motion may have been steady or
erratic. The average velocity involves simply the total displacement
and the total elapsed time. For example, suppose a man leaves his
house and goes on an automobile trip, returning to his house in a time
At (five hours, say) after he left it. His average velocity for the trip is
zero because his displacement for this particular time interval At is
zero.

/ Ar=r3-r]

() (b)

If we were to measure the time of arrival of the particle at each of
many points along the actual path between A and B in Fig. 3-2a, we
could describe the motion in more detail. If the average velocity turned
out to be the same (in magnitude and dircction) between any two points
along the path, we would conclude that the particle moved with con-
stant velocity, that is, along a straight line (constant direction) at a
uniform rate (constant magnitude).

Suppose that a particle is moving in such a way that its avcrage velocity,
measured for a numbcr of diffcrent time intervals, does not turn out to
be constant. This particle is said to move with variable vclocity. Then
wc must seek to determine a velocity of the particle at any given in-
stant of time, called the instantaneous velocity.

Velocity can vary by a change in magnitude, by a change in direction,
or both. For the motion portrayed in Fig. 3-2a. the average vclocity
during the time interval t. — t, may differ both in magnitude and direc-
tion from the average velocity obtained during another time interval
t," = t,. In Fig. 3-2b we tllustrate this by choosing the point B to be suc-

figure 3-2

(a) A particle moves from A to B in
time At (= t. — t,) undergoing a
displacement Ar (= 1> — ;). The
average velocity v between A and
B is in the direction of Ar. (b) As B
moves closer to A the average
velocity approaches the
instantaneous velocity v at A; v is
tangent to the path at A.

3-1
INSTANTANEOUS
VELOCITY



cessively closer to point A. Points B’ and B” show two intermediate
positions of the particle corresponding to the times t." and ¢.” and de-
scribed by position vectors r.’ and r.”, respectively. The vector dis-
placements Ar, Ar’, and Ar” differ in direction and become successively
smaller. Likewise, the corresponding time intervals At (= t. — t,),
At' =’ —t,), and A" (= t." — t;) become successively smaller.

As we continue this process, letting B approach A, we find that the
ratio of displacement to elapsed time approaches a definite limiting
value. Although the displacement in this process becomes extremely
small, the time interval by which we divide it becomes small also and
the ratio is not necessarily a small quantity. Similarly, while growing
smaller, the displacement vector approaches a limiting direction, that
of the tangent to the path of the particle at A. This limiting value of
Ar/At is called the instantaneous velocity at the point A, or the velocity
of the particle at the instant ¢,.

If Ar is the displacement in a small interval of time At, following the
time t, the velocity at the time ¢t is the limiting value approached by
Ar/At as both Ar and At approach zero. That is, if we let v represent the
instantaneous velocity,

The direction of v is the limiting direction that Ar takes as B approaches
A or as At approaches zero. As we have seen, this limiting direction is
that of the tangent to the path of the particle at point A.

In the notation of the calculus, the limiting value of Ar/At as At
approaches zero is written dr/dt and is called the derivative of r with
respect to t. We have then

. Ar_ dr
B i = 2 ]
v _\}1}3' At dt {3 2)
The magnitude v of the instantaneous velocity is called the speed and
is simply the absolute value of v. That is,

v =|v| = |dr/dt|. (3-3)

Speed, being the magnitude of a vector, is intrinsically positive.

Just as a particle is a physical concept making use of the mathemati-
cal concept of a point, so here velocity is a physical concept using the
mathematical concept of differentiation. In fact, the calculus was in-
vented in order to have a proper mathematical tool for treating funda-
mental mechanical problems.

In the next section we shall examine the concept of instantaneous
velocity in detail for the special case of motion in one dimension, some-
times called rectilinear motion.

Here again we approach one-dimensional motion by first considering
two-dimensional motion and then considering the special case in which
only one dimension is involved.

Figure 3-3 shows a particle moving along a path in the x-y plane. At
time ¢ its position with respect to the origin is described by position
vector r (see Fig. 3-3a) and it has a velocity v (see Fig. 3-3b) tangent to
its path as shown. We can write (see Eq. 2-8)

r=ix+jy, (3-4)

35
ONE-DIMENSIONAL
MOTION—VARIABLE
VELOCITY
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MOTION IN ONE DIMENSION
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CHAP.
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i, its
X 1 X 1 X
0] 0
(a) (b) (c)

where i and j are unit vectors in the positive x- and y-directions, re-
spectively, and x and y are the (scalar) components of vector r. Because
i and j are constant vectors, we have, on combining Egs. 3-2 and 34,

dr _.dx  .dy
V=—=]1]— ==
dt Var ) dt
which we can express as
v=iv,+jv, (two-dimensional motion), (3-5)

where v, (= dx/dt) and vy (= dy/dt) are the (scalar) components of the
vector v.

We now consider motion in one dimension only, chosen for con-
venience to be the x-axis. We must then have v, = 0 so that Eq. 3-5
reduces to

vV=iv, lone-dimensional motion). {3-6)

Since i points in the positive x-direction, v, will be positive (and
equal to +v) when v points in that direction, and negative (and equal to
—v] when it points in the other direction. Since, in one-dimensional
motion, there are only two choices as to the direction of v, the full
power of the vector method is not needed, as we have pointed out; we
can work with the (scalar) velocity component v, alone.

The limiting process. As an illustration of the limiting process in one dimen-
sion, consider the following table of data taken for motion along the x-axis. The
first four columns are experimental data. The symbols refer to Fig. 3-4 in which
the particle is moving from left to right, that is, in the positive x-direction. The
particle was at position x; (100 cm from the origin) at time ¢, (1.00 s). It was at
position x. at time t.. As we consider different values for x», and different cor-
responding times t., we find

X2 — Xy to — t; AX/At,
Xi, ¢m t;, s X», cM ts, s = Ax, cm =At s cm/s
100.0 1.00 200.0 11.00 100.0 10.00 +10.0
100.0 1.00 180.0 9.60 80.0 8.60 +9.3
100.0 1.00 160.0 7.90 60.0 6.90 +8.7
100.0 1.00 140.0 5.90 40.0 4.90 +8.2
100.0 1.00 120.0 3.56 20.0 2.56 +7.8
100.0 1.00 110.0 2.33 10.0 1.33 +7.5
100.0 1.00 105.0 1.69 5.0 0.69 +7.3
100.0 1.00 103.0 1.42 3.0 0.42 +7.1

100.0 1.00 101.0 1.14 1.0 0.14 F7A

Equation 3-2, which holds for the general case of motion in three dimensions, is

figure 3-3

A particle at time t has |a) a
position described by r, b) an
instantaneous velocity v, and (¢} an
instantaneous acceleration a. The
vector components ix and jy of Eq.
3-4,iv, and jv, of Eq. 3-5, and ia,
and ja, of Eq. 3-10 are also shown,
as are the unit vectors i and j.

EXAMPILE 1



v=li Ar dr
"
At—0 At dt
For one-dimensional motion along the x-axis we have a similar relation, scalar
in character, in which each vector quantity is replaced by its corresponding
component or
Ax  dx
ve=lim —=—- 3-7
3 A0 At dt ‘ )
It is clear from the table that as we select values of x. closer to x;, At approaches
zero and the ratio Ax/At approaches the apparent limiting value +7.1 cm/s. At
time t,, therefore, v. =+7.1 cm/s, as closely as we are able to determine from
the data. Since v, is positive, the velocity v (= iv,; see Eq. 3-6) points to the
right in Fig. 3-4. This is tangent to the path in the direction of motion, as it
must be.

0 Time Time to
@ @ x
x ’% Ax(=x9— xx)»i
X2 1

Figure 3-5a shows six successive “snapshots’” of a particle moving along the
x-axis with variable velocity. At t = 0 it is at position x =+1.00 m to the right
of the origin; at t = 2.5 s it has come to rest at x =+5.00 m; at t = 4.0 s it has
returned to x =+1.40 m. Figure 3-5b is a plot of position x versus time t for this
motion. The average velocity for the entire 4.0-s interval is the net displace-
ment or change of position (+0.40 m) divided by the elapsed time (4.0 s} or v, =
+0.10 m/s. (We call v, average velocity and v, velocity, for one-dimensional
motion, even though velocity is a vector and not a scalar. This conforms to
common usage and should cause no misunderstandings. These quantities are
not speeds but they may be negative, whereas speed is intrinsically positive.)
The average velocity vector v points in the positive x-direction (that is, to the
right in Fig. 3-5a) because the net displacement points in this direction. The
quantity v, can be obtained directly from the slope of the dashed line af in Fig.
3-5b, where by slope we mean the ratio of the net displacement gf to the elapsed
time ga. (The slope is not the tangent of the angle fag measured on the graph
with a protractor. This angle is arbitrary because it depends on the scales we
choose for x and t.)

The velocity v, at any instant is found from the slope of the curve of Fig.
3-5b at that instant. Equation 3-7 is in fact the relation by which the slope of
the curve is defined in the calculus. In our example the slope at b, which is the
value of v, at b, is+1.7 m/s; the slope at d is zero and the slope at fis —6.2 m/s.
When we determine the slope dx/dt at each instant t, we can make a plot of v,
versus t, as in Fig. 3-5¢. Note that for the interval 0 < ¢t < 2.5 s, v, is positive so
that the velocity vector v points to the right in Fig. 3-5a; for the interval 2.5 s <
t < 4.0 s v, is negative so that v points to the left in Fig. 3-5a.

Often the velocity of a moving body changes either in magnitude, in
direction, or both as the motion proceeds. The body is then said to have
an acceleration. The acceleration of a particle is the rate of change of
its velocity with time. Suppose that at the instant t, a particle, as in
Fig. 3-6, is at point A and is moving in the x-y plane with the instanta-
neous velocity v, and at a later instant t. it is at point B and moving

figure 3-4
A particle is moving to the right
along the x-axis.

EXAMPLE 2

3-6
ACCELERATION
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with the instantancous veloeity v.. The average acceleration a during
the motion from A to B is defined to be the change of velocity divided
by the time interval, or

= _Vo—vVv, Ay

T -1 W 13-8)

The quantity 3 is a veetor, for it is obtained by dividing a vector Av
by a scalar At. Acceleration is therefore characterized by magnitude and
direction. Its direction is the direction of Av and its magnitude is

figure 3.5

{a) Six consecutive “snapshots’’ of a
particle moving along the x-axis.
The vector joined to the particle is
its instantaneous velocity; that
below the particle is its
instantaneous acceleration.

(b) A plot of x versus ¢t for the
motion of the particle.

(c) A plot of v, versus t.

(d) A plot of a, versus t.



|Av/At|. The magnitude of the acceleration is expressed in velocity
units divided by time units, as for example meters per second per sec-
ond (written m/s? and read “meters per second squared’’), cm/sec?, and
ft/sec2.

We call a of Eq. 3-8 the average acceleration because nothing has
been said about the time variation of velocity during the interval At
We know only the net change in velocity and the total elapsed time. If
the change in velocity (a vector) divided by the corresponding elapsed
time, Av/At, were to remain constant, regardless of the time intervals
over which we measured the acceleration, we would have constant
acceleration. Constant acceleration, therefore, implies that the change
in velocity is uniform with time in direction and magnitude. If there is
no change in velocity, that is, if the velocity were to remain constant
both in magnitude and direction, then Av would be zero for all time
intervals and the acceleration would be zero.

If a particle is moving in such a way that its average acceleration,
measured for a number of different time intervals, does not turn out to
be constant, the particle is said to have a variable acceleration. The
acceleration can vary in magnitude, or in direction, or both. In such
cases we seek to determine the acceleration of the particle at any given
time, called the instantaneous acceleration.

The instantaneous acceleration is defined by

. Av _dv ,

A= lgn’u . O (3-9)
That is, the acceleration of a particle at time ¢ is the limiting value of
Av/At at time t as both Av and At approach zero. The direction of the
instantaneous acceleration a is the limiting direction of the vector
change in velocity Av. The magnitude a of the instantaneous accelera-
tion is simply a = |a| = |dv/dt|. When the acceleration is constant the
instantaneous acceleration equals the average acceleration. You should
note that the relation of a to v, in Eq. 3-9, is the same as thatof v tor,
in Eq. 3-2.

Two special cases illustrate that acceleration can arise from a change
in either the magnitude or the direction of the velocity. In one case we
have motion along a straight line with uniformly changing speed (as
in Section 3-8). Here the velocity does not change in direction but its
magnitude changes uniformly with time. This is a case of constant
acceleration. In the second case we have motion in a circle at constant
speed (Section 4-4). Here the velocity vector changes continuously in
direction but its magnitude remains constant. This, too, is accelerated
motion, though the direction of the acceleration vector is not constant.
Later we will encounter other important cases of accelerated motion.

From Egs. 3-5 and 3-9 we can write, for motion in two dimensions as in
Fig. 3-3,
_dv . dv,

=4 Vdar

dv,

+i dt
or
a=1a,+)a, (3-10)

where a, (= dv,/dt) and a, (= dv,/dt) are the (scalar) components of the
acceleration vector a (see Fig. 3-3¢).

A\ //
7
B
t: ’
‘W 2w
A[tl Av = vg = vy

/

0]
figure 3-6

A particle has velocity v, at point A
and moves to point B, where its
velocity is v.. The triangle shows
the (vector) change in velocity

Av (= v, — v,) experienced by the
particle as it moves from A to B.

3-7
ONE-DIMENSIONAL
MOTION—-VARIABLE
ACCELERATION
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We again restrict ourselves to motion in one dimension only, chosen
for convenience to be the x-axis. Since v, for such motion does not
change with time (and is, in fact, zero), a,, which is dv,/dt. must also
be zero so that

a=ia,. (3-11)

Since i points in the positive x-direction, a, will be positive when a
points in this direction and negative when it points in the other direc-
tion.

The motion of Fig. 3-5a is one of variable acceleration along the x-axis. To find
the acceleration® a, at each instant we must determine dv,/dt at each instant.
This is simply the slope of the curve of v, versus t at that instant. The slope of
Fig. 3-5¢ at point b is —1.3 m/s* and that at point d is —1.8 m/s?, as shown in
the figure. The result of calculating the slope for all points is shown in Fig. 3-5d.
Notice that a, is negative at all instants, which means that the acceleration
vector a points in the negative x-direction. This means that v, is always de-
creasing with time, as is clearly seen from Fig. 3-5¢. The motion is one in which
the acceleration vector has a constant direction but varies in magnitude (see
Fig. 3-5a).

Let us now further restrict our considerations to motion which not only
occurs in one dimension (the x-axis) but for which a, = a constant. For
such constant acceleration the average acceleration for any time in-
terval is equal to the ({constant) instantaneous acceleration a,. Let ;=0
and let t, be any arbitrary time t. Let v, be the value of v, at t =0 and
let v, be its value at the arbitrary time t. With this notation we find a,
(see Eq. 3-8) from

- ﬂ - Ve = Viyo
At t—0

a,

or
Vo= Vst ast. (3-12)

This equation states that the velocity v, at timet is the sum of its value
v, at time t = 0 plus the change in velocity during time t, which is a,t.

Figure 3-7¢ shows a graph of v, versus t for constant acceleration; it
1s a graph of Eq. 3-12. Notice that the slope of the velocity curve is con-
stant, as it must be because the acceleration a. (= dv./dt) has been as-
sumed to be constant, as Fig. 3-7d shows.

When the velocity v, changes uniformly with time, its average value
over any time interval equals one-half the sum of the values of v, at the
beginning and at the end of the interval. That is, the average velocity
v, betweent=0and t =t is

Vo= 3{Vso + Vo). (3-13)

This relation would not be true if the acceleration were not constant,
for then the curve of v, versus t would not be a straight line.

As for velocity, we commonly call a, for one-dimensional motion the acceleration even
though acceleration is a vector and a, is correctly an acceleration component. For one
dimensional motion there is only one component if the axis 1s chosen along the line of
the motion

EXAMPLE 3

3-8
ONE-DIMENSIONAL
MOTION—-CONSTANT
ACCELERATION



If the position of the particle at t =0 is x,, the position x at t =t can
be found from

X =Xo+ ‘_’;t
which can be combined with Eq. 3-13 to yield
X = Xo+ 3V + Vit (3-14)

The displacement due to the motion in time t is x — x,. Often the origin
is chosen so that x, = 0.

Notice that aside from initial conditions of the motion, that is, the
values of x and v, at t = 0 (taken here as x = x, and v, = v,), there are
four parameters of the motion. These are x, the displacement; v,, the
velocity; a,, the acceleration; and t, the elapsed time. If we know only
that the acceleration is constant, but not necessarily its value, from any
two of these parameters we can obtain the other two. For example, if
a, and t are known, Eq. 3-12 gives v,, and having obtained v, we find x
from Eq. 3-14.

——> x
a? = Vi .
s L
(@) = LA .
i =y v
2’ _ VAR
a
X
b
®) Slope = vy
Slope = vyg
0 t
1| S ———
@
) Slope = a,
Ux
\
UxOIEE st == = e e - :
! t
0 t
ax
(d) Slope =0
0 t

figure 3-7

(a) Five successive “snapshots’ of
rectilinear motion with constant
acceleration. The arrows on the
spheres represent v; those below
represent a.

(b) The displacement increases
quadratically according to

X = Vot + 3a,t2 Its slope increases
uniformly and at each instant has
the value v,, the velocity.

(c) The velocity v, increases
uniformly according to v, = v, + a,t.
Its slope is constant and at each
instant has the value a,, the
acceleration.

(d) The acceleration a, has a
constant value; its slope is zero.
Figure 3-5 shows similar plots for
one-dimensional motion in which
the acceleration is not constant.
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In most problems in uniformly accelerated motion, two parameters
are known and a third is sought. It is convenient, therefore, to obtain
relations between any three of the four parameters. Equation 3-12 con-
tains v,, a,, and t, but not x; Eq. 3-14 contains, x, v, and t but not a,. To
complete our system of equations we need two more relations, one con-
taining x, a,, and t but not v, and another containing x, v,, and a, but
not t. These are easily obtained by combining Eqs. 3-12 and 3-14.

Thus, if we substitute into Eq. 3-14 the value of v, from Eq. 3-12, we
thereby eliminate v, and obtain

X = Xy + VJ-()t + %{Lrt?. lS'lS)

When Eq. 3-12 is solved for t and this value for ¢ is substituted into Eq.
3-14, we obtain

Va2 = Vo + 2az{x — Xo). (3-16)

Equations 3-12, 3-14, 3-15, and 3-16 (see Table 3-1} are the complete set
of equations for motion along a straight line with constant acceleration.

Table 3-1

Kinematic equations for straight line motion with constant acceleration

\The position x, and the velocity v, at the initial instant ¢t = 0 are the given
initial conditions)

Equation Contains

Number Equation s W ay W
3-12 Ve = Vyo+ axt x f J /
3-14 X = Xy + %[V‘r() ot Vm)t ‘/ ‘/ X \/
3-15 X = Xo + Vel + 3a,t2 ORI Y
3-16 Vi = Vot + 2a.{x — Xol J J J X

A special case of motion with constant acceleration is one in which
the acceleration is zero, that is, a, = 0. In this case the four equations in
Table 3-1 reduce to the expected results v, = v, (the velocity does not
change) and x = x, + v,t (the displacement changes linearly with time).

The curve of Fig. 3-7b 1s a displacement-time graph for motion with constant

| acceleration; that is, it is a graph of Eq. 3-15 in which x, = 0. The slope of the

tangent to the curve at time t equals the velocity v, at that time. Notice that the
slope increases continuously with time from v, at t = 0. The rate of increase
of this slope should give thc acceleration a,, which is constant in this case. The
curve of Fig. 3-7b is a parabola since Eq. 3-15 is the cquation for a parabola
having slope v,y at t = 0. We obtain, on successive differentiation of Eq. 3-15,

X = Xo + Vrot + 3a,t2
dx/dt = v+ a,t or Ve = Vpo+ ast,
which gives the velocity v, at time t (compare Eq. 3-12}, and
dv,/dt = a.,

the constant acceleration. The displacement-time graph for uniformly acceler-
ated rectilinear motion will thercfore always be parabolic.

You should not feel compelled to memorize relations such as those of
Table 3-1. The important thing is to be able to follow the line of reason-
mg used to obtain the results. These relations will be recalled automati-
cally after you have used them repeatedly to solve problems, partly as

EXAMPLE 4
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a result of the familiarity acquired, but chiefly as a result of the better
understanding obtained through application.

We can use any convenient units of time and distance in these equa-
tions. If we choose to express time in seconds and distance in meters,
for self-consistency we must express velocity in m/s and acceleration
in m/s?. If we are given data in which the units of one quantity, as vel-
ocity, are not consistent with the units of another quantity, as accelera-
tion, then before using the data in our equations we should transform
both quantities to units that are consistent with one another. Having
chosen the units of our fundamental quantities, we automatically deter-
mine the units of our derived quantities consistent with them. In carry-
ing out any calculation, always remember to attach the proper units to
the final result, for the result is meaningless without this label.

Suppose we wish to find the speed of a particle which has a uniform acceleration
of 5.00 em/s? for an interval of 0.50 h if the particle has a speed of 10.0 ft/s at
the beginning of this interval. We decide to choose the foot as our length unit
and the second as our time unit. Then

1in. )X( 1ft \ 5.00

- ==—"— ft/s? = 0.164 ft/s2.

a, = 5.00 cm/s? = 5.00 cr/s? X ( =)=

The time interval

At=1t—t,=050'h X ((’O mm) ( L Qss

1h 1mm): HALUB,

Note that the conversion factors in large parentheses are equal to unity. Taking
the initial time t, = 0, as in Eq. 3-12, we then have

One way to spot an erroneous equation is to check the dimensions
of all its terms. The dimensions of any physical quantity can always be
expressed as some combination of the fundamental quantities, such as
mass, length, and time, from which they are derived. The dimensions
of velocity are length (L) divided by time (T); the dimensions of acceler-
ation are length divided by time squared, etc. In any legitimate physical
equation the dimensions of all the terms must be the same. This
means, for example, that we cannot equate a term whose total dimen-
sion is a velocity to one whose total dimension is an acceleration. The
dimensional labels attached to various quantities may be treated just
like algebraic quantities and may be combined, canceled, and so on,
just as if they were factors in the equation. For example, to check Eq.
3.15, x = xy+ vt + 3a.t2, dimensionally, we note that x and x, have the
dimension of a length. Therefore the two remaining terms must also
have the dimension of a length. The dimension of the term vt is

Ik

M X time = length or T 2P =L,

time

and that of 3a.t? is

length . L .
timez * time? = length or X T2=L.

EXAMPLE 5
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The equation is therefore dimensionally correct. You should check the
dimensions of all the equations you use.

The speed of an automobile traveling due east is uniformly reduced from 45.0
miles per hour to 30.0 miles per hour in a distance of 264 ft.

la) What is the magnitude and direction of the constant acceleration?

We choose, arbitrarily, the direction from west to east to be the positive
x-direction. We are given x and v, and we seek a,. The time is not involved.
Equation 3.16 is therefore appropriate {see Table 3-1). We have v, =+30.0 mi/h,
Vo = +45.0 mi/h, x — xo = +264 ft = 0.0500 mi. From Eq. 3-16, v.2 = v, +
2a.(x — x.), we obtain

I V.lz - V.rllg
: 2‘\X - Xn) ’
~ (30.0 mi/h2 — (45.0 mi/h]2

B e .
2,0.0500 mi) 1.13 x 10* mi/hz = —4.58 ft/s>.

or ar

The direction of the acceleration a is due west, that is, in the negative x-direc-
tion because a, is negative. The car is slowing down as it moves eastward, as it
must do if it is being accelerated toward the west. When the speed of a body is
decreasing, we often say that it is decelerating.

(b) How much time has elapsed during this deceleration?

If we use only the original data, Table 3-1 shows that Eq. 3-14 is appropriate.

From Eq. 3-14, x = X, + (V.o + V.)t, we obtain

_ 2(x — Xo)
Veo + Vi '
or
{2)0.0500 mi) 1

= = =480s.
(450 + 30.0) mi/h ~ 750 P = 480

If we use the derived data of part (a), Eq. 3-12 is appropriate. This gives us a
check. From Eq. 3-12, v, = v,y + a.t, we have
Ve — Vro

ar

=

30.0 — 45.0) mi/h

- _ -—
! —1.13 % 10* mi/h? 1.33 X 10°3 h = 4.80 s.

or

(c) If one assumes that the car continues to decelerate at the same rate, how
much time would elapse in bringing it to rest from 45.0 mi/h?

Equation 3-12 is useful here. We have v,y = 45.0 mi/h, a, = —1.13 x 104
mi/h?, and the final velocity v, = 0. Then from Eq. 3-12, v, = v, + a.t, we
obtain

Ve = Viro
a;

l:

0 — 45.0) mi/h

=4.00 X 3h=14.4s.
1.13 x 10* mi/h? 400%x103h=144s

or

(d) What total distance is required to bring the car to rest from 45.0 mi/h?
Equation 3-15 is appropriate here. We have v,, = 45.0 mi/h, a, =—1.13 x 10!
mi/h2, t =4.00 ¥ 10 3 h. From Eq. 3-15, x = x4 + v,t + $a,t2, we obtain

X — Xo ™ vl + sl
145.0 mi/h){4.00 X 103 h) + ${=1.13 X 10* m/h2){4.00 X 10 # h)?
0.0900 mi = 475 ft.

EXAMPILE 6



The nucleus of a helium atom (alpha-particle) travels along the inside of a
straight hollow tube 2.0 m long which forms part of a particle accelerator. (a) If
one assumes uniform acceleration, how long is the particle in the tube if it
enters at a speed of 1.0 X 10* m/s and leaves at 5.0 X 10° m/s? (b) What is its
acceleration during this interval?

(a) We choose an x-axis parallel to the tube, its positive direction being that
in which the particle is moving and its origin at the tube entrance. We are given
x and v, and we seek t. The acceleration a. is not involved. Hence we use Eq.
3-14, x = x¢ + H{v.o+ v.) t with xo,=0 or

2x
==,
Voo + Vi

- (2)(2.0 m)
~ (500 + 1) X 10* m/s

= 8.0 X 10-7 s,
or 0.80 microseconds (= 0.80 us).
(b) The acceleration follows from Eq. 3-12, v, = v, + a.t, or

Vo= Vo _ (500 — 1) < 10* m/s
t 80X107s

@ = =+6.3 X 102 m/s?,

or 6 trillion meters per second per second! Although this acceleration is enor-
mous by standards of the previous example, it occurs over an extremely short
time. The acceleration a is in the positive x-direction, that is, in the direction
in which the particle is moving, because a. is positive.

The most common example of motion with (nearly) constant accelera-
tion is that of a body falling toward the earth. In the absence of air re-
sistance we find that all bodies, regardless of their size, weight, or
composition, fall with the same acceleration at the same point of the
earth’s surface, and if the distance covered is not too great, the accelera-
tion remains constant throughout the fall. This ideal motion, in which
air resistance and the small change in acceleration with altitude are
neglected, is called ““free fall.”

The acceleration of a freely falling body is called the acceleration due
to gravity and is denoted by the symbol g. Near the earth’s surface its
magnitude* is approximately 32 ft/s2, 9.8 m/s2, or 980 cm/s?, and it is
directed down toward the center of the earth. The variation of the
exact value with latitude and altitude will be discussed later (Chapter
16).

The nature of the motion of a falling object was long ago a subject of interest in
natural philosophy. Aristotle had asserted that ““the downward movement . . .
of any body endowed with weight is quicker in proportion to its size.” It was
not until many centuries later when Galileo Galilei (1564-1642) appealed to
experiment to discover the truth, and then publicly proclaimed it, that Aris-
totle’s authority on the matter was seriously challenged. In the later years of
his life, Galileo wrote the treatise entitled Dialogues Concerning Two New
Sciences in which he detailed his studies of motion.

Aristotle’s belief that a heavier object will fall faster is a commonly held
view. It appears to receive support from a well-known lecture demonstration
in which a ball and a sheet of paper are dropped at the same instant, the ball
reaching the floor much sooner than the paper. However, when the lecturer first
crumples the paper tightly and then repeats the demonstration, both ball and

*See “Absolute value of g at the National Bureau of Standards” by D. R. Tate, /. Res.
NBS 70C, April-june, 1966.
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paper strike the floor at essentially the same time. In the former case, it is the
effect of greater resistance of the air which makes the paper fall more slowly
than the ball. In the latter case, the effect of air resistance on the paper is re-
duced and is about the same for both bodies, so that they fall at about the same
rate. Of course, a direct test can be made by dropping bodies in vacuum. Even
in easily obtainable partial vacuums we can show that a feather and a ball of
lead thousands of times heavier drop at rates that are practically indistin-
guishable.

In Galileo’s time, however there was no effective way to obtain a partial
vacuum, nor did equipment exist to time freely falling bodies with sufficient
precision to obtain reliable numerical data. Nevertheless, Galileo proved his
result by showing first that the character of the motion of a ball rolling down
an incline was the same as that of a ball in free fall.* The incline merely served
to reduce the effective acceleration of gravity and to slow the motion thereby.
Time intervals measured, for example, by the volume of water discharged from
a tank could then be used to test the speed and acceleration of this motion.**
Galileo showed that if the acceleration along the incline is constant, the ac-
celeration due to gravity must also be constant; for the acceleration along the
incline is simply a component of the vertical acceleration of gravity, and
along an incline of constant slope the ratio of the two accelerations remains
fixed.

He found from his experiments that the distances covered in consecutive
time intervals were proportional to the odd numbers 1, 3, 5, 7, . . ., etc. Total
distances for consecutive intervals thus were proportional to 1 +3, 1 +3 + 5,
1+3+5+7,and so on, that is, to the squares of the integers 1, 2, 3, 4, etc. But if
the distance covered is proportional to the square of the elapsed time, velocity
acquired is proportional to the elapsed time, a result which is true only if
motion 1s uniformly accelerated. He found that the same results held regardless
of the mass of the ball used.

We shall select a reference frame rigidly attached to the earth. The
v-axis will be taken as positive vertically upward. Then the accelera-
tion due to gravity g will be a vector pointing vertically down (toward
the center of the earth) in the negative y-direction. (This choice is
arbitrary. In other problems it may be convenient to choose down as
positive.] Our equations for constant acceleration are applicable here.
We simply replace x by y and set y,=01in Egs. 3-12, 3-14, 3-15, and 3-16,
obtaining

Vy = Vyo T ayt,

V= %l"’u" + vt

(3-17)
y = vyt + 2a,t?,
vt = v+ 2a,y,
and, for problems in free fall, we set a, = —g Notice that we have

chosen the initial position as the origin, that is, we have chosen y, = 0
at t = 0. Note also that g 1s the magnitude of the acceleration due to
gravity.

Sce “Galileo’s Discovery of the Law of Free Fall” by Stillman Drake, Scientific American.,
May, 1973.
See “The Role of Music in Galileo’s Experiments’ by Stillman Drake, Scientific Ameri
can, June, 1975.
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A body is dropped from rest and falls freely. Determine the position and speed
of the body after 1.0, 2.0, 3.0, and 4.0 s have elapsed.

We choose the starting point as the origin. We know the initial speed and the
acceleration and we are given the time. To find the position we use

Y = Vyt — 38t
Then, v, =0 and g = 32 ft/s?, and with t = 1.0 s we obtain
y =0 — %32 ft/s?){1.0 s)? = —16 ft.
To find the speed with t = 1.0 s, we use
W= W =
and obtain vy =0 — (32 ft/s?){1.0 s) = —32 ft/s.

After 1.0 s of falling from rest, the body is 16 ft (= 4.9 m) below its starting point
and has a velocity directed downward whose magnitude is 32 ft/s (= 9.8 m/s);
the negative signs for y and v, show that the associated vectors each point in the
negative y-direction, that is, downward.

Show that the values of y, v,, and a, obtained at times ¢t = 2.0, 3.0, and 4.0 s
are those shown in Fig. 3-8 and determine the metric equivalents.

y vy ay
s ft ft/s ft/s?
> 0 0 5
é 10 -16 = -329
3
> 20 -64 —Ml -32
3.0 -144 -9% =3

40 —256 —128 -32

A ball is thrown vertically upward from the ground with a speed of 80 ft/s
(= 24.4 m/s).

(a) How long does it take to reach its highest point?

At its highest point, v, =0, and we have v,, =480 ft/s. To obtain the time ¢
We use vy = v,y — gt, or

g Vo — Vy
4
= {80 — 0) ft/s B
32 ft/s?

{b) How high does the ball rise? Using only the original data, we choose the
relation v,2 = v,z — 2gy, or

EXAMPIE 8

figure 3-8
A body in free fall; showing y, v,
and a, at particular times t.
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2

2 — 2

;= Vo '/q
y=—tg—"
(8O ft/sk2 =0

= =4 = 30.5 m).
2% 32 st +100 ft = 30.5m

lc) At what times will the ball be 96 ft .= 29 m) above the ground:® Using
y = vyt — 3¢t2. we have

g2 — vt +y=0,

32 ft/s2)t2 — (80 ft/s)t + 96 ft = 0,
or
t2—5.0t +6.0=0,

which yields t =2.0 s and t =3.0 s.
At t = 2.0 s, the ball is moving upward with a speed of 16 ft/s (= 4.9 m/s), for

gt = 80 ft/s — (32 ft/s?){2.0 s) = +16 ft/s.

Vo= Vyo—
At t = 3.0 s, the ball is moving downward with the same speed, for

— gt = 80 ft/s — (32 {t/s?)(3.0 s) = —16 ft/s.

Vy = Vo

Notice that in this 1.0-s interval the velocity changed by —32 ft/s (= —9.8 m/s],
corresponding to an acceleration of —32 ft/s? (= —9.8 m/s2).

You should be able to convince yourself that in the absence of air resistance
the ball will take as long to rise as to fall the same distance, and that it will
have the same speed going down at each point as it had going up.

1. Can you think of physical phenomena involving the earth in which the
earth cannot be treated as a particle’

2. Each second a rabbit moves half the remaining distance from his nose to a
head of lettuce. Does he ever get to the lettuce? What is the limiting value
of his average velocity? Draw graphs showing his velocity and position as
time increases.

3. Average speed can mean the magnitude of the average velocity vector. An-
other meaning given to it is that average speed is the total length of path
traveled divided by the elapsed time. Are these meanings different’ If so,
give an example.

4. When the velocity is constant, does the average velocity over any time in-
terval differ from the instantaneous velocity at any instant?

5. Is the average velocity of a particle moving along the x-axis 3{v.o+v,) when
the acceleration is not uniform? Prove your answer with the use of graphs.

6. Does the speedometer on an automobile register speed as we defined it?

7. (a) Can a body have zero velocity and still be accelerating? (b) Can a body
have a constant speed and still have a varying velocity? (¢) Can a body have
a constant velocity and still have a varying speed?

8. Can an object have an eastward velocity while experiencing a westward
acceleration?’

9. Can the direction of the velocity of a body change when its acceleration is
constant?

10. Can a body be increasing in speed as its acceleration decreases? Explain.

11. Of the following situations, which onc 1s impossible? (a) A body having

velocity east and acceleration cast; (h) a body having velocity cast and ac-
celeration west; (¢) a body having zero velocity but acceleration not zero;
d) a body having constant acceleration and varnable velocity; (¢] a body
having constant velocity and variable acceleration.

12. If a particle 1s released from rest (v, = 0} at v,~ O at the time =0, Eq. 3-17

for constant acceleration says that it is at position y at two ditferent times,

questions



13.

14.

19.

20.

21.

namely, +V2y/a, and —V2y/a, What is the meaning of the negative root
of this quadratic equation?

What happens to our kinematic equations under the operation of time re-
versal, that is, replacing ¢t by —¢? Explain.

Consider a ball thrown vertically up. Taking air resistance into account,
would you expect the time during which the ball rises to be longer or
shorter than the time during which it falls?

. (a) A body is thrown upwards with a certain speed on a world where the

acceleration due to gravity is double that on earth. How high does it rise
compared to the height it rises on earth? (b) If the initial speed were dou-
bled, what change would that make?

Can there be motion in two dimensions with acceleration in only one
dimension?

. A person standing on the edge of a cliff at some height above the ground

below throws one ball straight up with initial speed u and then throws
another ball straight down with the same initial speed. Which ball, if either,
has the larger speed when it hits the ground? Neglect air resistance.

. A tube in the shape of a rectangle with rounded corners is placed in a vertical

plane, as shown in Fig. 3-9. You introduce two ball bearings at the upper
right-hand corner. One travels by path AB and the other by path CD. Which
will arrive first at the lower left-hand corner?

We expect a truly general relation to be valid regardless of the choice of
coordinate system. By demanding that general equations be dimensionally
consistent we insure that the equations are valid regardless of the choice
of units. Is there any need then for units or coordinate systems?

From what you know about angular measure, what dimensions would you
assign to an angle?! Can a quantity have units without having dimensions?

If m is a light stone and M is a heavy one, according to Aristotle M should
fall faster than m. QGalileo attempted to show that Aristotle’s belief was
logically inconsistent by the following argument. Tie m and M together to
form a double stone. Then, in falling, m should retard M, because it tends to
fall more slowly, and the combination would fall faster than m but more
slowly than M; but according to Aristotle the double body (M + m) is
heavier than M and hence should fall faster than M.

If you accept Galileo’s reasoning as correct, can you conclude that M
and m must fall at the same rate? What need is there for experiment in
that case?

If you believe Galileo’s reasoning is incorrect, explain why.

SECTION 3-3

1.

How far does a car, moving at 55 mi/h (88 km/h), travel forward during the
one second of time that the driver takes to look at an accident on the side
on the road? Answer: 81 ft (24 m).

2. The legal speed limit on a thruway is changed from 65 mi/h (105 km/h) to

figure 3-9
Question 18.
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55 mi/h (88.5 km/h) to conserve fuel. How much time is thereby added to
the trip from the Buffalo entrance to the New York City exit of the New
York Thruway for someone traveling at the legal speed limit over this
435-mile (700 km)| stretch of highway?

3. Compare your average speed in the following two cases. (a} You walk 240 ft
at a speed of 4.0 ft/s and then run 240 ft at a speed of 10 ft/s along a straight
track. (b) You walk for 1.0 min at a speed of 4.0 ft/s and then run for 1.0 min
at 10 ft/s along a straight track. Answer: (a} 5.7 ft/s. (b) 7.0 ft/s.

4. A train moving at an essentially constant speed of 60 km/h moves east for
40 min, then in a direction 45° east of north for 20 min, and finally west for
50 min. What is the average velocity of the train during this run?

5. Two trains, each having a speed 40 km/h are headed for each other on the
same straight track. A bird that can fly 60 km/h flies off one train when they
are 80 km apart and heads directly for the other train. On reaching the
other train it flies directly back to the first train, and so forth. (@) How many
trips can the bird make from one train to the other before they crash?
Explain. |b] What is the total distance the bird travels?

Answer: (a) an infinite number. (b} 60 km.

SECTION 3-6
6. A particle moving along the positive x-axis has the following positions at
various times:

x/meters) 0.080 0.050 0.040 0.050 0.080 0.13 0.20
tiseconds) 0.0 1.0 2.0 3.0 4.0 5.0 6.0

{al Plot displacement (not position} versus time. (b) Find the average veloc-
ity of the particle in the intervals 0.0 to 1.0's, 0.0 t0 2.0 s, 0.0 t0 3.0 s, 0.0 to
4.0 s. [c) Find the slope of the curve drawn in part a at the points t =0.0, 1.0,
2.0, 3.0, 4.0, and 5.0 s. (d} Plot the slope (units?) versus time. (¢} From the
curve of part (d) determine the acceleration of the particle at times t = 2.0,
3.0, and 4.0 s.

SECTION 3-7

7. The graph of x versus t (see Fig. 3-10a) is for a particle in straight line mo-
tion. |a) State for each interval whether the velocity v, is +, — or 0, and
whether the acceleration a.. is +, —, or 0. The intervals are OA, AB, BC,
and CD. (b) From the curve is there any interval over which the accelera-
tion is obviously not constant! |Ignore the behavior at the end points of the
intervals.)

Answer: (a) Ve a, (b} No.
OA + 0
AB + =
BC 0 0
CcD = +

8. Answer the previous questions for the motion described by the graph of
Fig. 3-10b.

B
B c
A
D
0 t t
(a) (b)
fignre 3-10a figure 3-10b

Problem 7 Problem 8
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An electron, starting from rest, has an acceleration that increases linearly
with time, that is, a = kt, the change in acceleration being k = (1.5 m/s?)/s.
(a) Plot a versus t during the first 10-s interval. (b) From the curve of part (al
plot the corresponding v versus ¢t curve and estimate the electron’s velocity
5.0 s after its motion starts. (¢) From the v versus ¢ curve of part (b) plot the
corresponding x versus ¢ curve and estimate how far the electron moved
during the first 5.0 s of its motion. Answer: (b) 19 m/s. (¢) 31 m.
The position of a particle moving along the x-axis depends on the time
according to the relation
R = LI\'—" (1 —e=*)

in which v,, and k are constants. (a) Plot a curve of x versus t. Notice that
x =0 at t = 0 and that x = v.o/k at t = =; that is, the total distance through
which the particle moves is v,o/k. (b) Show that the velocity v, is given by

Ve = Vge

so that the velocity decreases exponentially with time from its initial value
of vo, coming to rest only in infinite time. (¢) Show that the acceleration a.
is given by

ar=—kv,

so that the acceleration is directed opposite to the velocity and has a mag-
nitude proportional to the speed. (d) This particular motion is one with
variable acceleration. Give a plausible physical argument explaining how
it can take an infinite time to bring to rest a particle that travels a finite
distance.

A particle moves along the x-axis with a displacement versus time as shown
in Fig. 3-11. Sketch roughly curves of velocity versus time and acceleration
versus time for this motion.

SECTION 3-8

A jumbo jet needs to reach a speed of 225 mi/h (360 km/h) on the runway
for takeoff. Assuming a constant acceleration and a runway 1.1 miles 1.8
km) long, what minimum acceleration from rest is required?

An automobile increases its speed uniformly from 25 to 55 km/h in one-
half minute. A bicycle rider uniformly speeds up to 30 km/h from rest in
one-half minute. Compare the accelerations.

Answer: Both accelerations are equal to 0.28 m/s?.

A rocket-driven sled running on a straight level track is used to investigate
the physiological effects of large accelerations on humans. One such sled
can attain a speed of 1600 km/h in 1.8 s starting from rest. (a) Assume the
acceleration is constant and compare it to g. (b) What is the distance trav-
eled in this time?

A rocketship in free space moves with constant acceleration equal to 9.8
m/s?. (a) If it starts from rest, how long will it take to acquire a speed one-
tenth that of light? (b) How far will it travel in so doing?

Answer: (a) 36 days. (b) 4.6 X 10 km.

figure 3-11
Problem 11

SWATHOdd 6%

dVHO

o
<



MOTION IN ONE DIMENSION 50

3

CHAP.

17.

19.

. An arrow while being shot from a bow was accelerated over a distance of

2.0 ft. If its speed at the moment it left the bow was 200 ft/s, what was the
average acceleration imparted by the bow? Justify any assumptions you
need to make.

A subway train accelerates from rest at one station at a rate of 1.20 m/s2 for
half of the distance to the next station, then decelerates at this same rate
for the final half. If the stations are 1100 m apart, find (a) the time of travel
between stations and |b] the maximum speed of the train.

Answer: (a) 60.6 s. (b) 36.4 m/s (= 81.4 mi/h).

. Suppose that you were called upon to give some advice to a lawyer con-

cerning the physics involved in one of her cases. The question is whether a
driver was exceeding a 30 mi/h speed limit before he made an emergency
stop, brakes locked and wheels sliding. The length of skid marks on the
road was 19.2 ft. The police officer made the assumption that the maximum
deceleration of the car would not exceed the acceleration of a freely falling
body and arrested the driver for speeding. Was he speeding? Explain.

Two trains, one traveling at 60 mi/h and the other at 80 mi/h, are headed
toward one another along a straight level track. When they are 2.0 miles
apart, both engineers simultaneously see the other’s train and apply their
brakes. If the brakes decelerate each train at the rate of 3.0 ft/s2, determine
whether there is a collision. Answer: No.

20. A train started from rest and moved with constant acceleration. At one time

21.

o
o

23.

24.

[\=]
o2}

it was traveling 30 ft/s and 160 ft farther on it was traveling 50 ft/s. Calcu-
late |a) the acceleration, (b) the time required to travel the 160 ft mentioned,
(c] the time required to attain the speed of 30 ft/s, (d) the distance moved
from rest to the time the train had a speed of 30 ft/s.

An electron with initial velocity v,, = 1.0 X 10 m/s enters a region of
width 1.0 cm where it is electrically accelerated (Fig. 3-12). It emerges with
a velocity v, = 4.0 x 10 m/s. What was its acceleration, assumed constant?
Such a process occurs in the electron gun in a cathode-ray tube, used in
television receivers and oscilloscopes.) Answer: 8.0 X 10" m/s2.

. A meson is shot with speed 5.00 x 105 m/s into a region where an electric

field produces an acceleration on the meson of magnitude 1.25 X 101 m/s?
directed opposite to the initial velocity. (a) How far does the meson travel
before coming to rest? (b) How long does the meson remain at rest?

A car moving with constant acceleration covers the distance between two
points 180 ft apart in 6.0 s. Its speed as it passes the second point is 45 ft/s.
(a) What is its speed at the first point? (b) What is its acceleration? (c) At
what prior distance from the first point was the car at rest?

Answer. la) 15 ft/s. (b) 5.0 ft/s%. |c) 23 ft.

The speed of an automobile traveling east is uniformly reduced from 45
mi/h to 30 mi/h in a distance of 264 ft. (a) What is the magnitude and direc-
tion of the constant acceleration? (b) How much time has clapsed during
this deceleration? (c] If the car continues to decelerate at the same rate,
how much time would elapse in bringing it to rest from 45 mi/h? (d) What
distance is required to bring the car to rest from 45 mi/h? See Question 8.

5. At the instant the traffic light turns grecn, an automobile starts with a con-

stant acceleration a. of 6.0 ft/s?. At the same instant a truck, traveling with
a constant specd of 30 ft/s, ovcrtakes and passes the automobile. (a) How far
beyond the starting point will the automobile overtake the truck? (b) How
fast will the car be traveling at that instant® (It is instructive to plot a
qualitative graph of x versus t for cach vehicle.)

Answer. la) 300 ft. {b) 60 ft/s.

. An automobilc traveling 35 mi/h 56 km/h] is 110 ft | =35 m] from a

barrier when the driver slams on the brakes. Four seconds later the car hits
the barner. (a) What was the automobile’s deccleration before impact?
bl How fast was the car travcling at impact?

Nonaccelerated
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27. The engineer of a train moving at a speed v, sights a freight train a distance
d ahead of him on the same track moving in the same direction with a
slower speed v.. He puts on the brakes and gives his train a constant de-
celeration a. Show that

V!

. (vi — w)? . .
if d > uz—, there will be no collision;

)

(v — vl
ifd< &—2—;"— there will be a collision.

(It is instructive to plot a qualitative graph of x versus t for each train.)

28. A driver’s handbook states that an automobile with good brakes and going
50 mi/h can stop in a distance of 186 ft. The corresponding distance for 30
mi/h is 80 ft. Assume that the driver reaction time, during which the ac-
celeration is zero, and the acceleration after he applies the brakes are both
the same for the two speeds. Calculate (a) the driver reaction time and (b)
the acceleration.

SECTION 3-9
29. The position of a particle along the x-axis depends on the time according to
the equation

X = at? — bt3,

where x is in meters and t in seconds. (a) What dimensions and units must
a and b have? For the following, let their numerical values be 3.0 and 1.0,
respectively. {b) At what time does the particle reach its maximum positive
x-position? (¢) What total length of path does the particle cover in the first
4.0 s? (d) What 1s its displacement during the first 4.0 s? (¢) What is the
particle’s velocity at the end of each of the first four seconds? /) What is the
particle’s acceleration at the end of each of the first four seconds? (g) What
is the average velocity for the time interval t = 2.0 to t = 4.0 seconds!

Answer: (a) a: LT 2, m/s?;, b: LT 3 m/s®. (b) t =2 s. (¢] 24 m. (d) —16 m.
(e) 3.0, 0.0, —9.0, —24.0 m/s. (f) 0.0, —6.0, —12.0, —18.0 m/s2. (g} —10 m/s.

SECTION 3-11

30. (a) With what speed must a ball be thrown vertically upward in order to
rise to a height of 50 ft? (b) How long will it be in the air?

31. A tennis ball is dropped onto the floor from a height of 4.0 ft. It rebounds to
a height of 3.0 ft. If the ball was in contact with the floor for 0.010 s, what
was its average acceleration during contact? Answer: 3000 ft/s?

32. While thinking of Isaac Newton, a person standing on a bridge overlooking
a highway inadvertently drops an apple over the railing just as the front end
of a truck passes directly below the railing. If the vehicle is moving at
55 km/h {34 mi/h) and is 12 m (39 ft) long, how far above the truck must
the railing be if the apple just misses hitting the rear end of the truck?

33. A lead ball is dropped into a lake from a diving board 16 ft above the water.
It hits the water with a certain velocity and then sinks to the bottom with
this same constant velocity. It reaches the bottom 5.0 s after it is dropped.
(a) How deep is the lake? (b) What is the average velocity of the ball? (c) Sup-
pose all the water is drained from the lake. The ball is thrown from the
diving board so that it again reaches the bottom in 5.0 s. What is the initial
velocity of the ball? Answer: (a) 128 ft. (b) 29 ft/s. (c) 51 ft/s upward.

34. A rocket is fired vertically and ascends with a constant vertical acceleration
of 64 ft/s* for 1.0 min. Its fuel is then all used and it continues as a free
particle. (@) What is the maximum altitude reached? (b) What is the total
time elapsed from take-off until the rocket strikes the earth?

35. A balloon is ascending at the rate of 12 m/s at a height 80 m above the
ground when a package is dropped. How long does it take the package to
reach the ground? Answer: 5.4 s.
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38.

41.

40.

42.

43.
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46.

A stone is dropped into the water from a bridge 144 ft 44 m) above the
water. Another stone is thrown vertically down 1.0 s after the first is
dropped. Both stones strike the water at the same time. (@) What was the
initial speed of the second stone? (b] Plot speed versus time on a graph for
each stone, taking zero time as the instant the first stone was released.

. An open elevator is ascending with a constant speed v (32 ft/s]. A ball is

thrown straight up by a boy on the elevator when it is a height h {100 ft)
above the ground. The initial speed of the ball with respect to the elevator
is Vi (64 ft/s). (a) What is the maximum height attained by the ball? (b) How
long does it take for the ball to return to the elevator?

Answer: (a) 244 ft. |b) 4.0 s.

An arrow is shot straight up in the air with an initial speed of 250 ft/s. If on
striking the ground it imbeds itself 6.0 in. into the ground, find (a) the ac-
celeration |assumed constant) required to stop the arrow and (b) the time
required for it to come to rest. Neglect air resistance during the arrow’s
flight.

. A parachutist after bailing out falls 50 m without friction. When the para-

chute opens, he decelerates downward 2.0 m/s?. He reaches the ground with
a speed 3.0 m/s. (a) How long is the parachutist in the air? (b) At what height
did he bail out? Answer: (a) 17 s. (b) 290 m.
A shell is fired directly up from a gun; a rocket, propelled by burning fuel,
takes off vertically from a launching area. Plot qualitatively (numbers not
required) possible graphs of a, versus t, of v, versus t, and of y versus ¢t for
cach. Take ¢t = 0 at the instant the shell leaves the gun barrel or the rocket
leaves the ground. Continue the plots until the rocket and the shell fall back
to earth; neglect air resistance; assume that up is positive and down is
negative. :

If a body travels half its total path in the last second of its fall from rest,
find (a) the time and (b} height of its fall. (¢) Explain the physically un-
acceptable solution of the quadratic time equation.

Answer: (a) 3.4 s. |b) 57 m.

Two bodies begin a free fall from rest from the same height 1.0 s apart. How
long after the first body begins to fall will the two bodies be 10 m apart?
A steel ball bearing is dropped from the roof of a building (the initial velocity
of the ball is zero). An observer standing in front of a window 4.0 ft high
notes that the ball takes § s to fall from the top to the bottom of the win-
dow. The ball bearing continues to fall, makes a completely elastic collision
with a horizontal sidewalk, and reappears at the bottom of the window 2.0's
after passing it on the way down. How tall is the building? (The ball will
have the same speed at a point going up as it had going down after a com-
pletely elastic collision.) Answer: 68 ft.
Water drips from the nozzle of a shower onto the floor 81 in. below. The
drops fall at regular intervals of time, the first drop striking the floor at the
instant the fourth drop begins to fall. Find the location of the individual
drops when a drop strikes the floor.

. An elevator ascends with an upward acceleration of 4.0 ft/s?. At the instant

its upward speed is 8.0 ft/s, a loose bolt drops from the ceiling of the ele-
vator 9.0 ft from the floor. Calculate (a) the time of flight of the bolt from
ceiling to floor and (b) the distance it has fallen relative to the clevator
shaft. Answer: (a) 0.71 s. (b} 2.3 ft.
A dog sees a flowerpot sail up and then back past a window 5.0 ft (1.5 m)
high. If the total time the pot is in sight is 1.0 s, find the height above the
window that the pot rises.




motion n a plane

In this chapter we return to a consideration of motion in two dimen-
sions taken, for convenience, to be the x-y plane. Figure 4-1 shows a
particle at time t moving along a curved path in this plane. Its position,
or displacement from the origin, is measured by the vector r; its velocity
is indicated by the vector v which, as we have seen in Section 3-4, must
be tangent to the path of the particle. The acceleration is indicated by
the vector a; the direction of a, as we shall see more explicitly later, does
not bear any unique relationship to the path of the particle but depends
rather on the rate at which the velocity v changes with time as the
particle moves along its path.

y '
Py fom e
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e
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r= N |
s | |
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x ’ Ny
v,

(a) (b)

The vectors r, v, and a are interrelated (see Eqs. 3-4, 3-5, and 3-10) and
can be expressed in terms of their components, using unit vector nota-
tion, as

r=ix+jy, (4-1)
r . .
W= E —= 1 2F (4-2)

4.l

DISPLACEMENT,
VELOCITY, AND
ACCELERATION

(c)
figure 4-1
A particle moves along a curved
path in the x-y plane. (a) Its position
1, (b) its velocity v, and (c) its
acceleration a are shown at time ¢,
along with the vector components
of those vectors. Note that x, y, v,,
vy, and a, are positive but that a, is
negative. Compare to Fig. 3-3. 53
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dv . .
and a= g =ia +ja,. 14-3)

These equations can easily be extended to three dimensions by adding
to them the terms kz, kv., and ka:, respectively in which k is a unit
vector in the z-direction.

In Chapter 3 we considered the special case in which the particle
moved in one dimension only, say along the x-axis, where the vectors
1, v, and a were directed along this axis, either in the positive x-direction
or the negative x-direction. The components v, v,, and a, were zero and
we described the motion in terms of equations relating the scalar quan-
tities x, v, and a,. Or, when the particle moved along the y-axis, the
components X, v,, and a, were zero and the motion was described in
terms of equations relating the scalar quantities y, v,, and a,. In this
chapter we consider motion in the x-y plane so that, in general, both
sets of components have nonzero values.

Let us consider first the special case of motion in a plane with constant
acceleration. Here, as the particle moves, the acceleration a does not
vary either in magnitude or in direction. Hence the components of a
also will not vary, that is, a, = constant and a, = constant. We then have
a situation which can be described as the sum of two component mo-
tions occurring simultaneously with constant acceleration along each
of two perpendicular directions. The particle will move, in general,
along a curved path in the plane. This may be so even if one component
of the acceleration, say a., is zero, for then the corresponding compo-
nent of the velocity, say v,, may have a constant, nonzero value. An
example of this latter situation is the motion of a projectile which fol-
lows a curved path in a vertical plane and, neglecting the effects of air
resistance, is subject to a constant acceleration g directed down along
the y-axis only.

We can obtain the general equations for plane motion with constant
a simply by setting

a, = constant and a, = constant.
The equations for constant acceleration, summarized in Table 3-1, then

apply to both the x- and y-components of the position vector r, the
velocity vector v, and the acceleration vector a (see Table 4-1).

Table 4-1
Motion with constant acceleration in the x-y plane

Equation Equation
No. x-Motion Equations No. y-Motion Equations
4-4a Vo= Vet a.t 4-4a’ Vy = Vyo + ayt
4-4b X = Xy + .l: Ve + V,‘t 4'417' V=Y aw '.‘Z“‘.!/U ar V'/)I
4-4¢ X Xo + Vot + -ft(l,fl': 4-4¢’ Y=Y + Vit + ',ll(I_I/I:
4-4d V.2 =V, + 2d.[x — X 4-4d’ vi2 = vyt + 2a,0y — yl

The two scts of equations in Table 4-1 are related in that the time
parameter t is the same for cach, since t represents the time at which
the particle, moving in a curved path in the x y plane, occupied a posi-
tion described by the position components x and .

The cquations of motion in Table 4-1 may also be expressed in

4-2

MOTION IN A PLANE
WITH CONSTANT
ACCELERATION



vector form. For example, substituting Eqs. 4-4a, 4a’ into Eq. 4-2 yields
v=1iv,+jv,
= i(vyo + a,t) + j{vye + ayt)
= (1veo + Jvyo) + (la. +jaylt.

The first quantity in parentheses is the initial velocity vector v, (see
Eq. 4-2) and the second is the (constant) acceleration vector a (see Eq.
4-3). Thus the vector relation

v=v,+at (4-5a)

is equivalent to the two scalar relations Eqs. 4-4a, a’ in Table 4-1. It
shows simply and compactly that the velocity v at time ¢ is the sum of
the initial velocity v, which the particle would have in the absence of
acceleration plus the (vector) change in velocity, at, acquired during the
time t under the constant acceleration a. Similarly, the scalar equa-
tions 4-4c¢, ¢’ are equivalent to the single vector equation

=1t Vot + %&1{2, (4‘5}’)

which is also easily interpreted. The proof of this and other relations is
left to Problem 3.

An example of curved motion with constant acceleration is projectile
motion. This is the two-dimensional motion of a particle thrown
obliquely into the air. The ideal motion of a baseball or a golf ball is an
example of projectile motion.* We assume that we can neglect the
effect of the air on this motion.

The motion of a projectile is one of constant acceleration g, directed
downward, and thus should be described by the equations in Table 4-1.
There is no horizontal component of acceleration. If we choose a coordi-
nate system with the positive y-axis vertically upward, we may put
a,=—g and a, = 0 in these equations.

Let us further choose the origin of our coordinate system to be the
point at which the projectile begins its flight (see Fig. 4-2). Hence the
origin will be the point at which the ball leaves the thrower’s hand or
the fuel in the rocket burns out, for example. In Table 4-1 this choice
of origin implies that x, = y, = 0. The velocity at ¢t =0, the instant the
projectile begins its flight, is v, which makes an angle 6, with the posi-
tive x-direction. The x- and y-components of v, (see Fig. 4-2) are then

Vo = Vo COS o and v, = v, sin 6.

Because there is no horizontal component of acceleration, the hori-
zontal component of the velocity will be constant. In Eq. 4-4a we set
a, =0 and v, = v, cos 6, so that

W = W) @08 (s (4-6a)

The horizontal velocity component retains its initial value throughout
the flight.

The vertical component of the velocity will change with time in
accordance with vertical motion with constant downward acceleration.

*See Galileo Galilei, Dialogues Concerning Two New Sciences, the “Fourth Day,” for a
fascinating discussion of Galileo’s research on projectiles.

4-3
PROJECTILE MOTION
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In Eq. 4-4a’” we set

ay —8 and Viyo = Vo sin H(;,
so that
vy, = Vo sin 0, — gt. 4-6a’)

The vertical velocity component is that of free fall. Indeed, if we view
the motion of Fig. 4-2 from a reference frame that moves to the right
with a speed v,,, the motion will be that of an object thrown vertically
upward with an initial speed v, sin 6.

The magnitude of the resultant velocity vector at any instant is

v=\Vv2+ vz (4-7)

| The angle 6 that the velocity vector makes with the horizontal at that
| instant is given by

[
{

‘ V.

Vo

tan 6 =

The velocity vector is tangent to the path of the particle at every point,
as shown in Fig. 4-2.

figure 4-2

1 The trajectory of a projectile,
o— showing the initial velocity v, and
jvaf : its vector components and also the
' ivy velocity v and its vector components
0 e at five later times. Note that
vaj;\‘ v, = V.o throughout the flight. The
- distance R is called the range.
Juyo j%—b
@ ‘0,0 l O
s A
oy
Vv

iv,

juyl \v

The x-coordinate of the particle’s position at any time, obtained from
Eq. 4-4¢ with x, = 0, a, = 0, and v,y = v, cos 0,, 1s

X= |V, COS (y)t. (4-6¢)

The y-coordinate, obtained from Eq. 4-4¢” with v, = 0, a, = —g¢, and
Vi Ve Sin f,, 1S

V= Vy SIN )t — 12, (4-6¢')

Equations 4-6¢. ¢’ give us x and y as tunctions of the common param-



eter t, the time of flight. By combining and eliminating ¢ from them, we
obtain

= _ § ;
) ‘tan H()’X 2(V1) cos 90)2 X ’ (4 8)

which relates y to x and is the equation of the trajectory of the projec-
tile. Since vy, 6, and g are constants, this equation has the form

y = bx — cx2,

the equation of a parabola. Hence the trajectory of a projectile is para-
bolic.*

A plane is flying at a constant horizontal velocity of 500 km/h at an elwatlon of
5.0 km toward a point directly above its target. At what angle of sight ¢ should
a survival package be released to strike the target (Fig. 4-3)?

We choose a reference frame fixed with respect to the earth, its origin O
being the release point. The motion of the package at the moment of release is
the same as that of the plane. Hence the initial package velocity v, is hori-
zontal and its magnitude is 500 km/h. The angle of projection 6, is zero.

We find the time of fall from Eq. 4-6¢’. With 6, = 0 and y = 5.0 km this gives

f
2)=5.0 X 10* m]
= ,/ =315
£ \/ (9.8 m/s?) L9

Note that the time of fall does not depend on the speed of the plane for a hori-
zontal projection. (See, however, Problem 11.)
The horizontal distance traveled by the package in this time is given by Eq.
4-6¢, x = (v, cos Oy)t, or
x = {500 km/h) x 10*m/km) x (1 h/3600 s] x (31.9 s) = 4430 m.
so that the angle of sight ({Fig. 4-3) should be

_ | ]4430m=47,_,

¢ = tan Iyl tan ——~5000 m DS
Does the motion of the package appear to be parabolic when viewed from a
reference frame fixed with respect to the plane?

*See “Galileo’s Discovery of the Parabolic Trajectory’” by Stillman Drake and James
MacLachlan in Scientific American, March 1975.

EXAMPLE 1

figure 4-3

Example 1. A survival package is
released from an airplane with
horizontal velocity v.
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| A soccer player kicks a ball at an angle of 37° from the horizontal with an initial
speed of 50 ft/s. (A right triangle, one of whose angles is 37°, has sides in the
ratio 3:4:5, or 6:8:10.) Assuming that the ball moves in a vertical plane:

\a) Find the time t, at which the ball reaches the highest point of its trajec-
tory.

At the highest point, the vertical component of velocity v, is zero. Solving
Eq. 4-6a’ for t, we obtain

- vy sin 6, — v,
Y
With
v, =0, ve = 50 ft/s, 0y = 37°, g =32 ft/s?,
we have

32 ft/sec? G

(b) How high does the ball go?
The maximum height is reached at t = 15/16 s. By using Eq. 4-6¢,

_ [501%) — 0] ft/sec _ 15

1

Y = (Vo sin H())t — %},’t'-’,
we have
Ymax = (50 ft/s)(1%)(15 s) — 3(32 ft/s?)(13)? s* = 14 ft.

(c) What is the range of the ball and how long is it in the air?

The horizontal distance from the starting point at which the ball returns to
its original elevation (ground level) is the range R. We set y =0 in Eq. 4-6¢’ and
find the time t, required to transverse this range. We obtain

2Vn Sin 00 _ 2[50 ft/S)hﬁqT) _ E
g 32 ft/s? 8

to =

Notice that ¢, = 2¢;. This corresponds to the fact that the same time is required
for the ball to go up {reach its maximum height from ground) as is required for
the ball to come down (reach the ground from its maximum height).

The range R can then be obtained by inserting this value t. for t in Eq. 4-6¢.
We obtain, from x = (v, cos Ou)t,

R = (v, cos O)t: = (50 ft/s)(:%)(22 s) = 75 f.

(d) What is the velocity of the ball as it strikes the ground? From Eq. 4-6a
we obtain
v = Vo cos 6y = (50 ft/s)(1%s) = 40 ft/s.

From Eq. 4-6a’ we obtain for t = t, = ' s,
v, = Vo sin , — gt = (50 ft/s)(1%) — (32 ft/s2)(*d s) = —30 ft/s.

Hence, from Eq. 4-7,

[ v=Vv,2+v,2= V(40 ft/s)> + (—30 ft/s)2 = 50 ft/s,
and
tan 0 = Vu/V.I - ::31
so that § = —37°, or 37° clockwise from the x-axis. Noticc that 0 = —6,, as we
expect from symmectry (Fig. 4-2).

In a favorite lecture demonstration an air gun is sighted at an clevated target
which is relcascd in free fall by a trip mechanism as the “bullet” leaves the
muzzle. No matter what the initial spced of the bullet, it always hits the falling
targct.

The simplest way to undcrstand this is the following. If there were no
acceleration due to gravity, the target would not fall and the bullet would move

EXAMPLE 2

EXAMPLE

B



along the line of sight directly into the target (Fig. 4-4). The effect of gravity is
to cause each body to accelerate down at the same rate from the position it
would otherwise have had. Therefore, in the time ¢, the bullet will fall a dis-
tance 3gt? from the position it would have had along the line of sight and the
target will fall the same distance from its starting point. When the bullet reaches
the line of fall of the target, it will be the same distance below the target’s ini-
tial position as the target is and hence the collision. If the bullet moves faster
than shown in the figure (v, larger}, it will have a greater range and will cross the
line of fall at a higher point; but since it gets there sooner, the target will fall a
correspondingly smaller distance in the same time and collide with it. A similar
argument holds for slower speeds.
For an equivalent analysis, let us use Eq. 4-5b.

r=r,+ vit + at?

to describe the positions of the projectile and the target at any time t. For the
projectile P, r, = 0 and a = g, and we have

Ip = Vopt + 3gt2.
For the target T, 1y = ry7, vo = 0, and a = g, leading to
Iy = tor + 7_lggt2.

If there is a collision, we must have r, = ry. Inspection shows that this will al-
ways occur at a time t given by r,; = v,pt, that is, in the time t (= r,//v,p) re-
quired for the projectile to travel to the target position along the line of sight,
assuming that its initial velocity remains unchanged.

In Section 3-6 we saw that acceleration arises from a change in velocity.
In the simple case of free fall the velocity changed in magnitude only,
but not in direction. For a particle moving in a circle with constant
speed, called uniform circular motion, the velocity vector changes con-
tinuously in direction but not in magnitude. We seek now to obtain the
acceleration in uniform circular motion.

The situation is shown in Fig. 4-5a. Let P be the position of the par-
ticle at the time ¢ and P’ its position at the time t + At. The velocity at
Pis v, a vector tangent to the curve at . The velocity at P’ isv’, a vector
tangent to the curve at ', Vectors v and v’ are equal in magnitude, the
speed being constant, but their directions are different. The length of
path traversed during At is the arc length PP’, which is equal to v At,
v being the constant speed.

Now redraw the vectors v and v’, as in Fig. 4-5b, so that they originate

fignre 4-4

Example 3. In the motion of a
projectile, its displacement from the
origin at any time t can be

thought of as the sum of two
vectors: vypt, directed along vyp, and
+gt?, directed down.

11
UNIFORM CIRCULAR
MOTION
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at a common point. We are free to do this as long as the magnitude and
direction of each vector are the same as in Fig. 4-5a. This diagram (Fig.
4-5b) enables us to see clearly the change in velocity as the particle
moved from P to P'. This change, v/ —v = Av, is the vector which must
be added to v to get v'. Notice that it points inward, approximately
toward the center of the circle.

Now the triangle OQQ’ formed by v, v’, and Av is similar to the
triangle CPP' (Fig. 4-5¢) formed by the chord PP’ and the radii CP and
CP’. This is so because both are isosceles triangles having the same
vertex angle; the angle # between v and v’ is the same as the angle PCP’
because v is perpendiculat to CP and v’ is perpendicular to CP'. We can
therefore write

At .
—=— approximately,

the chord PP’ being taken equal to the arc length PP’. This relation be-
comes more nearly exact as At is diminished, since the chord and the
arc then approach each other. Notice also that Av approaches closer and
closer to a direction perpendicular to v and v’ as At is diminished and
therefore approaches closer and closer to a direction pointing to the
exact center of the circle. It follows from this relation that
Av_ 2 .
Me approximately,
and in the limit when At — 0 this expression becomes exact. We there-
fore obtain

a=lim Y=Y 14-9)
Ar—o At r
as the magnitude of the acceleration. The direction of a is instantane-
ously along a radius inward toward the center of the circle.

Figure 4-6 shows the instantaneous relation between v and a at vari-
ous points of the motion. The magnitude of v is constant, but its direc-
tion changes continuously. This gives rise to an acceleration a which is
also constant in magnitude {but not zero) but continuously changing in
direction. The velocity v is always tangent to the circle in the direction
of motion; the acceleration a is always directed radially inward. Be-
cause of this, a is called a radial, or centripetal, acceleration. Centripetal
means ‘‘seeking a center.”

Both in free fall and in projectile motion a is constant in direction and
magnitude and we can use the equations developed for constant accel-
eration (see Table 4-1). We cannot use these equations for uniform cir-
cular motion because a varies in direction and is therefore not constant.

The units of centripetal acceleration are the same as those of an
acceleration resulting from a change in the magnitude of a velocity.

figure 4-35

Uniform circular motion. The
particle travels around a circle at
constant speed. Its velocity at two
points P and P’ is shown. Its
change 1in velocity in going from
P to P’ is Av.

)

g
N
a

figure 1-6

In uniform circular motion the
acceleration a is always directed
toward the center of the circle and
hence s perpendicular to v,



Dimensionally, we have

vi_ <length)2/length _ length or L,

r time time? T

which are the dimensions of acceleration. The units therefore may be
ft/s? and m/s?, among others.

The acceleration resulting from a change in direction of a velocity is
just as real and just as much an acceleration in every sense as that aris-
ing from a change in magnitude of a velocity. By definition, acceleration
is the time rate of change of velocity, and velocity, being a vector, can
change in direction as well as magnitude. If a physical quantity is a
vector, its directional aspects cannot be ignored, for their effects will
prove to be every bit as important and real as those produced by changes
in magnitude.

It is worth emphasizing at this point that there need not be any mo-
tion in the direction of an acceleration and that there is no fixed rela-
tion in general between the directions of a and v. In Fig. 4-7 we give
examples in which the angle between v and a varies from 0 to 180°. Only
in one case, 6 = 0°, is the motion in the direction of a.

0 = 180° 180° > 6 > 90° 0 = 90° 90° > 9 > 0° 0=0°
v A
0 v
a Vi . . a
0 N Ve A 0
a \ / v v
iz D077, 777777777, 7. s
Uniform
Ball thrown up Rise of a circular Fall of a Ball thrown
projectile motion projectile down

The moon revolves about the earth, making a complete revolution in 27.3 days.
Assume that the orbit is circular and has a radius of 239,000 miles. What is the
magnitude of the acceleration of the moon toward the earth?

We have r = 239,000 mi = 3.85 X 10 m. The time for one complete revolu-
tion, called the period, is T = 27.3 d = 2.36 x 105 s. The speed of the moon
(assumed constant) is therefore

v = 27r/T = 1020 m/s.

The centripetal acceleration is
_ vt (1020 m/sp

= = = 2 4 14 g
T =385 % 10°m 0.00273 m/s?, or only 2.78 x 104 g.

Calculate the speed of an earth satellite, assuming that it is traveling at an alti-
tude h of 140 miles above the surface of the earth where g = 30 ft/s?. The radius
R of the earth is 3960 mi.

Like any free object near the earth’s surface the satellite has an acceleration
g toward the earth’s center. It is this acceleration that causes it to follow the
circular path. Hence the centripetal acceleration is g and from Eq. 4-9, a =
v?/r, we have

g = v/(R + h),

or

v = V(R + h)g = V(3960 mi + 140 mi)(5280 ft/mi)(30 ft/s?)
=2.55 x 10* ft/s = 17,400 mi/h.

figure 4-7
Showing the relation between v and
a for various motions.

EXAMPLE 4

EXAMPLE 5
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Let us now derive Eq. 4-9 using vector methods. Figure 4-84 shows a particle in
uniform circular motion about the origin O of a reference frame. For this mo-
tion the polar coordinates r, # are more useful than the rectangular coordinates
X, v because r remains constant throughout the motion and ¢ increases in a
simple linear way with time; the behavior of x and y during such motion is more
complex. The two sets of coordinates are related by

r=\Vx2+y? and 0=tan ! y/x {4-10a)
or by the reciprocal relations
X=rcosf and v =rsin #. {4-10b)

In rectangular coordinate systems we used the unit vectors i and j todescribe
mozion in the x-y plane. Here we find it more convenient to introduce two new
unit vectors u, and u,. These, like i and j, have unit length and are dimension-
less; they designate direction only.

The unit vector u, at any point is in the direction of increasing r at that point;
it 1s directed radially outward from the origin. The unit vector u, at any point
1s in the direction of increasing ¢ at that point; it is always tangent to a circle
through the point in a counterclockwise direction. As Fig. 4-8a shows, u, and
uy are at right angles to each other. The unit vectors u, and uy differ from the
unit vectors i and j in that the directions of u, and uy vary from point to point
in the plane; the unit vectors u, and uy are thus not constant vectors.

(a) (b)

In terms of u, and u, the motion of a particle moving counterclockwise at
uniform speed v in a circle about the origin in Fig. 4-8a can be described by the
vector equation

V= ugv. {4-11)

This relation tells us, correctly, that the direction of v (which is the same as the
direction of u,) is tangent to the circle and that the magnitude of v is the con-
stant quantity v (because the magnitude of u, is unity).

To find the acceleration we combinc Egs. 4-3 and 4-11, yielding

dv_du,
de  dr v

(4-12)

Note that vin Eq. 4-11 is a constant, but uy is not since its direction changes as
the particle moves. To evaluatc duy/dt, consider Fig. 4-8b which shows the unit
veetors uy, and uy, corresponding to an elapsed time At (= ¢, — ¢,) for the moving
particle. The vector Au, (- Uy, — | points radially inward toward the origin in
the limiting casc as At — 0. In other words, du, at any point has the direction of

u,. The angle between W, and uy, in the figurc is A9, which is the angle swept
out by a radial line froin the origin to the particle in time A7, The magnitude of
Suy s simply A6, bear in mind that the veetors uy, and ug, in Fig. 4-8b have the
magnitude unity. Thus

duy Ao dy

u, him n, —
dt =ty dt

figure 4-8

(a) A particle moving
counterclockwise in a circle of
radius r. (b) The unit vectors uy; and
U at times ¢, and ¢, respectively,
and the change Auy (= uy — Up,).



and, from Eq. 4-12,
_ dUH | dH

g 2l
dt

vV=—u, T V. (4-13)

Now, dé/dt is the uniform angular rotation rate of the particle and is given by

do 27 radians 2w v

dt time for one revolution 2wr/v r

Putting this into Eq. 4-13 leads us finally to
(4-14)

which tells us that the acceleration in uniform circular motion has a magnitude
v/r (see Eq. 4-9) and points radially inward (note the factor —u,]. The vector rela-
tion Eq. 4-14 thus tells us both the magnitude and the direction of the centri-
petal acceleration a. Note that, as expected, a has a constant magnitude but
changes continually in direction because u, changes continually in direction.

We now consider the more general case of circular motion in which the speed
v of the moving particle is not constant. We shall use vector methods in polar
coordinates.

As before, the velocity is given by Eq. 4-11, or

= UyVv

except that, in this case, not only us but also v varies with time. Recalling the
formula for the derivative of a product, we obtain for the acceleration
dv dv duy

A" Uk V—-

dt dr TV dr [ERIS]

In Eq. 4-12 the first term in this equation was not present because, v being there
assumed to be constant, dv/dt was zero. The last term in Eq. 4-15 reduces, as
we saw in the last section, to —u,{v2/r]. We can now write Eq. 4-15 as

a = uyar — u,dap, {4-16)

in which a; = dv/dt and a, = v?/r. The first term, uyar, is the vector component
of a that is tangent to the path of the particle and arises from a change in the
magnitude of the velocity in circular motion (see Fig. 4-9). This term and a;
are called the tangential acceleration. The second term —u,ay, is the vector com-
ponent of a directed radially in toward the center of the circle and arises from a
change in the direction of the velocity in circular motion (see Fig. 4-9). This
term and ay are called the centripetal acceleration.
The magnitude of the instantaneous acceleration is

a= Va®+ ag? (4-17)

If the speed is constant, then a; = dv/dt = 0 and Eq. 4-16 reduces to Eq. 4-14.

45

TANGENTIAL
ACCELERATION IN
CIRCULAR MOTION

figure 4-9

(a) In nonuniform circular motion
the speed is variable. (b) The change
in velocity Av in going from P to P’
is made up of two parts: (c) Avy
caused by the change in direction of
v, and Avy caused by the change in
magnitude of v. In the limit as

At — 0, Avg points toward the
center C of the circle and Avy is
tangent to the circular path.
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When the speed v is not constant, ar is not zero and ay varies from point to
point. If the speed changes at a rate that is not constant, then a; will also vary
from point to point.

If the motion is not circular, the formulas for a; (= dv/dt) and for ai (= v¥/1)
can still be applied if instead of using for r the magnitude of the radius vector
from the origin, we substitute the radius of curvature of the path at the in-
stantaneous position of the particle. Then ar gives the component of accelera-
tion tangent to the curve at that position, and ay gives the component of ac-
celeration normal to the curve at that position. Figure 4-10 shows the track left
in a liquid-hydrogen-filled bubble chamber by an energetic electron that spirals
inward. The electron loses energy as it traverses the liquid in the chamber so
that its speed v is being reduced steadily. Thus there is at every point a tangen-
tial acceleration ar given by dv/dt. The centripetal acceleration ax at any point
is given by v¥/r, where r is the radius of curvature of the track at the point in
question; both v and r become smaller as the particle loses energy. The force
causing the electron to spiral is produced by a magnetic field present in the
bubble chamber and at right angles to the plane of Fig. 4-10 (see Chapter 33).

In carlier sections we considered the addition of velocities in a par-
ticular reference frame. Let us now consider the relation between the
velocity of an object as determined by one observer S (= reference frame
) and the velocity of the same object as determined by another observer
5" (= reference frame ') who is moving with respect to the first.
Consider observer S fixed to the earth, so that his reference frame is

figure 4-10

A track left in a 10-in.
liquid-hydrogen-filled bubble
chamber by an energetic spiralling
electron. (Courtesy Lawrence
Radiation Laboratory.) This picture
is one of a number in a collection
prepared for easy stereoscopic
viewing and published, with
explanatory maternial, as Introduction
to the Detection of Nuclear
Particles in a Bubble Chamber, The
Ealing Press, Cambridge,
Massachusetts {1964). When viewed
stereoscopically the electron is seen
to be moving toward the reader as
it moves in along the spiral. Its
velocity vector at any point, thus,
does not lie in the plane of the
figure, but tilts up out of it; its
motion is thus three-dimensional,
rather than two-dimensional as we
assumed for other examples in this
chapter.

4-6
RELATIVE VELOCITY
AND ACCELERATION



the earth. The other observer S’ is moving on the earth — for example, a
passenger sitting on a moving train—so that his reference frame is the
train. They each follow the motion of the same object, say an automo-
bile on a road or a man walking through the train. Each observer will
record a displacement, a velocity, and an acceleration for this object
measured relative to his reference frame. How will these measurements
compare? In this section we consider only the case in which the second
frame is in motion with respect to the first with a constant velocity u.

In Fig. 4-11 the reference frame S represented by the x- and y-axes can
be thought of as fixed to the earth. The shaded region indicates another
reference frame S’, represented by x’- and y’-axes, which moves along
the x-axis with a constant velocity u, as measured in the S-system; it
can be thought of as drawn on the floor of a railroad flatcar.

Initially, a particle (say a ball on the flatcar) is at a position called A
in the S-frame and called A’ in the S’-frame. At a time ¢ later the flat-
car and its S’ reference frame have moved a distance ut to the right and
the particle has moved to B. The displacement of the particle from its
initial position in the S-frame is the vector r from A to B. The displace-
ment of the particle from its initial position in the S'-frame is the vector
r' from A’ to B. These are different vectors because the reference point
A’ of the moving frame has been displaced a distance ut along the
x-axis during the motion. From the figure we see that r is the vector
sum of r’ and ut:

r=r +ut. {4-18)
Differentiating Eq. 4-18 leads to

dr_dr

-d_t = dt + u.

But dr/dt =v, the instantaneous velocity of the particle measured in the
S-frame, and dr'/dt = v’, the instantaneous velocity of the same particle
measured in the S’ frame, so that

v=v +u (4-19)

Hence the velocity of the particle relative to the S-frame, v, is the
vector sum of the velocity of the particle relative to the S’-frame, v/,
and the velocity u of the S'-frame relative to the S-frame.

{a) The compass of an airplane indicates that it is heading due east. Ground
information indicates a wind blowing due north. Show on a diagram the velocity
of the plane with respect to the ground.

The object is the airplane. The earth is one reference frame () and the air is
the other reference frame (S’) moving with respect to the first. Then

u is the velocity of the air with respect to the ground.
v' is the velocity of the plane with respect to the air.
v is the velocity of the plane with respect to the ground.

In this case u points north and v’ points east. Then the relation v= v’ + u de-
termines the velocity of the plane with respect to the ground, as shown in Fig.
4-12a.

The angle « is the angle N of E of the plane’s course with respect to the
ground and is given by

tan « = u/v’.
The airplane’s speed with respect to the ground is given by

v=V(v']2+ u

(b)
figure 4-11
Two reference frames, S (= x, y) and
S" (= x', ¥'); § moves to the right,
relative to S, with speed u.

EXAMPLE 6
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For example, if the air-speed indicator shows that the plane is moving rela-
tive to the air at a speed of 200 mi/h, and if the speed of the wind with respect
to the ground is 40.0 mi/h, then

v ="\ {200} + (40.0)> mi/h = 204 mi/h

is the ground speed of the plane and

00 ...
200 = 11° 20

«a=tan!

gives the course of the plane N of E.
\b) Now draw the vector diagram showing the direction the pilot must steer
the plane through the air for the plane to travel due east with respect to the
ground.
He would naturally head partly into the wind. His speed relative to the earth
will therefore be less than before. The vector diagram is shown in Fig. 4-12b.
| You should calculate 8 and v, using the previous data for u and v'.

We have seen that different velocities are assigned to a particle by
different observers when the observers are in relative motion. These
velocities always differ by the relative velocity of the two observers,
which here is a constant velocity. It follows that when the particle
velocity changes, the change will be the same for both observers. Hence
they each measure the same acceleration for the particle. The accelera-
tion of a particle is the same in all reference frames moving relative to
| one another with constant velocity; thatis, a=a’. This result follows in
a formal way if we differentiate Eq. 4-19. Thus dv/dt = dv'/dt + du/dt;
but du/dt = 0 when u is constant, so that a =a’.

1. In projectile motion when air resistance is negligible, is it ever necessary
to consider three-dimensional motion rather than two-dimensional?

2. In broad jumping does it matter how high you jump? What factors deter-
mine the span of the jump?

3. Why doesn't the electron in the beam from an electron gun fall as much
because of gravity as a water molecule in the stream from a hose?! Assume
horizontal motion initially in each case.

4. At what point in the path of a projectile does it have its minimum speed?
its maximum?

5. Suppose you could vary the angle of incline 6 of a planc surface that is fixed
at a hinge line to a horizontal table top. How should you choose ¢ so that
the balls dropped vertically and rebounding elastically from the incline
have the maximum range?

6. What advantage is there, if any, in measuring angles in radians rather than
in degrees?

7. An aviator, pulling out of a dive, follows the are of a circle. He was said to
have “experienced 3g’s” in pulling out of the dive. Explain what this state-
ment means.

8. Describe qualitatively the aceceleration acting on a bead which, sliding
along a frictionless wire, moves inward with constant speed along a spiral.

9. Could the acceleration of a projectile be represented in terms of a radial
and a tangential component at each point of the motion? If so, is there any
advantage to this representation?

i 10. Over a short distance a circular are is a good approximation to a parabola.
, What then is the radius r of the circular arc approximating the motion of a
projectile, of initial speed v, and angle ¢, near the top of its path?

11. A boy sitting in a railroad car moving at constant veloeity throws a ball

N

figure 4-12
Example 6

questions



straight up into the air. Will the ball fall behind him? In front of him? Into
his hand? What happens if the car accelerates forward or goes around a curve
while the ball is in the air?

12. A man on the observation platform of a train moving with constant velocity
drops a coin while leaning over the rail. Describe the path of the coin as
seen by (a) the man on the train, (b} a person standing on the ground near
the track, and (¢} a person in a second train moving in the opposite direction
to the first train on a parallel track.

13. A bus with a vertical windshield moves along in a rainstorm at speed v,.
The raindrops fall vertically with a terminal speed v,. At what angle do the
raindrops strike the windshield? =S

14. Drops are falling vertically in a steady rain. In order to go through the rain
from one place to another in such a way as to encounter the least number
of raindrops, should you move with the greatest possible speed, the least
possible speed, or some intermediate speed?

15. What is wrong with this picture (Fig. 4-13)? The sailor is running with the
wind.

16. An elevator is descending at a constant speed. A passenger takes a coin
from his pocket and drops it to the floor. What accelerations would (a) the
passenger and (b} a person at rest with respect to the elevator shaft observe
for the falling coin? figure 4-13

Question 15

SECTION 4-1

1. Prove that for a vector a defined by prOblemS

a=ia,+ja,+ ka.
the scalar components are given by
ar=i-a,a,=j-a,anda,=k -a.
SECTION 4-2
2. A particle moves so that its position as a function of time is
rit) =1+ 4t%j + tk.

{a) Write expressions for its velocity and acceleration as functions of time.
(b) What is the shape of the particle’s trajectory?

3. Show (a) that Eqs. 4-4b, b’ can be expressed in vector form as
r=ro+3vo + Vit,
and (b) Egs. 4-4 ¢, ¢’ as
r =ro + Vot + 3at,

Also, show (c) that Eqgs. 4-4d, d' can be combined to give

V' V=V, Vyp+2a-(r—rg.

SECTION 4-3

4. Consider a projectile at the top of its trajectory. (a) What is its speed in
terms of vo and 6,7 (b) What is its acceleration? (c] How is the direction of
its acceleration related to that of its velocity? (See Question 10.}

5. A ball rolls off the edge of a horizontal table top 4.0 ft high. If it strikes the
floor at a point 5.0 ft horizontally away from the edge of the table, what
was its speed at the instant it left the table? Answer: 10 ft/s.

6. A rifle with a muzzle velocity of 1500 ft/s shoots a bullet at a target 150 ft
away. How high above the target must the rifle be aimed so that the bullet
will hit the target?

7. |a) Show that the range of a projectile having an initial speed v, and angle

SWIT40dd

v dVHO



MOTION IN A PLANE 68

4

CHAP.

9.

10.

11

13,

14.

of projection 6, is R = \vi?/g) sin 26,. Then show that a projection angle of
45° gives the maximum range (Fig. 4-14]. |b) Show that the maximum height
reached by the projectile is y,.. = (vo sin 6,2/2g. {c) Find the angle of pro-
jection at which the range and the maximum height of a projectile are
equal. Answer: (c) 76°.
A projectile is fired horizontally from a gun located 144 ft (44 m) above a
horizontal plain with a muzzle speed of 800 ft/s (240 m/s). {a) How long
does the projectile remain in the air?! (b) At what horizontal distance does
it strike the ground? (c) What is the magnitude of the vertical component of
its velocity as it strikes the ground?

A ball is thrown from the ground into the air. At a height of 9.1 m the
velocity 1s observed to be v = 7.6i + 6.1j in m/s |x-axis horizontal, y-axis
vertical). (@) To what maximum height will the ball rise? (b) What will be
the total horizontal distance traveled by the ball? (¢) What is the velocity
of the ball (magnitude and direction) the instant before it hits the ground?
Answer: |a) 11 m. (b) 23 m. (¢} 17 m/s, 63° below the horizontal.
Electrons, nuclei, atoms, and molecules, like all forms of matter, will fall
under the influence of gravity. Consider separately a beam of electrons, of
nuclei, of atoms, and of molecules traveling a horizontal distance of 1.0 m.
Let the average speed be for an electron 3.0 X 107 m/s, for a thermal neutron
2.2 x 10® m/s, for a neon atom 5.8 X 102 m/s, and for an oxygen molecule
4.6 ¥ 10* m/s. Let the beams move through vacuum with initial horizontal
velocities and find by how much their paths deviate from a straight line
wvertical displacement in 1.0 m} due to gravity. How do these results com-
pare to that for a beam of golf balls (use reasonable data)? What is the con-
trolling factor here?

A dive bomber, diving at an angle of 53° with the vertical, releases a bomb
at an altitude of 730 m. The bomb hits the ground 5.0 s after being released.
{a) What is the speed of the bomber? (b} How far did the bomb travel hori-
zontally during its flight? (¢} What were the horizontal and vertical com-
ponents of its velocity just before striking the ground?

Answer: (a) 200 m/s. (b) 810 m. (¢} v, = 160 m/s, v, = 170 m/s.

. A football is kicked off with an initial speed of 64 ft/s at a projection angle

of 45°. A recciver on the goal line 60 yd away in the direction of the kick
starts running to meet the ball at that instant. What must be his minimum
speed if he is to catch the ball before it hits the ground? (See, in this con-
nection, “Catching a Baseball” by Seville Chapman in American Journal
of Physics, October 1968.)

In a cathode-ray tube a beam of electrons is projected horizontally with a
speed of 1.0 x 10° cm/s into the region between a pair of horizontal plates
2.0 cm long. An electric field between the plates exerts a constant down-
ward acceleration on the electrons of magnitude 1.0 x 10'7 ¢cm/s2. Find (a)
the vertical displacement of the beam in passing through the plates and
|b) the velocity of the beam (direction and magnitude) as it emerges from
the plates.

Answer: (a) 2.0 mm. (b) v, = 1.0 X 10* cm/s, v, = 0.2 x 10° cm/s down.

A batter hits a pitched ball at a height of 4.0 ft above the ground so that its
angle of projection is 45° and its initial speed is 110 ft/s. The ball is hit fair
down the left field line where a 24-ft high fence is located 320 ft from home
plate. Will the ball clear the fence?

. Galileo, in his Two New Sciences, states that “for elevations (angles of

projection] which exceed or fall short of 45° by equal amounts, the ranges
arce equal. . . .” Prove this statement. See Fig. 4-14.

. A ball rolls off the top of a stairway with a horizontal velocity of magnitude

5.0 ft/s. The steps are 8.0 in. high and 8.0 in. wide. Which step will the ball
hit first?

a) Show that if the acceleration due to gravity changes by an amount dg,
the range of a projectile (see Problem 7) of given initial speed v, and angle

figure 4-14
Problems 7, and 15
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20.

21.

22.

23.

24.
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26.

27.

of projection 6, changes by dR where dR/R = —dg/g. (b) If the acceleration
due to gravity changes by a small amount Ag (say by going from one place
to another), the range for a given projectile system will change as well. Let
the change in range by AR. If Ag, AR are small enough, we may write AR/R =
—Ag/g. In 1936, Jesse Owens established a world’s running broad jump
record of 8.09 m at the Olympic Games at Berlin (g = 9.8128 m/s?). By how
much would his record have differed if he had competed instead in 1956 at
Melbourne (g = 9.7999 m/s?)? (In this connection see “Bad Physics in Ath-
letic Measurements,” by P. Kirkpatrick, American Journal of Physics,
February 1944.)

Answer: His record would have been longer by about 1 cm.

A juggler manages to keep five balls in motion, throwing each sequentially
up a distance of 3.0 m. (a) Determine the time interval between successive
throws. (b) Give the positions of the other balls at the instant when one
reaches his hand. (Neglect the time taken to transfer balls from one hand
to the other.)

A cannon is arranged to fire projectiles, with initial speed vy, directly up the
face of a hill of elevation angle «, as shown in Fig. 4-15. At what angle from
the horizontal should the cannon be aimed to obtain the maximum possible
range R up the face of the hill? Answer: w/4 + «f2.

The kicker on a football team can give the ball an initial speed of 25 m/s.
Within what angular range must he kick the ball if he is to just score a field
goal from a point 50 m in front of the goalposts whose horizontal bar is
3.44 m above the ground?

A radar observer on the ground is “watching”” an approaching projectile. At
a certain instant he has the following information: the projectile has
reached maximum altitude and is moving horizontally with a speed v;
the straight-line distance to the projectile is I; the line of sight to the
projectile is an angle 6 above the horizontal. (a) Find the distance D between
the observer and the point of impact of the projectile. D is to be expressed
in terms of the observed quantities v, /, and # and the known value of g.
Assume a flat earth; assume also that the observer lies in the plane of the
projectile’s trajectory. (b) Does the projectile pass over his head or strike the
ground before reaching him?

Answer: (a) D =vV/|2l/g) sin 6 — I cos 6. (b) The projectile will pass over the
observer’s head if D is positive and will fall short if D is negative.
Projectiles are hurled at a horizontal distance R from the edge of a cliff of
height h in such a way as to land a horizontal distance x from the bottom of
the cliff. If you want x to be as small as possible, how would you adjust
o and v, assuming that v, can be varied from zero to some finite maximum
value and that 6, can be varied continuously? Only one collision with the
ground is allowed (see Fig. 4-16).

SECTION 4-4

Certain neutron stars {extremely dense stars) are believed to be rotating at
about 1 rev/s. If such a star has a radius of 20 km, what is the acceleration
of an object on the equator of the star? Answer: 8 X 10° m/s.
A magnetic field will deflect a charged particle perpendicular to its direc-
tion of motion. An electron experiences a radial acceleration of 3.0 x 1014
m/s? in one such field. What is its speed if the radius of its curved path is
0.15 m?

In Bohr’s model of the hydrogen atom an electron revolves around a proton
in a circular orbit of radius 5.28 x 10 ! m with a speed of 2.18 x 106 m/s.
What is the acceleration of the electron in the hydrogen atom?

Answer: 9.00 X 1022 m/s2.

A particle rests on the top of a hemisphere of radius R. Find the smallest
horizontal velocity that must be imparted to the particle if it is to leave the
hemisphere without sliding down it.

What is the acceleration of an object (a) on the equator and (b) at latitude

figure 4-15
Problem 19

v, 00

figure 4-16
Problem 22
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30.

60°, due to rotation of the earth? (c] By what factor would the speed of the
earth’s rotation have to increase for a body on the equator to require an
acceleration of g to keep it on the earth?

Answer: \a) 3.4 x 10 2 m/s%. (b) 1.7 X 102 m/s2. (c) 17.

28. A boy whirls a stone in a horizontal eirele 6.0 ft (1.8 m} above the ground

by means of a string 4.0 ft (1.2 m) long. The string breaks, and the stone
flies off horizontally, striking the ground 30 ft (9.1 m) away. What was the
centripetal acceleration during eircular motion?

. A particle P travels with constant speed counterclockwise on a cirele of

radius 3.0 m and completes 1.0 rev in 20 s (Fig. 4-17). The particle passes
through O at t = 0. Starting from the origin O, find (a) the magnitude and
direction of the position vectors 5.0 s, 7.5 s, and 10 s later; (b} the magni-
tude and direction of the displacement in the 5.0-s interval from the fifth
to the tenth second; (¢) the average velocity veetor in this interval; (d) the
instantaneous veloeity vector at the beginning and at the end of this inter-
val; (e] the average acceleration vector in this interval; and (/) the instanta-
neous acceleration vector at the beginning and at the end of this interval.
‘Measure directions counterclockwise from the x-axis in Fig. 4-17.)
Answer: \a) 4.2 m, 45°;, 5.5 m, 68°% 6.0 m, 90°. (b} 4.2 m, 135°. {c) 0.85 m/s,
135°. (d) 0.94 m/s, 90°; 0.94 m/s, 180°. (e} 0.27 m/s2, 225°. (f) 0.30
m/s?, 180°%; 0.30 m/s?, 270°.
al Write an expression for the position vector r for a particle deseribing
uniform circular motion, using rectangular coordinates and the unit vectors
iand j. (b) From (a) derive vector expressions for the veloeity v and the
acceleration a. (¢) Prove that the aceeleration is directed toward the center
of the circular motion.

. (a) Express the unit vectors u, and u in terms of i, j, and the angle 6 in

Fig. 4-8. |b) Write an expression, using the unit vectors uy and u,, for the
position vector r for a particle deseribing uniform circular motion and from
it derive Eq. 4-11, v = uyv.

. A particle in uniform cirecular motion about the origin O has a speed v. (a]

Show that the time At required for it to pass through an angular displace-
ment A6 is given by

2;
At - “T" A6/360°,

where A6 is in degrees and r is the radius of the circle. (b) Refer to Fig. 4-18,
and by taking x and y components of the velocities at points 1 and 2 show
that a, = 0 and a, = —0.9 v¥/r, for a pair of points symmetric about the
y-axis with A# = 90°. (¢) Show that if A0 = 30°, a, = 0 and a, = —0.99 v¥/r.
(d} Argue that a, — —v?%ras A0 — 0 and that circular symmetry requires
this answer for each point on the cirele.

SECTION 4-5

BES

A particle moves in a plane according to

x = R sin wt + wRt,
y = R cos wt + R,

where @ and R are constants. This curve, called a cycloid, is the path traced

out by a point on the rim of a wheel which rolls without slipping along the

x-axis. (a) Sketch the path. (b) Calculate the instantaneous veloeity and

acceleration when the partiele is at its maximum and minimum value of y.

Answer: (b} At minimum y: v, = v, = a, = 0; a, = +®*R. At maximum y:
v,=*2wR; v,= a,=0; a, w?’R.

SECTION 4-6

34.

Snow 1s falling vertically at a constant speed of 8.0 m/s. (a) At what angle
from the vertical and [b) with what speed do the snowflakes appear to be
falling as vicwed by the driver of a car traveling on a straight road with a
speed of 50 km/h?

figure 4-17
Problem 29

figure 4-18
Problem 32
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36.

37.

38.

39.

40.

41.

42.

A train travels due south at 88.2 ft/s (relative to ground) in a rain that is
blown toward the south by the wind. The path of each raindrop makes the
angle 21.6° with the vertical, as measured by an observer stationary on the
earth. An observer seated in the train, however, sees perfectly vertical
tracks of rain on the windowpane. Determine the speed of each raindrop
relative to the earth. Answer: 240 ft/s.

A helicopter is flying in a straight line over a level field at a constant speed
of 4.9 m/s and at a constant altitude of 4.9 m. A package is ejected horizon-
tally from the helicopter with an initial velocity of 12 m/s relative to the
helicopter, and in a direction opposite to the helicopter’s motion. {a) Find
the initial velocity of the package relative to the ground. (b) What is the
horizontal distance between the helicopter and the package at the instant
the package strikes the ground? (c¢) What angle does the velocity vector of
the package make with the ground at the instant before impact?

Find the speeds of two objects if, when they move uniformly toward each
other, they get 4.0 m closer each second, and, when they move uniformly
in the same direction with the original speeds, they get 4.0 m closer each
10 seconds. Answer: 2.2 m/s, 1.8 m/s.
A man can row a boat 4.0 mi/h in still water. (a) If he is crossing a river
where the current is 2.0 mi/h, in what direction will his boat be headed if
he wants to reach a point directly opposite from his starting point? (b} If the
river is 4.0 mi wide, how long will it take him to cross the river? (¢} How
long will it take him to row 2.0 mi down the river and then back to his
starting point? (d) How long will it take him to row 2.0 mi up the river and
then back to his starting point? (e} In what direction should he head the
boat if he wants to cross in the smallest possible time?

An airplane has a speed of 135 mi/h in still air. It is flying straight north so
that it is at all times directly above a north-south highway. A ground ob-
server tells the pilot by radio that a 70 mi/h wind is blowing, but neglects
to tell him the wind direction. The pilot observes that in spite of the wind
he can travel 135 miles along the highway in one hour. In other words, his
ground speed is the same as if there were no wind. (a) What is the direction
of the wind? (b) What is the heading of the plane, that is, the angle between
its axis and the highway?
Answer: (a) From 75° E of S. (b) 30° E of N. SubstitutingW for E gives a
second solution.
A pilot is supposed to fly due east from A to B and then back again to A
due west. The velocity of the plane in air is v’ and the velocity of the air
with respect to the ground is u. The distance between A and B is [ and the
plane’s air speed v’ is constant. (a} If u = 0 (still air), show that the time for
the round trip is t, = 2I/v’. (b) Suppose that the air velocity is due east (or
west). Show that the time for a round trip is then

=t g
U1 — v

(c} Suppose that the air velocity is due north (or south). Show that the time
for a round trip is then
to

Vit = zﬂ/(v’)‘z'

(d) In parts (b) and (c) one must assume that u < v'. Why?

A person walks up a stalled escalator in 90 s. When standing on the same
escalator, now moving, he is carried up in 60 s. How much time would it
take him to walk up the moving escalator? Answer: 36 s.

=

A man wants to cross a river 500 m wide. His rowing speed (relative to the
water) is 3000 m/h. The river flows with a speed of 2000 m/h. If the man’s
walking speed on shore is 5000 m/h, (a) find the path (combined rowing
and walking) he should take to get to the point directly opposite his starting
point in the shortest time. (b) How long does it take?
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particle
dynamics—

In Chapters 3 and 4, we studied the motion of a particle, with emphasis
on motion along a straight line or in a plane. We did not ask what
“caused” the motion; we simply described it in terms of the vectors r,
v, and a. Our discussion was thus largely geometrical. In this chapter
and the next we discuss the causes of motion, an aspect of mechanics
called dynamics. As before, bodies will be treated as though they were
single particles. Later in the book we shall treat groups of particles and
rigid bodies as well.

The motion of a given particle is determined by the nature and the
arrangement of the other bodies that form its environment. Table 5-1
shows some “particles’” and possible environments for them.

In what follows, we limit ourselves to the very important special
case of gross objccts moving at speeds that are small compared to ¢, the
speed of light; this is the realm of classical mechanics. Specifically, we
shall not inquire herc into such questions as the motion of an electron
in a uranium atom or the collision of two protons whose speeds are,
say, 0.90c. The first inquiry would involve us with the quantum theory
and the second with the theory of relativity. We leave consideration of
these theories, of which classical mechanics is a special casc (see Sec-
tion 6-4), to later.

The central probleni of classical mechanics is this; (1) We are given
a particle whose characteristics (mass, charge, magnetic dipole moment,
cte.) we know. (2} We place this particle, with a known initial velocity,
in an environment of which we have a complete description. (3} Prob-
lem: what is the subsequent motion of the particle?

This problem was solved, at lcast for a large variety of environments,
by Isaac Newton (1642-1727) when he put forward his laws of motion

2

654 |
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and formulated his law of universal gravitation. The program for solving
this problem, in terms of our present understanding of classical me-
chanics,* is: (1) We introduce the concept of force F and define it in
terms of the acceleration a experienced by a particular standard body.
(2) We develop a procedure for assigning a mass m to a body so that we
may understand the fact that different particles of the same kind expe-
rience different accelerations in the same environment. (3) Finally, we
try to find ways of calculating the forces that act on particles from the
properties of the particle and of its environment; that is, we look for
force laws. Force, which is at root a technique for relating the environ-
ment to the motion of the particle, appears both in the laws of motion
(which tell us what acceleration a given body will experience under the
action of a given force) and in the force laws (which tell us how to cal-
culate the force that will act on a given body in a given environment).
The laws of motion and the force laws, taken together, constitute the
laws of mechanics, as the sketch suggests.

Particle
Acceleration

Force

Environment

Force laws Laws of motion

The program of mechanics cannot be tested piecemeal. We must view
it as a unit and we shall judge it to be successful if we can say “‘yes’” to
these two questions. (1) Does the program yield results that agree with
experiment?! (2] Are the force laws simple in form? It is the crowning
glory of Newtonian mechanics that we can indeed answer each of these
questions in the affirmative.

In this section we have used the terms force and mass rather unpre-
cisely, having identified force with the influence of the environment,
and mass with the resistance of a body to be accelerated when a force
acts on it, a property often called inertia. In later sections we shall re-
fine these primitive ideas about force and mass.

For centuries the problem of motion and its causes was a central theme
of natural philosophy, an early name for what we now call physics. It
was not until the time of Galileo and Newton, however, that dramatic
progress was made. Isaac Newton, born in England in the year of Gali-

*See “Presentation of Newtonian Mechanics” by Norman Austern, American Journal
of Physics, September 1961, “On the Classical Laws of Motion” by Leonard Eisenbud,
American Journal of Physics, March 1958, and “The Laws of Classical Motion: What's F!
What’s m? What's a!” by Robert Weinstock, American Journal of Physics, October 1961,
for expositions of the laws of classical mechanics as we now view them.

2
NEWTON'S FIRST LAW
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Table 5-1

[ System The Particle l The Environment
v o
L - A block The spring;
the rough surface
4] I'—‘ 0000 ‘—{,
e v A
v
2. /V A golf ball The earth
f—{)v
T

B} '.”\ A satellite The earth

A large uniformly

4. An electron charged sphere
B

5 s‘-—{>v N__s| A bar magnet A second bar magnet
{<— r —-——%J

leo’s death, is the principal architect of classical mechanics.* He carried
to full fruition the ideas of Galileo and others who preceded him. His
three laws of motion were first presented (in 1686) in his Philosophiae
Naturalis Principia Mathematica, usually called the Principia.

Before Galileo’s time most philosophers thought that some influence
or “force”” was needed to keep a body moving. They thought that a body
was in its “natural state” when it was at rest. For a body to move in a
straight line at constant speed, for example, they believed that some
external agent had to continually propel it; otherwise it would “natu-
rally”” stop moving,.

If we wanted to test these ideas experimentally, we would first have
to find a way to free a body from all influences of its environment or
from all forces. This is hard to do, but in certain cases we can make the
forces very small. If we study the motions as we make the forces smaller
and smaller, we shall have some idea of what the motion would be like
if the external forces were truly zero.

Let us place our test body, say a block, on a rigid horizontal plane. If
we let the block slide along this plane, we notice that it gradually slows
down and stops. This observation was used, in fact, to support the idea
that motion stopped when the external force, in this case the hand ini-
tially pushing the block, was removed. We can argue against this idea,
however, reasoning as follows: Let us repeat our experiment, now using
a smoother block and a smoother plane and providing a lubricant. We
notice that the velocity decreases more slowly than before. Let us use
still smoother blocks and surfaces and better lubricants. We find that
the block decreases in velocity at a slower and slower rate and travels

Newton also invented the (fluxional) calculus, conceived the idea of universal gravita-
tion and formulated its law, and discovered the composition of white light. He was a
skillful experimenter and a mathematician of first rank as well as what today would be
called theorcetical physicist



farther each time before coming to rest.* We can now extrapolate and
say that if all friction could be eliminated, the body would continue
indefinitely in a straight line with constant speed. Some external force
is necessary to change the velocity of a body but no external force is
necessary to maintain the velocity of a body. Our hand, for example,
exerts a force on the block when it sets it in motion. The rough plane
exerts a force on it when it slows it down. Both of these forces produce
a change in the velocity, that is, they produce an acceleration.

This principle was adopted by Newton as the first of his three laws
of motion. Newton stated his first law in these words: “Every body
persists in its state of rest or of uniform motion in a straight line unless
it is compelled to change that state by forces impressed on it.”

Newton'’s first law is really a statement about reference frames. For,
in general, the acceleration of a body depends on the reference frame
relative to which it is measured. The first law tells us that, if there are
no nearby objects (and by this we mean that there are no forces because
every force must be associated with an object in the environment), then
it is possible to find a family of reference frames in which a particle has
no acceleration. The fact that bodies stay at rest or retain their uniform
linear motion in the absence of applied forces is often described by as-
signing a property to matter called inertia. Newton’s first law is often
called the law of inertia and the reference frames to which it applies are
called inertial frames. Such frames are assumed to be fixed with re-
spect to the distant stars.

In nearly all cases in this book we will apply the laws of classical mechanics
from the point of view of an observer in an inertial frame. It is possible to solve
problems in mechanics using a noninertial frame, such as a frame rotating with
respect to the fixed stars, but to do so we have to introduce forces that cannot be
associated with objects in the environment. We will discuss this in Chapters
6, 11, and 16. A reference frame attached to the earth can be considered to be
an inertial frame for most practical purposes. We shall see in Chapter 16 how
good an approximation this is.

Notice that there is no distinction in the first law between a body at
rest and one moving with a constant velocity. Both motions are “natu-
ral” in the absence of forces. That this is so becomes clear when a body
at rest in one inertial frame is viewed from a second inertial frame, that
is, a frame moving with constant velocity with respect to the first. An
observer in the first frame finds the body to be at rest; an observer in
the second frame finds the same body to be moving with uniform veloc-
ity. Both observers find the body to have no acceleration, that is, no
change in velocity, and both may conclude from the first law that no
force acts on the body.

Notice, too, that by implication there is no distinction in the first
law between the absence of all forces and the presence of forces whose
resultant is zero. For example, if the push of our hand on the book ex-
actly counteracts the force of friction on it, the book will move with
uniform velocity. Hence another way of stating the first law is: If no
net force acts on a body, its acceleration a is zero.

If there is an interaction between the body and objects present in the

*You may have experimented in the laboratory with a dry ice puck. This is a device which
can be made to move over a smooth horizontal surface, floating on a layer of CO, gas. The
friction between the puck and the surface is very low indeed and it is hard to measure any
reduction in speed for path lengths of practical dimensions.
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environment, the effect may be to change the “natural” state of the
body’s motion. To investigate this we must now examine carefully the
concept of force.

Let us refine our concept of force by defining it operationally. In our
everyday language force is associated with a push or a pull, perhaps
exerted by our muscles. In physics, however, we need a more precise
definition. We define force here in terms of the acceleration that a
given standard body experiences when placed in a suitable environment.

As a standard body we find it convenient to use (or rather to imagine
that we use!) the standard kilogram (see Fig. 1-2). This body has been
selected as our standard of mass and has been assigned, by definition, a
mass m, of exactly 1 kg. Later we will describe how masses are assigned
to other bodies.

As for an environment we place the standard body on a horizontal
table having negligible friction and we attach a spring to it. We hold the
other end of the spring in our hand, as in Fig. 5-1a. Now we pull the
spring horizontally to the right so that by trial and error the standard
body experiences a measured uniform acceleration of 1.0 m/s2. We then
declare, as a matter of definition, that the spring (which is the signifi-
cant body in the environment) is exerting a constant force whose mag-
nitude we will call “1.00 newton,” or in SI notation: 1.00 N, on the
standard body. We note that, in imparting this force, the spring is kept
stretched an amount Al beyond its normal unextended length, as Fig.
5-1b shows. '

(a)

e e 2

a
_——DFT-HM-_

il (o
[E —chmrrﬂ b

( b) TR DorrmnrrniB. 2 s B 8. ) e

We can repeat the experiment, either strctching the spring more or
using a stiffer spring, so that we measure an acceleration of 2.00 m/s?
for the standard body. We now declare that the spring is exerting a force
of 2.00 N on the standard body. In general, if we observe this particular
standard body to have an acceleration a in a particular environment, we
then say that the environment is exerting a force F on the standard
body, where F (in newtons) is numerically equal to a (in m/s?).

Now let us sce whether force, as we have dcfined it, is a vector quan-
tity. In Fig. 5-2b we assigned a magnitude to the force F, and it is a sim-
ple matter to assign a dircction to it as well, namely, the direction of
the acceleration that the force produces. However, to be a vector it is
not enough for a quantity to have magnitude and direction; it must also
obey the laws of vector addition described in Chapter 2. We can learn
only from experiment whether forces, as we defined them, do indeed
obey these laws.

Let us arrange to exert a 4.00-N force along the x-axis and a 3.00-N
force along the y-axis and let us apply these forces simultaneously to

>3
FORCE

figure 5-1

(a) A ‘“‘particle’” P the standard
kilogram) at rest on a horizontal
frictionless surface. (b) The body is
accelerated by pulling the spring to
the right.



the standard body placed, as before, on a horizontal, frictionless sur-
face. What will be the acceleration of the standard body? We would
find by experiment that it was 5.00 m/s?, directed along a line that
makes an angle of 37° with the x-axis. In other words, we would say that
the standard body was experiencing a force of 5.00 N in this same di-
rection. This same result can be obtained by adding the 4.00-N and
3.00-N forces vectorially according to the parallelogram method. Ex-
periments of this kind show conclusively that forces are vectors; they
have magnitude; they have direction; they add according to the paral-
lelogram law.

The result of experiments of this general type is often stated as fol-
lows: When several forces act on a body, each produces its own accel-
eration independently. The resulting acceleration is the vector sum of
the several independent accelerations.

In Section 5-3 we considered only the accelerations given to one par-
ticular object, the standard kilogram. We were able thereby to define
forces quantitatively. What effect would these forces have on other
objects? Because our standard body was chosen arbitrarily in the first
place, we know that for any given object the acceleration will be di-
rectly proportional to the force applied. The significant question re-
maining then is: What effect will the same force have on different ob-
jects! Everyday experience gives us a qualitative answer. The same
force will produce different accelerations on different bodies. A base-
ball will be accelerated more by a given force than will an automobile.
In order to obtain a quantitative answer to this question we need a
method to measure mass, the property of a body which determines its
resistance to a change in its motion.

Let us attach a spring to our standard body (the standard kilogram, to
which we have arbitrarily assigned a mass m, = one kg, exactly) and
arrange to give it an acceleration a, of, say 2.00 m/s?, using the method
of Fig. 5-1b. Let us measure carefully the extension Al of the spring
associated with the force that the spring is exerting on the block.

Now we remove the standard kilogram and substitute an arbitrary
body, whose mass we label m;,. We apply the same force (the one that
accelerated the standard kilogram 2.00 m/s?} to the arbitrary body (by
stretching the spring by the same amount) and we measure an accelera-
tion a, of, say, 0.50 m/s2.

We define the ratio of the masses of the two bodies to be the inverse
ratio of the accelerations given to these bodies by the same force, or

m,/m, = ada, {same force F acting).
In this example we have, numerically,

m = molas/a;) = 1.00 kg [(2.00 m/s2)/{0.50 m/s?)|
= 4.00 kg.

The second body, which has only one-fourth the acceleration of the
first body when the same force acts on it, has, by definition, four times
the mass of the first body. Hence mass may be regarded as a quantita-
tive measure of inertia.

If we repeat the preceding experiment with a different common force
acting, we find the ratio of the accelerations, a,'/a;’, to be the same as
in the previous experiment, or

m,/my = ae/a, = av'la,’.

>4
MASS; NEWTON'S
SECOND LAW
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The ratio of the masses of two bodies is thus independent of the com-
mon force used.

Furthermore, experiment shows that we can consistently assign
masses to any body by this procedure. For example, let us compare a
second arbitrary body with the standard body, and thus determine its
mass, say m.. We can now compare the two arbitrary bodies, m» and m,,
directly, obtaining accelerations a,” and a,” when the same force is
applied. The mass ratio, defined as usual from

m./m, = a,"/a,”", (same force acting)

turns out to have the same value that we obtain by using the masses m.
and m, previously determined by direct comparison with the standard.

We can show, in still another experiment of this type, that if objects
of mass m, and m. are fastened together, they behave mechanically as
a single object of mass (m; + m.). In other words, masses add like (and
are) scalar quantities.

We can now summarize all the experiments and definitions de-
scribed above in one equation, the fundamental equation of classical
mechanics,

F = ma. (5-1)

In this equation F is the (vector) sum of all the forces acting on the body,
m is the mass of the body, and a is its (vector) acceleration. Equation
5-1 may be taken as a statement of Newton’s second law. If we write it
in the form a = F/m, we can easily see that the acceleration of the body
is directly proportional to the resultant force acting on it and parallel in
direction to this force and that the acceleration, for a given force, is in-
versely proportional to the mass of the body.

Notice that the first law of motion is contained in the second law as
a special case, for if F = 0, then a = 0. In other words, if the resultant
force on a body is zero, the acceleration of the body is zero. Therefore in
the absence of applied forces a body will move with constant velocity
or be at rest (zero velocity), which is what the first law of motion says.
Therefore of Newton'’s three laws of motion only two are independent,
the second and the third (Section 5-5). The division of translational
particle dynamics that includes only systems for which the resultant
force F is zero is called statics.

Equation 5-1 is a vector equation. We can write this single vector
equation as three scalar equations,

F. = ma,, F,=ma,, and F,= ma,, (5-2)

relating the x, y, and z components of the resultant force (F,, F,, and
F.) to the x, v, and z components of acceleration (a,, a,, and a.} for the
mass m. It should be emphasized that F, is the sum of the x-compo-
nents of all the forces, F, is the sum of the y-components of all the
forces, and F. is the sum of the z-components of all the forces acting on
m.

Forces acting on a body originate in other bodies that make up its en-
vironment. Any single force is only one aspect of a mutual interaction
between two bodies. We find by experiment that when one body exerts
a force on a second body, the second body always exerts a force on the
first. Furthermore, we find that these forces are equal in magnitude but

3=
NEWTON'S THIRD LAW
OF MOTION



opposite in direction. A single isolated force is therefore an impossi-
bility.

If one of the two forces involved in the interaction between two
bodies is called an ““action’ force, the other is called the “‘reaction”
force. Either force may be considered the ““action” and the other the
“reaction.”’ Cause and effect is not implied here, but a mutual simulta-
neous interaction is implied.

This property of forces was first stated by Newton in his third law of
motion: “To every action there is always opposed an equal reaction;
or, the mutual actions of two bodies upon each other are always equal,
and directed to contrary parts.”

In other words, if body A exerts a force on body B, body B exerts an
equal but oppositely directed force on body A; and furthermore the
forces lie along the line joining the bodies. Notice that the action and
reaction forces, which always occur in pairs, act on different bodies. If
they were to act on the same body, we could never have accelerated
motion because the resultant force on every body would always be zero.

Imagine a boy kicking open a door. The force exerted by the boy B
on the door D accelerates the door (it flies open); at the same time, the
door D exerts an equal but opposite force on the boy B, which decel-
erates the boy (his foot loses forward velocity). The boy will be painfully
aware of the “reaction’” force to his “action,” particularly if his foot is
bare.

The following examples illustrate the application of the third law
and clarify its meaning.

Consider a man pulling horizontally on a rope attached to a block on a horizon-
tal table as in Fig. 5-2. The man pulls on the rope with a force F,;;. The rope
exerts a reaction force Fyy on the man. According to Newton’s third law, F,;; =
—Fgy. Also, the rope exerts a force Fy;, on the block, and the block exerts a re-
action force Fg on the rope. Again according to the third law, Fy, = —Fy.
Suppose that the rope has a mass m;. Then, in order to start the block and
rope moving from rest, we must have an acceleration, say a. The only forces
acting on the rope are Fy and F;;, so that the resultant force on it is Fy;, + Fyp,
and this must be different from zero if the rope is to accelerate. In fact, from the
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EXAMPLE 1

figure 5-2

Example 1. A man pulls on a rope
attached to a block. (a) The forces
exerted on the rope by the block and
by the man are equal and opposite.
Thus the resultant horizontal force
on the rope is zero, as is shown in
the free-body diagram. The rope
does not accelerate. (b) The force
exerted on the rope by the man
exceeds that exerted by the block.
The net horizontal force has
magnitude Fyy — Fgr and points to
the right. Thus the rope is
accelerated to the right. The block
is also acted upon by a frictional
force not shown here.
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second law we have
Fyg + Fyr = mya

Since the forces and the acceleration are along the same line, we can drop the
vector notation and write the relation between the magnitudes of the vectors,
namely

Fyr — Fyr = mpa.

We see therefore that in general Fy;; does not have the same magnitude as Fy,
\Fig. 5-2b). These two forces act on the same body and are not action and re-
action pairs.

According to Newton'’s third law the magnitude of Fy;; always equals the
magnitude of Fy,, and the magnitude of F; always equals the magnitude of
F.». However, only if the acceleration a of the system is zero will we have the
pair of forces Fyy and Fyy equal in magnitude to the pdir of forces Fyy and Fyp
\Fig. 5-2a). In this special case only, we could imagine that the rope merely
transmits the force exerted by the man to the block without change. This same
result holds in principle if my = 0. In practice, we never find a massless rope.
However, we can often neglect the mass of a rope, in which case the rope is
assumed to transmit a force unchanged. The force exerted at any point in the
rope is called the tension at that point. We may measure the tension at any
point in the rope by cutting a suitable length from it and inserting a spring
scale; the tension is the reading of the scale. The tension is the same at all
points in the rope only if the rope is unaccelerated or assumed to be massless.

Consider a spring attached to the ceiling and at the other end holding a block at
rest (Fig. 5-3a). Since no body is accelerating, all the forces on any body will add
vectorially to zero. For example, the forces on the suspended block are T, the
tension in the stretched spring, pulling vertically up on the mass, and W, the
pull of the earth acting vertically down on the body, called its weight. These are
drawn in Fig. 5-3b, where we show only the block for clarity. There are no other
forces on the block.

In Newton's second law, F represents the sum of all the forces acting on a
body, so that for the block

F=T+W.

The block is at rest so that its acceleration is zero, or a = 0. Hence, from the
relation F = ma, we obtain T+ W = 0, or

T=—W.
The forces act along the same line, so that their magnitudes are equal, or
T=W.

Therefore the tension in the spring is an exact measure of the weight of the
block. We shall use this result later in presenting a static procedure for measur-
ing forces.

It 1s instructive to examine the forces exerted on the spring; they are shown
in Fig. 5-3c. T’ is the pull of the block on the spring and is the reaction force of
the action force T. T' therefore has the same magnitude as T, which is W. P is
the upward pull of the ceiling on the spring, and w is the weight of the spring,
that is, the pull of the earth on it. Since the spring is at rest and all forces act
along the same line, we have

P+T +w=0,
or
P=wW+ w.

The ceiling therefore pulls up on the spring with a force whose magnitude is the
sum of the weights of the block and spring,.

EXAMPLE 2

sdv v

w
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(a) (b) (c)

figure 5-3

Example 2. (a) A block is suspended
by a spring. (b) A free-body

diagram showing all the vertical
forces exerted on the block. (¢) A
similar diagram for the vertical
forces on the spring.



From the third law of motion, the force exerted by the spring on the ceiling,
P’, must be equal in magnitude to P, which is the reaction force to the action
force P'. P’ therefore has a magnitude W + w.,

In general, the spring exerts different forces on the bodies attached at its dif-
ferent ends, for P’ # T. In the special case in which the weight of the spring is
negligible, w =0 and P’ = W = T. Therefore a weightless spring (or cord) may be
considered to transmit a force from one end to the other without change.

It is instructive to classify all the forces in this problem according to action
and reaction pairs. The reaction to W, a force exerted by the earth on the block,
must be a force exerted by the block on the earth. Similarly, the reaction tow
is a force exerted by the spring on the earth. Because the earth is so massive, we
do not expect these forces to impart a noticeable acceleration to the earth.
Since the earth is not shown in our diagrams, these forces have not been shown.
The forces T and T’ are action-reaction pairs, as are P and P'. Notice that al-
though T =—W in our problem, these forces are not an action-reaction pair be-
cause they act on the same body.

Unit force is defined as a force that causes a unit of acceleration when
applied to a unit mass. In SI terms unit force is the force that will accel-
erate a one-kg mass at one m/s?; we have seen that this unit is called the
newton (abbreviation, NJ. In the cgs (centimeter, gram, second) system
unit force is the force that will accelerate a one-g mass at one cm/s?;
this unit is called the dyne. Since 1 kg = 10% g and 1 m/s? = 102 cm/s?,
it follows that 1 N = 10° dynes.

In each of our systems of units we have chosen mass, length, and time
as our fundamental quantities. Standards were adopted for these funda-
mental quantities and units defined in terms of these standards. Force
appears as a derived quantity, determined from the relation F = ma.

In the BE [British engineering) system of units, however, force,
length, and time are chosen as the fundamental quantities and mass is
a derived quantity. In this system, mass is determined from the relation

= F/a. The standard and unit of force in this system is the pound.
Actually, the pound of force was originally defined to be the pull of the
earth on a certain standard body at a certain place on the earth. We can
get this force in an operational way by hanging the standard body from
a spring at the particular point where the earth’s pull on it is defined to
be one lb of force. If the body is at rest, the earth’s pull on the body, its
weight W, is balanced by the tension in the spring. Therefore T= W =
one lb, in this instance. We can now use this spring (or any other one
thus calibrated) to exert a force of one 1b on any other body; to do this
we simply attach the spring to another body and stretch it the same
amount as the pound force had stretched it. The standard body can be
compared to the kilogram and it is found to have the mass 0.45359237
kg. The acceleration due to gravity at the certain place on the earth is
found to be 32.1740 ft/s2. The pound of force can therefore be defined
from F = ma as the force that accelerates a mass of 0.45359237 kg at
the rate of 32.1740 ft/s2.

This procedure enables us to compare the pound-force with the new-
ton. Using the fact that 32.1740 ft/s? equals 9.8066 m/s?, we find that

1 Ib = (0.45359237 kg}(32.1740 ft/s?)
= (0.45359237 kg)(9.8066 m/s?)
= 4.45 N,

The unit of mass in the British engineering system can now be de-
rived. It is defined as the mass of a body whose acceleration is 1 ft/s?

>-6
SYSTEMS OF
MECHANICAL UNITS
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when the force on it is 1 Ib; this mass is called the slug. Thus, in this
system

F[1b] = m[slugs] x a[ft/s?].

Legally the pound is a unit of mass but in engineering practice the pound is
treated as a unit of force or weight. This has given rise to the terms pound-mass
and pound-force. The pound-mass is a body of mass 0.45359237 kg; no standard
block of metal is preserved as the pound-mass, but, like the yard, it is defined in
terms of the SI standard. The pound-force is the force that gives a standard
pound an acceleration equal to the standard acceleration of gravity, 32.1740 ft/s2.
As we shall see later, the acceleration of gravity varies with distance from the
center of the earth, and this ““standard acceleration’’ is, therefore, the value at a
particular distance from the center of the earth. (Any point at sea level and
45°N latitude is a good approximation.)

In this book only forces will be measured in pounds. Thus the cor-
responding unit of mass is the slug. The units of force, mass, and accel-
eration in the three systems are summarized in Table 5-2.

Table 5-2

Units in F = ma

Systems of Units Force Mass Acceleration
SI newton (N} kilogram (kg) m/s?
Cgs dyne gram (g.) cm/s?
BE pound (Ib) slug ft/s?

The dimensions of force are the same as those of mass times accel-
cration. In a system in which mass, length, and time are the funda-
mental qualities, the dimensions of force are, therefore, mass X length/
time2, or MLT 2. We shall arbitrarily adopt mass, length, and time as
our fundamental mechanical quantities.

The three laws of motion that we have described are only part of the
program of mechanics that we outlined in Section 5-1. It remains to
investigate the force laws, which are the procedures by which we cal-
culate the force acting on a given body in terms of the properties of the
body and its environment. Newton’s second law

F = ma (5-3)

is essentially not a law of nature but a definition of force. We need to
identify various functions of the type:

F = a function of the properties of the particle
and of the environment (5-4)

so that we can, in effect, eliminate F between Egs. 5-3 and 5-4, thus
obtaining an cquation that will let us calculate the acceleration of a
particle in terms of the properties of the particle and its environment.
We see here clearly that force is a concept that connects the accelera-
tion of the particle on the one hand with the properties of the particle
and its environment on the other. We indicated earlier that one criterion
for declaring the program of mechanics to be successtul would be the

37
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discovery that simple laws of the type of Eq. 5-4 do indeed exist. This
turns out to be the case, and this fact constitutes the essential reason
that we “‘believe” the laws of classical mechanics. If the force laws had
turned out to be very complicated, we would not be left with the feeling
that we had gained much insight into the workings of nature.

The number of possible environments for an accelerated particle is
so great that a detailed discussion of all the force laws is not feasible in
this chapter. We shall, however, indicate in Table 5-3 the force laws that
apply to the five particle-plus-environment situations of Table 5-1. At
appropriate places throughout the text we will discuss these and other
force laws in detail; several of the laws in Table 5-3 are approximations
or special cases.

Table 5-3
The force laws for the systems of table 5-1

System Force Law

1. A block propelled by  [a) Spring force: F = —kx, where x is the extension of

a stretched spring the spring and k is a constant that describes the
over a rough hori- spring; F points to the right; see Chapter 15
zontal surface (b) Friction force: F= umg, where p is the coefficient

of friction and mg is the weight of the block; F
points to the left; see Chapter 6

2. A golf ball in flight F = mg; F points down (see Section 5-8)

3. An artificial satellite F = GmM]/r?, where G is the gravitational con-
stant, M the mass of the earth, and r the orbit
radius; F points toward the center of the earth; see
Chapter 16. This is Newton’s law of universal

gravitation
4. An electron near a F = (1/4me))eQ/r?, where €, is a constant, e is the
positively charged electron charge, Q is the charge on the sphere, and
sphere r is the distance from the electron to the center of

the sphere; F points to the right; see Chapter 26.
This is Coulomb'’s law of electrostatics

. Two bar magnets F = (3po/2m)p2/r?, where p, is a constant, u is the
magnetic dipole moment of each magnet, and r is
the center-to-center separation of the magnets;
we assume that r > I, where [ is the length of each
magnet; F points to the right

w

The weight of a body is the gravitational force exerted on it by the earth.
Weight, being a force, is a vector quantity. The direction of this vector
is the direction of the gravitational force, that is, toward the center of
the earth. The magnitude of the weight is expressed in force units, such
as pounds or newtons.

When a body of mass m is allowed to fall freely, its acceleration is
that of gravity g and the force acting on it is its weight W. Newton's
second law, F = ma, when applied to a freely falling body, gives us
W = mg. Both W and g are vectors directed toward the center of the
earth. We can therefore write

W = myg, (5-5)

where W and g are the magnitudes of the weight and acceleration
vectors. To keep an object from falling we have to exert on it an up-
ward force equal in magnitude to W, so as to make the net force zero. In
Fig. 5-3a the tension in the spring supplies this force.

>3
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We stated previously that ¢ is found experimentally to have the same
value for all objects at the same place. From this it follows that the
ratio of the weights of two objects must be equal to the ratio of their
masses. Therefore a chemical balance, which actually is an instrument
for comparing two downward forces, can be used in practice to compare
masses. If a sample of salt in one pan of a balance is pulling down on that
pan with the same force as is a standard one gram-mass on the other pan,
we know* that the mass of salt is equal to one gram. We are likely to
say that the salt “weighs’’ one gram, although a gram is a unit of mass,
not weight. However, it is always important to distinguish carefully
between weight and mass.

We have seen that the weight of a body, the downward pull of the
earth on that body, is a vector quantity. The mass of a body is a scalar
quantity. The quantitative relation between weight and mass is given
by W = mg. Because g varies from point to point on the earth, W, the
weight of a body of mass m, is different in different localities. Thus, the
weight of a one kg-mass in a locality where g is9.80 m/s? is 9.80 N; in a
locality where g is 9.78 m/s?, the same one kg-mass weighs 9.78 N. If
these weights were determined by measuring the amount of stretch
required in a spring to balance them, the difference in weight of the
same one kg-mass at the two different localities would be evident in
the slightly different stretch of the spring at these two localities. Hence,
unlike the mass of a body, which is an intrinsic property of the body,
the weight of a body depends on its location relative to the center of the
earth. Spring scales read differently, balances the same, at different
parts of the earth. _

We shall generalize the concept of weight in Chapter 16 in which we
discuss universal gravitation. There we shall see that the weight of a
body is zero in regions of space where the gravitational effects are nil,
although the inertial effects, and hence the mass of the body, remain
unchanged from those on earth. In a space ship free from the influence
of gravity it is a simple matter to lift a large block of lead (W = 0), but
the astronaut would still stub his toe if he were to kick the block
(m # 0).

It takes the same force to accelerate a body in gravity-free space as it
does to accelerate it along a horizontal frictionless surface on earth, for
its mass is the same in each place. But it takes a greater force to hold the
body up against the pull of the earth on the earth’s surface than it does
high up in space, for its weight is different in each place.

Often, instead of being given the mass, we are given the weight of a
body on which forces are exerted. The acceleration a produced by the
force F acting on a body whose weight has a magnitude W can be ob-
tained by combining Eq. 5-3 and Eq. 5-5. Thus from F = ma and W =
mg we obtain

m= W/g, so that F = (W/gla. {5-6)

The quantity W/g plays the role of m in the equation F = ma and is,
in fact, the mass of a body whose weight has the magnitude W. For
example, a man whose weight is 160 b at a point where g = 32.0 ft/s®
has a mass m = W/g = {160 1b}/(32.0 ft/s?) = 5.00 slugs. Notice that his
weight at another point where g = 32.2 ft/s? is W = myg = (5.00 slugs)
(32.2 ft/s?) = 161 Ib.

Corrections for buoyancy, owing to the different volumes of air displaced by the salt
and the standard, must be made. We discuss these in Chapter 17.



In Section 5-3 we defined force by measuring the acceleration imparted
to a standard body by pulling on it with a stretched spring. That may
be called a dynamic method for measuring force. Although convenient
for the purposes of definition, it is not a particularly practical procedure
for the measurement of forces. Another method for measuring forces is
based on measuring the change in shape or size of a body (a spring, say)
on which the force is applied when the body is unaccelerated. This may
be called the static method of measuring forces.

The idea of the static method is to use the fact that when a body,
under the action of several forces, has zero acceleration, the vector sum
of all the forces acting on the body must be zero. This is, of course, just
the content of the first law of motion. A single force acting on a body
would produce an acceleration; this acceleration can be made zero if we
apply another force to the body equal in magnitude but oppositely di-
rected. In practice we seek to keep the body at rest. If now we choose
some force as our unit force, we are in a position to measure forces. The
pull of the earth on a standard body at a particular point can be taken
as the unit force, for example.

The instrument most commonly used to measure forces in this way
is the spring balance. It consists of a coiled spring having a pointer at
one end that moves over a scale. A force exerted on the balance changes
the length of the spring. If a body weighing 1.00 N is hung from the
spring, the spring stretches until the pull of the spring on the body is
equal in magnitude but opposite in direction to its weight. A mark can
be made on the scale next to the pointer and labeled ““1.00-N force.”
Similarly, 2.00-N, 3.00-N, etc., weights may be hung from the spring
and corresponding marks can be made on the scale next to the pointer
in each case. In this way the spring is calibrated. We assume that the
force exerted on the spring is always the same when the pointer stands
at the same position. The calibrated balance can now be used to measure
any suitable unknown force, not merely the pull of the earth on some
body.

The third law is tacitly used in our static procedure because we as-
sume that the force exerted by the spring on the body is the same in
magnitude as the force exerted by the body on the spring. This latter
force is the force we wish to measure. The first law is used too, because
we assume F is zero when a is zero. It is worth noting again here that if
the acceleration were not zero, the body of weight W would not stretch
the spring to the same length as it did with a = 0. In fact, if the spring
and attached body of weight W were to fall freely under gravity so that
a = g, the spring would not stretch at all and its tension would be zero.

It will be helpful to write down some procedures for solving problems
in classical mechanics and to illustrate them by several examples.
Newton'’s second law states that the vector sum of all the forces acting
on a body is equal to its mass times its acceleration. The first step in
problem solving is therefore: (1) Identify the body to whose motion the
problem refers. Lack of clarity on the point as to what has been or
should be picked as “‘the body” is a major source of mistakes. (2) Having
selected “‘the body,” we next turn our attention to the objects in ‘‘the
environment’’ because these objects (inclined planes, springs, cords, the
earth, etc.) exert forces on the body. We must be clear as to the nature of
these forces. (3] The next step is to select a suitable (inertial) reference
frame. We should position the origin and orient the coordinate axes so
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A STATIC PROCEDURE
FOR MEASURING
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as to simplify the task of our next step as much as possible. (4) We now
make a separate diagram of the body alone, showing the reference frame

| and all of the forces acting on the body. This is called a free-body dia-

gram. (5) Finally we apply Newton’s second law, in the form of Eq. 5-2,
to each component of force and acceleration.

The following examples illustrate the method of analysis used in
applying Newton’s laws of motion. Each body is treated as if it were a
particle of definite mass, so that the forces acting on it may be assumed
to act at a point. Strings and pulleys are considered to have negligible
mass. Although some of the situations picked for analysis may seem
simple and artificial, they are the prototypes for many interesting real
situations; but, more important, the method of analysis—which is the
chief thing to understand —is applicable to all the modern and sophisti-
cated situations of classical mechanics, even sending a spaceship to
Mars.

Fig. 5-4a shows a weight W hung by strings. Consider the knot at the junc-
tion of the three strings to be “the body.” The body remains at rest under the

. action of the three forces shown in Fig. 5-4b. Suppose we are given the magni-

tude of one of these forces. How can we find the magnitude of the other forces?

Fp

Fe

F., F;, and F. are all the forces acting on the body. Since the body is unaccel-
erated (actually at rest), Fy + F; + Fr = 0. Choosing the x- and y-axes as shown,
we can write this vector equation as three scalar equations:

Far+ Fpe =0,
Fay+ Fyy+ Fey =0,

using Eq. 5-2. The third scalar equation for the z-axis is simply
Fi:= Fp: = Fe:=0.

That is, the vectors all lie in the x-y plane so that they have no z-components.
From the figure we sce that

Fir = —F, cos 30° = —0.866F,,

F., = Fy sin 30° = 0.500F,,
and
Fur = Fy cos 45° = 0.707F,,

[-'m, F“ Sil] 457 ()707[:”
Also,
Fey Fe -W

because the string C merely serves to transmit the force on one end to the junc-
tion at 1ts other end. Substituting these results into our original equations, we
obtain

EXAMPLE 3

figure 5-4

Example 3. (a) A weight is
suspended by strings. (b) A
free-body diagram showing all the
forces acting on the knot. The
strings are assumed to be
weightless.



—0.866F. + 0.707F; =0,
0.500F, + 0.707F; — W = 0.

If we are given the magnitude of any one of these three forces, we can solve
these equations for the other two. For example, if W =100 N, we obtain F, =
73.3 N and F; = 89.6 N.

We wish to analyze the motion of a block on a smooth incline.

(a) Static case. Figure 5-5a shows a block of mass m kept at rest on a smooth
plane, inclined at an angle 6 with the horizontal, by means of a string attached
to the vertical wall. The forces acting on the block are shown in Fig. 5-5b. F, is
the force exerted on the block by the string; mg is the force exerted on the block
by the earth, that is, its weight; and F. is the force exerted on the block by the
inclined surface. F., called the normal force, is normal to the surface of contact
because there is no frictional force between the surfaces.* If there were a fric-
tional force, F. would have a component parallel to the incline. Because we wish
to analyze the motion of the block, we choose ALL the forces acting ON the
block. You will note that the block will exert forces on other bodies in its en-
vironment (the string, the earth, the surface of the incline) in accordance with
the action-reaction principle; these forces, however, are not needed to deter-
mine the motion of the block because they do not act on the block.

Suppose 6 and m are given. How do we find F, and F.? Since the block is un-
accelerated, we obtain

F,+F.+mg=0.

It is convenient to choose the x-axis of our reference frame to be along the in-
cline and the y-axis to be normal to the incline {Fig. 5-5b). With this choice of
coordinates, only one force, mg, must be resolved into components in solving
the problem. The two scalar equations obtained by resolving mg along the x-
and y-axes are

F, —mg sin 0 =0, and F> —mg cos 6 = 0,

from which F, and F. can be obtained if # and m are given.

{b) Dynamic case. Now suppose that we cut the string. Then the force F,, the
pull of the string on the block, will be removed. The resultant force on the block
will no longer be zero, and the block will accelerate. What is its acceleration?

From Eq. 5-2 we have F, = ma, and F,=ma,. Using these relations we obtain

F> —mgcos § =ma,=0,
and —mg sin 0 = ma,,
which yield

The acceleration is directed down the incline with a magnitude of g sin 6.

a,=0, a,=—g sin 6.

Consider a block of mass m pulled along a smooth horizontal surface by a hori-
zontal force P, as shown in Fig. 5-6. Fy is the normal force exerted on the block
by the frictionless surface and W is the weight of the block.

(a) If the block has a mass of 2.0 kg, what is the normal force?

From the second law of motion with a, = 0, we obtain

Fx— W =0.
Hence, Fy = W = mg = (2.0 kg}(9.8 m/s?) =20 N.

F, = ma, or

*The normal force is an example of a constraining force, one which limits the freedom
of movement a body might otherwise have. It is an elastic force arising from small de-

formations of the bodies in contact, which are never perfectly rigid as we often tacitly
assume.

EXAMPLE 4

Y
Fy
%
[0) Fy
/)
(a) ()
mg

figure 5-5

Example 4. (a) A block is held on a
smooth inclined plane by a string.
(b) A free-body diagram showing all
the forces acting on the block.

figure 5-6

Example 5. A block is being pulled
along a smooth table. The forces
acting on the block are shown.

EXAMPLE 5

NOILOW 40 SMVT SNOLIMAN 10 SNOILVDITddV HINOS L8

0I-S DS



88

!

PARTICLE DYNAMICS —

5

HAP.

2
2

(

{b) What force P is required to give the block a horizontal velocity of 4.0
m/s in 2.0 s starting from rest?’
The acceleration a, follows from
Vi— Ve 40m/s—0
t  20s
From the second law, F, = ma, or P = ma,. The force P is then
P =ma, = (2.0 kg)(2.0 m/s?) = 4.0 N.

ar = = 2.0 m/s%.

Figure 5-7a shows a block of mass m, on a smooth horizontal surface pulled by
a massless string which is attached to a block of mass m- hanging over a pulley.
We assume that the pulley has no mass and is frictionless and that it merely
serves to change the direction of the tension in the string at that point. The
magnitude of the tension is the same throughout a massless string (see Example
2). Find the acceleration of the system and the tension in the string.

Suppose we choose the block of mass m; as the body whose motion we in-
vestigate. The forces on this block, taken to be a particle, are shown in Fig.
5-7b. T, the tension in the string, pulls on the block to the right; m,g is the
downward pull of the earth on the block and Fy is the vertical force exerted on
the block by the smooth table. The block will accelerate in the x-direction only,
so that a,, = 0. We, therefore, can write

Fy —mg = 0= ma,,,
(5-7)

and T = ma,..

From these equations we conclude that Fy = m,g. We do not know T, so we can-
not solve for a.. -

To determine T we must consider the motion of the block m.. The forces
acting on m. are shown in Fig. 5-7¢. Because the string and block are accelerat-
ing, we cannot conclude that T equals m.g. In fact, if T were to equal m.g, the
resultant force on m. would be zero, a condition holding only if the system is
not accelerated.

The equation of motion for the suspended block is
m»g — T = m.a,,. (5‘8‘

The direction of the tension in the string changes at the pulley and, because the
string has a fixed length, it is clear that

Azy = dir,

so that we can represent the acceleration of the system as simply a. We then
obtain from Egs. 5-7 and 5-8

m.g — T = maa, {5-9)
and
T = ma.
These yield
meg = (m, + m.)a, (5-10)
or
. omo )
T m, + m. &
and
myn; . (5-11)
m, + m;

which gives us the acceleration of the system a and the tension in the string 7.
Notice that the tension in the string is always less than m.g. This is clear
from Eq. 5-11, which can be written

. 1,
I'=mg :
m, + m-.

EXAMPLE 6

my
—
A 7 T
(a) 8 } mg
y
y
Fy T

1

0 * "

me mag

(b) (c)

figure 5-7

Example 6. (a) Two masses are
connected by a string; m, lies on a
smooth table, m. hangs freely. (b) A
free-body diagram showing all the
forces acting on m. (c) A similar
diagram for m..



Notice also that a is always less than g, the acceleration due to gravity. Only
when m, equals zero, which means that there is no block at all on the table, do
we obtain a = g (from Eq. 5-10). In this case T = 0 {from Eq. 5-9).

We can interpret Eq. 5-10 in a simple way. The net unbalanced force on the
system of mass m, + m. is represented by m.g. Hence, from F = ma, we obtain
Eq. 5-10 directly.

To make the example specific, suppose m; = 2.0 kg and m. = 1.0 kg. Then

m.

=—"" o=1,= 2
A= mtms 3.3 m/s?,
and
L1101 SR Y e P
T= it m?® (3)09.8) kg m/s? = 6.5 N.

Consider two unequal masses connected by a string which passes over a fric-
tionless and massless pulley, as shown in Fig. 5-8a. Let m. be greater than m,.
Find the tension in the string and the acceleration of the masses.

We consider an upward acceleration positive. If the acceleration of m, is a,
the acceleration of m. must be —a. The forces acting on m, and on m. are shown
in Fig. 5-8b in which T represents the tension in the string.

The equation of motion for m, is

T— mg = nnha
and for m. is

T — msg = —moa.
Combining these equations, we obtain

_mz——m,

CThmm

{5-12)

and
2m1mg
m; + m, ’

For example, if m, = 2.0 slugs and m, = 1.0 slug,
a = {32/3.0) ft/sz = g/3,
T = (3)(32) slug ft/s? = 43 Ib.

Notice that the magnitude of T is always intermediate between the weight of
the mass m; (32 lb in our example) and the weight of the mass m- (64 1b in our
example). This is to be expected, since T must exceed m,g to give m, an upward
acceleration, and m.g must exceed T to give m. a downward acceleration. In the
special case when m, = m,, we obtain a =0 and T = m,g = m.g, which is the
static result to be expected.

Figure 5-8c shows the forces acting on the massless pulley. If we treat the
pulley as a particle, all the forces can be taken to act through its center. P is the

y y
T T
0 X 0 X
mig
vomg

(b)

EXAMPLE 7

figure 3-8

Example 7. (a) Two unequal masses
are suspended by a string from a
pulley {Atwood’s machine). (b)
Free-body diagrams for m, and m..
(c) Free-body diagram for the
pulley, assumed massless.
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upward pull of the support on the pulley and T is the downward pull of each
segment of the string on the pulley. Since the pulley has no translational mo-
tion,

P=T+T=2T.

If we were to drop our assumption of a massless pulley and assign a mass m
to it, we would then be required to include a downward force mg on the sup-
port. Also, as we shall see later, the rotational motion of the pulley results in a
different tension in each segment of the string. Friction in the bearings also
affects the rotational motion of the pulley and the tension in the strings.

Consider an elevator moving vertically with an acceleration a. We wish to find
the force exerted by a passenger on the floor of the elevator.

Acceleration will be taken positive upward and negative downward. Thus
positive acceleration in this case means that the elevator is either moving up-
ward with increasing speed or is moving downward with decreasing speed.
Negative acceleration means that the elevator is moving upward with de-
creasing speed or downward with increasing speed.

From Newton's third law the force exerted by the passenger on the floor will
always be equal in magnitude but opposite in direction to the force exerted by
the floor on the passenger. We can therefore calculate either the action force or
the reaction force. When the forces acting on the passenger are used, we solve
for the latter force. When the forces acting on the floor are used, we solve for
the former force.

The situation is shown in Fig. 5-9: The passenger’s true weight is W and the
force exerted on him by the floor, called P, is his apparent weight in the accel-
erating elevator. The resultant force acting on him 1s P + W. Forces will be taken

| as positive when directed upward. From the second law of motion we have

F = ma,
or
P— W =ma, (5-13)

where m is the mass of the passenger and a is his (and the elevator’s) accelera-
tion.

Suppose, for example, that the passenger weighs 160 1b and the acceleration
1s 2.0 ft/s? upward. We have

W 160 1b
YT 5.0 slugs,
and from Eq. 5-13,
P — 160 1b = (5.0 slugs}(2.0 ft/s?}
or
P = apparent weight — 170 1b.

If we were to mcasure this force directly by having the passenger stand on a
spring scale fixed to the elevator floor (or suspended from the ceiling), we
would find the scale reading to be 170 Ib for a man whose weight is 160 1b. The
passenger feels himself pressing down on the floor with greater force (the floor
is pressing upward on him with greatcr force) than when he and the elevatorare
at rest. Everyone experiences this fecling when an elevator starts upward from
rest.

If the acceleration were taken as 2.0 ft/s? downward, then a = —2.0 ft/s® and
P~ 150 Ib for the passenger. The passenger who weighs 160 1b feels himself
pressing down on the floor with less force than when he and the clevator are at
st

If the clevator cable were to break and the elevator were to fall freely with an
acceleration a = —g, then P would equal W + (W/g)(—g) = 0. Then the passcnger
and floor would exert no forces on each other. The passenger’s apparent weight,
as indicated by the spring scale on the floor, would be zero. Such a situation is

EXAMPLE 8

VAN
P
Passenger
p AW
(a) (b)

figure 5-9

Example 8. (a) A passenger stands
on the floor of an elevator. (b) A
free-body diagram for the passcnger.



popularly referred to as “weightlessness.” The passenger’s weight (the pull of
gravity on him) has not changed, of course, but the force he exerts on the floor
and the reaction force of the floor on him are zero.

6.

10.

11.

12.

13.

14.

15,

16.

What is your mass in slugs? Your weight in newtons?

Why do you fall forward when a moving train decelerates to a stop and fall
backward when a train accelerates from rest? What would happen if the
train rounded a curve at constant speed?

A block of mass m is supported by a cord C from the ceiling, and another
cord D is attached to the bottom of the block {Fig. 5-10). Explain this: If you
give a sudden jerk to D, it will break, but if you pull on D steadily, C will
break.

A horse is urged to pull a wagon. The horse refuses to try, citing Newton'’s
third law as his defense: / ‘The pull of the horse on the wagon is equal but
opposite to the pull of the wagon on the horse.” If  can never exert a greater
force on the wagon than it exerts on me, how can I ever start the wagon
moving?” asks the horse. How would you reply?

Comment on whether the following pairs of forces are examples of action-
reaction: (a) the earth attracts a brick; the brick attracts the earth; (b] a
propellered airplane pulls air in toward the plane; the air pushes the plane
forward; (c) a horse pulls forward on a cart, accelerating it; the cart pulls
backward on the horse; (d) a horse pulls forward on a cart without moving
it; the cart pulls back on the horse; (e) a horse pulls forward on a cart with-
out moving it; the earth exerts an equal and opposite force on the cart.
Criticize the statement, often made, that the mass of a body is a measure of
the “quantity of matter” in it.

Using force, length, and time as fundamental quantities, what are the di-
mensions of mass?

. Is the definition of mass that we have given limited to objects initially at

rest?

Comment on the following statements about mass and weight taken from
examination papers. (a) Mass and weight are the same physical quantities
expressed in different units; (b) mass is a property of one object alone
whereas weight results from the interaction of two objects; (¢} the weight
of an object is proportional to its mass; (d) the mass of a body varies with
changes in its local weight.

A horizontal force acts on a mass which is free to move. Can it produce an
acceleration if the force is less than the weight of that mass?

Does the acceleration of a freely falling body depend upon the weight of
the body?

A bird alights on a stretched telegraph wire. Does this change the tension in
the wire? If so, by an amount less than, equal to, or greater than the weight
of the bird?

In Fig. 5-11, we show four forces which are about equal in magnitude. What
combination of three forces, acting together on the same body, might keep
that body in translational equilibrium?

Why do raindrops fall with constant speed during the later stages of their
descent?

In a tug of war, three men pull on a rope to the left at A and three men pull
to the right at B with forces of equal magnitude. Now a weight of 5.0 1b is
hung vertically from the center of the rope. (@) Can the men get the rope
AB to be horizontal? (b) If not, explain. If so, determine the magnitude of
the forces required at A and B to do this.

Both the following statements are true; explain them. Two teams having a
tug of war must always pull equally hard on one another. The team that
pushes harder against the ground wins.

questions

4

3
¥

figure 510
Question 3

figure 5-11
Question 13
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17. A massless rope is strung over a frictionless pulley. A monkey holds onto
one end of the rope and a mirror, having the same weight as the monkey,
is attached to the other end of the rope at the monkey’s level. Can the
monkey get away from his image seen in the mirror (a) by climbing up the
rope, (b) by climbing down the rope, (c) by releasing the rope?

18. Two objects of equal mass rest on opposite pans of a trip scale. Does the
scale remain balanced when it is accelerated up or down in an elevator?

19. You stand on the large platform of a spring scale and note your weight. You
then take a step on this platform and notice that the scale reads less than
your weight at the beginning of the step and more than your weight at the
end of the step. Explain.

20. A weight is hung by a cord from the ceiling of an elevator. From the fol-
lowing conditions, choose the one in which the tension in the cord will be
greatest . . . least? (a) elevator at rest; (b) elevator rising with uniform speed;
(c) elevator descending with decreasing speed; (d) elevator descending with
increasing speed.

21. A woman stands on a spring scale in an elevator. In which case below will
the scale record the minimum reading . . . the maximum reading? {a) ele-
vator stationary; (b) elevator cable breaks, free fall; (c) elevator accelerating
upward; (d] elevator accelerating downward; (e) elevator moving at constant
velocity.

22. Under what circumstances would your weight be zero? Does your answer
depend on the choice of a reference system?

SECTION 5-4

1. Two blocks, mass m, and m., are connected by a-light spring on a horizontal
frictionless table. Find the ratio of their accelerations a, and a. after they
pulled apart and then released. Answer: a,/a, = m»/m,.

SECTION 5-5

2. (a) Two 10-1b weights are attached to a spring scale as shown in Fig. 5-12(a).
What is the reading of the scale? (b) A single 10-1b weight is attached to a
spring scale which itself is attached to a wall, as shown in Fig. 5-12(b}. What
is the reading of the scale?

3. Two blocks are in contact on a frictionless table. A horizontal force is ap-
plied to one block, as shown in Fig. 5-13. (a) If m, = 2.0 kg, m.= 1.0 kg, and
F=3.0N, find the force of contact between the two blocks. (b} Show that if
the same force F is applied to m. rather than to m,, the force of contact be-
tween the blocks is 2.0 N, which is not the same value derived in (a). Ex-
plain. Answer: (a) 1.0 N.

SECTION 5-8

4. A space traveler whose mass is 75 kg leaves the earth. Compute his weight
{a) on the earth, (b) on Mars, whcere g = 3.8 m/s?, and (¢) in interplanetary
space. (d) What is his mass at each of these locations?

SECTION 5-10

5. A car moving initially at a speed of 50 mi/h {80 km/h) and weighing 3000 b
(13,000 N) is brought to a stop in a distance of 200 ft (61 m). Find (a) the
braking force, and (b) the time required to stop. Assuming the same brak-
ing force, find (c¢) the distance, and (d) the time required to stop if the car
was going 25 mi/h (40 km/h) initially.

Answer: (a) 1300 1b (5400 N). (b) 5.5 s (5.5 s). (c) 50 ft (15 m). (d) 2.7 s (2.7 s).

6. A body of mass m is acted on by two forces F, and F., as shown in Fig. 5-14.
If m= 50kg F,=3.0N, and F.=4.0 N, find the vector acceleration of the
body.

7. An electron is projected horizontally at a speed of 1.2 X 107 m/s into an

problems

Spring scale
O g

10 b

figure 5-12(a)
Problem 2|a)

Spring scale

figure 5-12(b)
Problem 2(b)
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11.

12.
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14.

18-

16.

17.

electric field which exerts a constant vertical force of 4.5 X 106 N on it.
The mass of the electron is 9.1 X 103! kg. Determine the vertical distance
the electron is deflected during the time it has moved forward 3.0 cm hori-
zontally. Answer: 1.5 mm.

. A body of mass 2.0 slugs is acted on by the downward force of gravity and

a horizontal force of 130 lb. Find (a) its acceleration and (b) its velocity as
functions of time, assuming it starts from rest.

. An electron travels in a straight line from the cathode of a vacuum tube to

its anode, which is exactly 1.0 cm away. It starts with zero speed and
reaches the anode with a speed of 6.0 X 10 m/s. (a) Assume constant accel-
eration and compute the force on the electron. Take the electron’s mass to
be 9.1 X 103! kg. This force is electrical in origin. (b) Compare it with the
gravitational force on the electron, which we neglected when we assumed
straight line motion. Answer: (a) 1.6 X 1015 N. (b) 8.9 X 10 3° N.
A man of mass 80 kg (weight mg = 176 1b) jumps down to a concrete patio
from a window ledge only 0.50 m (1.6 ft) above the ground. He neglects to
bend his knees on landing, so that his motion is arrested in a distance of
about 2.0 cm (0.79 in). (a) What is the average acceleration of the man from
the time his feet first touch the patio to the time he is brought fully to rest?
(b) With what average force does this jump jar his bone structure?

Let the only forces acting on two bodies be their mutual interactions. 1f
both bodies start from rest, show that the distances traveled by each are
inversely proportional to the respective masses of the bodies.

Determine the frictional force of the air on a body of mass 0.25 kg falling
with an acceleration of 9.2 m/s2.

A charged sphere of mass 3.0 X 10 * kg is suspended from a string. An elec-
tric force acts horizontally on the sphere so that the string makes an
angle of 37° with the vertical when at rest. Find (a) the magnitude of the
electric force and (b) the tension in the string.

Answer: (a) 2.2 X 103 N. (b} 3.7 X 103 N.

A block of mass M is pulled along a horizontal frictionless surface by a
rope of mass m, as shown in Fig. 5-15. A horizontal force P is applied to
one end of the rope. (a) Show that the rope must sag, even if only by an
imperceptible amount. Then, assuming that the sag is negligible, find ()
the acceleration of rope and block, (c] the force that the rope exerts on the
block M, and (d) the tension in the rope at its midpoint.

Ty 1 Ty Ts L

my mo : m3
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Three blocks are connected, as shown in Fig. 5-16, on a horizontal fric-
tionless table and pulled to the right with a force T5 = 60 N. If m; = 10 kg,
m, =20 kg, and m; = 30 kg, find the tensions T, and T>. Draw an analogy to
bodies being pulled in tandem, such as an engine pulling a train of coupled
cars. Answer: Ti =10 N, T. =30 N.
A rocket and its payload have a total mass of 50,000 kg (weight mg =
110,250 1b). How large is the thrust of the rocket engine when (a) the
rocket is “hovering’’ over the launch pad, just after ignition, and () when
the rocket is accelerating upward at 20 m/s? (66 ft/s?)?

How could a 100-1b object be lowered from a roof using a cord with a break-
ing strength of 87 Ib without breaking the cord?

Answer: Lower object with an acceleration = 4.2 ft/s2.

G427
figure 5-13
Problem 3

F;

F

figure 5-14
Problem 6

V2

figure 5-15
Problem 14

figure 5-16
Problem 15
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3. A block is released from rest at the top of a frictionless inclined plane 16 m

long. It reaches the bottom 4.0 s later. A second block is projected up the

plane from the bottom at the instant the first block is released in such a

way that it returns to the bottom simultaneously with the first block. (a)

Find the acceleration of each block on the incline. (b} What is the initial

velocity of the second block? (¢) How far up the incline does it travel? |d)

What angle does the plane make with the horizontal?

A block of mass m, = 3.0 slugs on a smooth inclined plane of angle 30° is

connected by a cord over a small frictionless pulley to a second block of

mass m: = 2.0 slugs hanging vertically |Fig. 5-17). (@) What is the accelera-
tion of each body? [b) What is the tension in the cord?

Answer: |a) 3.2 ft/s2. (b) 58 Ib.

. A block is projected up a frictionless inclined plane with a speed vo. The
angle of incline is 6. (@) How far up the plane does it go? (b) How long does
it take to get there? (¢) What is its speed when it gets back to the bottom?
Find numerical answers for § = 30° and v, = 8.0 ft/s.

An elevator weighing 6000 1b is pulled upward by a cable with an accelera-
tion of 4.0 ft/s2. (a) What is the tension in the cable? {b) What is the tension
when the elevator is accelerating downward at 4.0 ft/s?, but is still moving
upward? Answer: |a) 6800 1b. {b) 5300 Ib.

. A lamp hangs vertically from a cord in a descending elevator. The elevator
has a deceleration of 8.0 ft/s? (2.4 m/s?) before coming to a stop. (a) If the
tension in the cord is 20 1b {89 NJ, what is the mass of the lamp? (b) What is
the tension in the cord when the elevator ascends with an acceleration of
8.0 ft/s? (2.4 m/s?)?

. An 80-kg man is parachuting and experiencing a downward acceleration of

2.5 m/s?. The mass of the parachute is 5.0 kg. (@) What is the value of the

upward force exerted on the parachute by the air? {b) What is the value of

the downward force exerted by the man on the parachute?

Answer: (a) 620 N. |b) 580 N.

A research balloon of total mass M is descending vertically with downward

acceleration a. How much ballast must be thrown from the car to give the

balloon an upward acceleration a?

. An elevator consists of the elevator cage (A}, the counterweight (B), the
driving mechanism |C), and the cable and pulleys as shown in Fig. 5-18. The
mass of the cage is 1100 kg and the mass of the counterweight is 1000 kg.
Neglect friction and the mass of the cable and pulleys. The clevator accel-
erates upward at 2.0 m/s? and the counterweight accelerates downward at
the same rate. (a) What is the value of the tension 7,7 (b) T»? (¢) What force
is exerted on the cable by the driving mechanism?
Answer: (a) 1.3 © 10* N. (b)0.78 X 10* N. (c) 5.2 X 10 N, toward the counter-
weight.
A 100-kg man lowers himself to the ground from a height of 10 m by means
of a rope passed ovcr a frictionless pulley and attached to a 70-kg sandbag,
(a) With what speed does the man hit the ground’® (b) Is therc anything hc
could do to reduce the speed with which he hits the ground?
Someone exerts a force F directly up on the axle of the pulley shown in Fig.
5-19. Consider the pulley and string to be massless and the bearing friction-
less. Two bodies, m, of mass 1.0 kg and m. of mass 2.0 kg, are attached, as
shown, to the opposite ends of the string which passes over the pulley.
The body m: is in contact with the horizontal floor. (a) Draw a free body
diagram for the pulley and for each of thc masses. (b) What is the largest
valuc the force F may have so that m. will remain at rest on the floor? ¢}
What is the tcnsion in the string if the upward force F 1s 100 N7 (d) With
the tension determined m part (¢), what is the acccleration of 1,2
Answer: 1b)39 N. (¢) 50 N. {d) 40 m/s?, upward.
. A 10-kg monkey 1s clhimbing a massless rope attached to a 15-kg mass over
a lfrictionless!) tree limb. (@) Explain quantitatively how the monkey can

my my

30°
figure 5-17
Problem 19

C
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figure 5-18
Problem 25
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figure 5-19
Problem 27
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climb up the rope so that he can raise the 15-kg mass off the ground. if,
after the mass has been raised off the ground, the monkey stops climbing
and holds on to the rope, what will now be (b) his acceleration and (c) the
tension in the rope?

A plumb bob hanging from the ceiling of a railroad car acts as an accelerom-
eter. (a) Derive the general expression relating the horizontal acceleration
a of the car to the angle # made by the bob with the vertical. (b) Find a
when 6 = 20°. (¢) Find # when a = 5.0 ft/s2.

Answer: (a) a= g tan 0. (b) 12 ft/s2. (c] 8.9°.

A uniform flexible chain of length I, with weight per unit length A, passes
over a small, frictionless, massless pulley. It is released from a rest position
with a length of chain x hanging from one side and a length I — x from the
other side. Find the acceleration a as a function of x.

Two particles, each of mass m, are connected by a light string of length 21,
as shown in Fig. 5-20. A continuous force F is applied at the midpoint of the
string (x = 0) at right angles to the initial position of the string. Show that
the acceleration of m in the direction at right angles to F is given by

E b'e

ar

in which x is the perpendicular distance of one of the particles from the
line of action of F. Discuss the situation when x = .
A chain consisting of five links, each of mass 0.10 kg, is lifted vertically
with a constant acceleration of 2.5 m/s?, as shown in Fig. 5-21. Find (a) the
forces acting between adjacent links, (b) the force F exerted on the top link
by the agent lifting the chain, and (c) the net force acting on each link.
Terminal velocity. The resistance of the air to the motion of bodies in free
fall depends on many factors, such as the size of the body and its shape, the
density and temperature of the air, and the velocity of the body through the
air. A useful assumption, only approximately true, is that the resisting force
fr is proportional to the velocity and oppositely directed; that is, f; =—kv,
where k is a constant whose value in any particular case is determined by
factors other than velocity.

Consider free fall of an object from rest through the air.

(a) Show that Newton'’s second law gives
dy d*y

— ky= — =
mg v =ma or mg — k TR

{b) Show that the body ceases to accelerate when it reaches a velocity
vy = mg/k, called the terminal velocity.

(c) Prove, by substituting it in the equation of motion of part (a), that the
velocity varies with time as

W= V‘l“ — gkt m)
and plot v versus t.

(d) Sketch qualitatively curves of y versus ¢ and a versus ¢ for this mo-
tion, noting that the initial acceleration is g and the final acceleration is
Zero.

A right triangular wedge of mass M and angle 6, supporting a cubical block
of mass m on its side, rests on a horizontal table, as shown in Fig. 5-22. (a)
What horizontal acceleration a must M have relative to the table to keep m
stationary relative to the wedge, assuming frictionless contacts? |b) What
horizontal force F must be applied to the system to achieve this result,
assuming a frictionless table top? (c] Suppose no force is supplied to M and
both surfaces are frictionless. Describe the resulting motion.

A block, mass m, slides down a frictionless incline making an angle # with
an elevator floor. Find its acceleration relative to the incline in the follow-
ing cases. (a) Elevator descends at constant speed v. (b] Elevator ascends at
constant speed v. |c] Elevator descends with acceleration a. (d) Elevator

- - 2[ -
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figure 5-20
Problem 31
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figure 5-21
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In Chapter 5 we considered particle dynamics for bodies subject to a

force that was constant in both magnitude and direction. The forces that
we dealt with were exerted by the earth or by taut cords, that is, they
were either gravitational or elastic. In this chapter we consider another
kind of force, that resulting from friction.

We shall also discuss the dynamics of uniform circular motion, in
which the force, although constant in magnitude, changes in direction
with time. In Chapter 10 we shall consider problems in which the force,
although constant in direction, changes in magnitude with time, as
when one body exerts a transient force on another during a collision.
Finally, in Chapter 15, we shall consider problems in which the force
changes in both magnitude and direction with time, such as the force
exerted by a spring on an oscillating mass suspended from it.

If we project a block of mass m with initial velocity v, along a long
horizontal table, it eventually comes to rest. This means that, while it
is moving, it experiences an average acceleration a that points in the
direction opposite to its motion. If (in an inertial frame) we see that a
body is being accelerated, we always associate a force, defined from
Newton'’s second law, with the motion. In this case we declare that the
table exerts a force of friction, whose average value is ma, on the sliding
block.

Actually, whenever the surface of one body slides over that of an-

*See “The Friction of Solids” by E. H. Freitag, in Contemporary Physics, Vol. 2, 1961,
p. 198, for a good general reference; see also the article “Friction” in Britannica 3.

6G-1
INTRODUCTION

6-2
FRICTIONAL FORCES™

97




98

PARTICLE DYNAMICS =11

6

CHAP.

other, each body exerts a frictional force on the other. The frictional
force on each body is in a direction opposite to its motion relative to
the other body. Frictional forces automatically oppose the motion and
never aid it. Even when there is no relative motion, frictional forces
may exist between surfaces.

Although we have ignored its effects up to now, friction is very im-
portant in our daily lives. Left to act alone it brings every rotating shaft
to a halt. In an automobile, about 20% of the engine power is used to
counteract frictional forces. Friction causes wear and seizing of moving
parts and many engineering man-hours are devoted to reducing it. On
the other hand, without friction we could not walk; we could not hold
a pencil and if we could it would not write; wheeled transport as we
know it would not be possible.

We want to know how to express frictional forces in terms of the
properties of the body and its environment; that is, we want to know
the force law for frictional forces. In what follows we consider the
sliding (not rolling) of one dry {unlubricated) surface over another. As
we shall see later, friction, viewed at the microscopic level, is a very
complicated phenomenon® and the force laws for dry, sliding friction
are empirical in character and approximate in their predictions. They
do not have the elegant simplicity and accuracy that we find for the
gravitational force law Chapter 16) or for the electrostatic force law
(Chapter 26). It is remarkable, however, considering the enormous
diversity of surfaces one encounters, that many aspects of frictional be-
havior can be understood qualitatively on the basis of a few simple
mechanisms. _

Consider a block at rest on a horizontal table as in Fig. 6-1. Attach a
spring to it to measure the force required to set the block in motion. We
find that the block will not move even though we apply a small force.
We say that our applied force is balanced by an opposite frictional force
exerted on the block by the table, acting along the surface of contact.
As we increase the applied force we find some definite force at which
the block just begins to move. Once motion has started, this same force
produces accelerated motion. By reducing the force once motion has
started, we find that it is possible to keep the block in uniform motion
without acceleration; this force may be small, but it is never zero.

The frictional forccs acting between surfaces at rest with respect to
each other are called forces of static friction. The maximum force of
static friction will be the same as the smallest force necessary to start
motion. Once motion is started, the frictional forces acting between
the surfaces usually decrease so that a smaller force is necessary to
maintain uniform motion. The forces acting between surfaces in rela-
tive motion are called forces of kinetic friction.

The maximum force of static friction bctween any pair of dry un-
lubricated surfaces follows thcse two empirical laws. (1) It is approxi-
mately independent of the area of contact, over wide limits and (2} it is
proportional to the normal force. The normal force, sometimes called
the loading force, is the one which either body exerts on the other at
right angles to their mutual interface. It arises from the clastic deforma-
tion of the bodies in contact, such bodies never really being cntirely
rigid. For a block resting on a horizontal table or sliding along it, the
normal force is equal in magnitude to the weight of the block. Becausc

See, for example, “Stick and Slip” by Ernest Rabinowicz, in Scientific American, May
1956
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fignre 6-1

A block being put into motion as
applied force F overcomes frictional
forces. In the first four drawings the
applied force is gradually increased
from zero to magnitude uN. No
motion occurs until this point
because the frictional force always
just balances the applied force. The
instant F becomes greater than
u:N, the block goes into motion, as
is shown in the fifth drawing. In
general, uuN < uN; this leaves an
unbalanced force to the left and the
block accelerates. In the last
drawing F has been reduced to
equal g N. The net force is zero,
and the block continues with
constant velocity.

motion; fx <F



the block has no vertical acceleration, the table must be exerting a force
on the block that is directed upward and is equal in magnitude to the
downward pull of the earth on the block, that is, equal to the block’s
weight.

The ratio of the magnitude of the maximum force of static friction to
the magnitude of the normal force is called the coefficient of static
friction for the surfaces involved. If f; represents the magnitude of the
force of static friction, we can write

f\ = /-L.\'N/ (6_]‘]

where w, is the coefficient of static friction and N is the magnitude of
the normal force. The equality sign holds only when /. has its maximum
value.

The force of kinetic friction f. between dry, unlubricated surfaces
follows the same two laws as those of static friction. (1) It is approxi-
mately independent of the area of contact over wide limits and (2) it is
proportional to the normal force. The force of kinetic friction is also
reasonably independent of the relative speed with which the surfaces
move over each other.

The two laws of friction above were first discovered experimentally by Leonardo
da Vinci {1452-1519). Leonardo’s statement of the two laws was remarkable,
coming as it did about two centuries before the concept of force was developed
by Newton. Leonardo’s formulation was: {1} “Friction made by the same weight
will be of equal resistance at the beginning of the movement though the con-
tact may be of different breadths or lengths” and (2} “Friction produces double
the amount of effort if the weight be doubled.” The French scientist, Charles A.
Coulomb, {1736-1806) did many experiments on friction and pointed out the
difference between static and kinetic friction.

The ratio of the magnitude of the force of kinetic friction to the mag-
nitude of this normal force is called the coefficient of kinetic friction.
If /i represents the magnitude of the force of kinetic friction,

fl; = ,U/IcN/ l6_2]

where w; is the coefficient of kinetic friction.

Both u. and w. are dimensionless constants, each being the ratio of
(the magnitudes of) two forces. Usually, for a given pair of surfaces
s > wr. The actual values of us and ux depend on the nature of both the
surfaces in contact. Both u, and w; can exceed unity, although com-
monly they are less than one. Notice that Egs. 6-1 and 6-2 are relations
between the magnitudes only of the normal and frictional forces. These
forces are always directed perpendicularly to one another.

On the atomic scale even the most finely polished surface is far from plane.
Figure 6-2, for example, shows an actual profile, highly magnified, of a steel
surface that would be considered to be highly polished. One can readily believe
that when two bodies are placed in contact, the actual microscopic area of con-
tact is much less than apparent macroscopic area of contact; in a particular case
these areas can be easily in the ratio of 1 to 10%.

The actual (microscopic) area of contact is proportional to the normal force,
because the contact points deform plastically under the great stresses that de-
velop at these points. Many contact points actually become ““cold-welded” to-
gether. This phenomenon, surface adhesion, occurs because at the contact
points the molecules on opposite sides of the surface are so close together that
they exert strong intermolecular forces on each other.

When one body {a metal, say) is pulled across another, the frictional re-
sistance is associated with the rupturing of these thousands of tiny welds,

figure 6-2
A highly magnified view of a
section of a finely polished steel
surface. The section was cut at an
angle so that vertical distances are
exaggerated by a factor of ten with
respect to horizontal distances. The
surface irregularities are several
thousand atomic diameters high.
From Friction and Lubrication of
Solids, by F. P. Bowden and

D. Tabor, Clarendon Press, 1950.
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which continually reform as new chance contacts are made (see Fig. 6-3). Radio-
active tracer experiments have shown that, in the rupturing process, small
fragments of one metallic surface may be sheared off and adhere to the other
surface. If the relative speed of the two surfaces is great enough, there may be
local melting at certain contact areas even though the surface as a whole may
feel only moderately warm.

figure 6-3

Sliding friction. (a) The upper body

is sliding to the right over the

‘ lower body in this enlarged

- v diagram. (b) A further enlarged
o view showing two spots where
surface adhesion has occurred. Force
. 7 isrequired to break these welds
/ apart and maintain the motion.

(b) (a)

The coefficient of friction depends on many variables, such as the nature of
the materials, surface finish, surface films, temperature, and extent of con-
tamination. For example, if two carefully cleaned metal surfaces are placed in a
highly evacuated chamber so that surface oxide films do not form, the coeffi-
cient of friction rises to enormous values and the surfaces actually become
firmly “welded” together. The admission of a small amount of air to the cham-
ber so that oxide films may form on the opposing surfaces reduces the coeffi-
cient of friction to its “normal” value. )

With these complications it is not surprising that there is no exact theory of
dry friction and that the laws of friction are empirical. The surface adhesion
theory of friction for metals leads to a ready understanding of the two laws of
friction mentioned above however.«(1) The microscopic contact area, which
determines the frictional force /i, is proportional to the normal force N and thus
fi is proportional to N, as Eq. 6-2 shows. (2) The fact that the frictional force is
independent of the apparent area of contact means, for example, that the force
required to draga metal “brick’’ along a metal table is the same no matter which
face of the brick is in contact with the table. We can understand this only if the
microscopic area of contact is the same for all positions of the brick, and this
is indeed the case. With the largest face down, there are a relatively large num-
ber of relatively small area contacts supporting the load; with the smallest facc
down there arc fewer contacts (because the apparent contact area is smaller),
but the area of individual contact is larger by just the same factor because of the
higher pressure exerted by the up-ended brick on this smaller number of con-
tacts supporting the same load.

The frictional force that opposes one body rolling over another is much less
than that for a sliding motion and this, indced, is the advantage of the whecl
over the sledge. This reduced friction is due in large part to the fact that, in
rolling, the microscopic contact welds are “"peeled’” apart rather than ““shcared”
apart as in sliding friction. This will reduce the frictional force by a large factor.

Frictional resistance in dry, sliding, friction can bc considcrably reduced by
lubrication. A mural in a grotto in Egypt dating back to 1900 B.c. shows a large
stone statue being pulled on a sledge while a man in front of the sledge pours
lubricating oil in its path. A still more effective technique is to introduce a layer
of gas between the sliding surfaces; the dry ice puck and the gas-supported bear-
ing arc two cxamplces. Friction can be reduced still further by suspending a
rotating object in an evacuated space by means of magnetic forces. J. W. Beams,
for example, has spun a 30-1b rotor of this typc at 1000 rev/s; when the drive
was cut off, the rotor lost specd at the rate of only 1 rev/s in a day.*

* See “Ultrahigh-Speed Rotation,” Jesse W. Beams in Scientific American. April 1961,



Examples of the application of the empirical force law for friction
follow. The coefficients of friction given are assumed to be constant.
Actually p; can be regarded as a good average value that is not greatly
different from the value at any particular speed in the range.

A block is at rest on an inclined plane making an angle # with the horizontal,
as in Fig. 6-da. As the angle of incline is raised, it is found that slipping just
begins at an angle of inclination 6,. What is the coefficient of static friction be-
tween block and incline?

()]

The forces acting on the block, considered to be a particle, are shown in
Fig. 6-4b. W is the weight of the block, N the normal force exerted on the block
by the inclined surface, and f; the tangential force of friction exerted by the in-
clined surface on the block. Notice that the resultant force exerted by the in-
clined surface on the block, N + f,, is no longer perpendicular to the surface of
contact, as was true for smooth surfaces (f; = 0). The block is at rest, so that

N +f,+W=0.

Resolving our forces into x- and y-components, along the plane and the normal
to the plane, respectively, we obtain

N — W cos =0,
(6-3)
fe — W sin #=0.

However, f; = usN. If we increase the angle of incline slowly until slipping just
begins, then for that angle, 6 = 6, and we can use f; = wN. Substituting this into
Egs. 6-3, we obtain

N = W cos 6,
and w:N = W sin 6,
so that Ms = tan 0.

Hence measurement of the angle of inclination at which slipping just starts
provides a simple experimental method for determining the coefficient of static
friction between two surfaces.

You can use similar arguments to show that the angle of inclination 6y re-
quired to maintain a constant speed for the block as it slides down the plane,
once it has been started by tapping, is given by

M = tan 6y,

where 6, < 6, With the aid of a ruler you can now determine w. and p for a
coin sliding down your textbook.

Consider an automobile moving along a straight horizontal road with a speed
vo. If the coefficient of static friction between the tires and the road is u,, what
is the shortest distance in which the automobile can be stopped?

The forces acting on the automobile, considered to be a particle, are shown

EXAMPILE |

figure 6-4

Example 1. (@) A block at rest on a
rough inclined plane. (b) A free-body
force diagram for the block.

EXAMPLE 2
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in Fig. 6-5. The car is assumed to be moving in the positive x-direction. If we y
assume that f; is a constant force, we have uniformly decelerated motion.

From the relation (see Eq. 3-16) AN
2 — w2 1 9y  ——
V2 = v + 2ax, IR |
. . . D = -
with the final speed v = 0, we obtain = | <57 j x
o) -
X = _Vnz/ 2 a, e 27 % St LY,
where the minus sign means that a points in the negative x-direction. ;7
To determine a, apply the second law of motion to the x-component of the

figure 6-5
Example 2. The forces on a
—fi=ma=(W/gla or a=—g(fIW) decelerating automobile.

motion:

From the y components we obtain
N-WwW=0 or N=W,
so that s = fof N = f/W
and a=—ug.
Then the distance of stopping is
x = —v¢?/2a = v2/28 .. (6-4)

The greater the initial speed, the longer the distance required to come to a
stop; in fact, this distance varies as the square of the initial velocity. Also, the
greater the coefficient of static friction between the surfaces, the less the dis-
tance required to come to a stop.

We have used the coefficient of static friction in this problem, rather than
the coefficient of sliding friction, because we assume there is no sliding be-
tween the tires and the road. We have neglected rolling friction. Furthermore,
we have assumed that the maximum force of static friction (f. = uN} operates
because the problem seeks the shortest distance for stopping. With a smaller
static frictional force the distance for stopping would obviously be greater. The
correct braking technique required here is to keep the car just on the verge of
skidding. If the surface is smooth and the brakes are fully applied, sliding may
occur. In this case w: replaces u,, and the distance required to stop is seen to in-
crease from Eq. 6-4.

The assumption that the car is a particle is valid if the wheels are locked
[skidding). When the wheels rotate, internal forces (and torques) in the brake
drums must be considcred to understand work and energy ideas (see Questions
3, 4, and 5 of Chapter 8), though the result (Eq. 6-4) is correct. The rotation of
the wheels 1s explicitly considered in Chapter 13.

As a specific example, if vy = 60 mi/h = 88 ft/s = 97 km/h, and u, = 0.60 (a
typical value), we obtain

Ve (88 ft/s)?

Tug  20.60132 fusy - 200 fe=61m.

Noticc that the mass of the car does not appear in Eq. 6-4. How can you ex-
plain the practicc of “wcighing down’” a car in order to increase safety in driving
on icy roads? (Hint: See Prob. 6-2.)

How do the forces of friction modify the results of the examples of Section
5-10?

In Section 4-4 we pointed out that if a body is moving at uniform speed  @at

vin a circle of radius r. it experiences a centripetal acceleration a whose  THE DYNAMICS OF
magnitude is v2/r. The direction of a is always radially inward toward [ JNJFORM CIRCULAR
the center of rotation. Thus a is a variable vector because, even though  MOTION

its magnitude remains constant, its direction changes continuously as

the motion progresses.



Recall that there need not be any motion in the direction of an accel-
eration. In general, there is no fixed relation between the directions of
the acceleration a and the velocity v of a particle, as Fig. 4-7 shows. As
it happens, for a particle in uniform circular motion the acceleration a
and velocity v are always at right angles to each other.

Every accelerated body must have a force F acting on it, defined by
Newton’s second law (F = ma). Thus (assuming that we are in an iner-
tial frame), if we see a body undergoing uniform circular motion, we
can be certain that a net force F, given in magnitude by

F=ma=mv?r

must be acting on the body; the body is not in equilibrium. The direc-
tion of F at any instant must be the direction of a at that instant,
namely, radially inward. We must always be able to account for this
force by pointing to a particular object in the environment that is ex-
erting the force on the circulating, accelerating body.

If the body in uniform circular motion is a disc on the end of a string
moving in a circle on a frictionless horizontal table as in Fig. 6-6, the
force F on the disc is provided by the tension T in the string. This force
T is the net force acting on the disc. It accelerates the disc by constantly
changing the direction of its velocity so that the disc moves in a circle.
T is always directed toward the pin at the center and its magnitude is
mv?/R. If the string were to be cut where it joins the disc, there would
be no net force exerted on the disc. The disc would then move with con-
stant speed in a straight line along the direction of the tangent to the
circle at the point at which the string was cut. Hence, to keep the disc
moving in a circle, a force must be supplied to it pulling it inward to-
ward the center.

Forces responsible for uniform circular motion are called centripetal
forces because they are directed “toward the center” of the circular
motion. To label a force as “centripetal,” however, simply means that
it always points radially inward; the name tells us nothing about the
nature of the force or about the body that is exerting it. Thus, for the
revolving disc of Fig. 6-6, the centripetal force is an elastic force pro-
vided by the string; for the moon revolving around the earth the centri-
petal force is the gravitational pull of the earth on the moon; for an
electron circulating about an atomic nucleus the centripetal force is
electrostatic. A centripetal force is not a new kind of force but simply
a way of describing the behavior with time of forces that are attributable
to specific bodies in the environment. Thus a force can be centripetal
and elastic, centripetal and gravitational, or centripetal and electro-
static, among other possibilities.

Let us consider some examples of forces that act centripetally.

The Conical Pendulum. Figure 6-7a shows a small body of mass m revolving in
a horizontal circle with constant speed v at the end of a string of length L. As
the body swings around, the string sweeps over the surface of a cone. This de-
vice is called a conical pendulum. Find the time required for one complete
revolution of the body.

If the string makes an angle 6 with the vertical, the radius of the circular
path is R = L sin 6. The forces acting on the body of mass m are W, its weight,
and T, the pull of the string, as shown in Fig. 6-7b. It is clear that T + W » 0.
Hence, the resultant force acting on the body is nonzero, which is as it should
be because a force is required to keep the body moving in a circle with constant
speed.

figure 6-6

A disk m moves with constant
speed in a circular path on a
horizontal frictionless surface. The
only horizontal force acting on m is
the centripetal force T with which
the string pulls on the body.

(b)

figure 6-7

Example 3. (a) A mass m suspended
from a string of length L swings so
as to describe a circle. The string
describes a right circular cone of
semiangle 6. (b) A free-body force
diagram for m.

EXAMPLE 3

NOLLOW dVINDIID WHOLINI] 10 SOINVNAJ THL €01

‘0Fs

€9



S—11 104

+
)

PARTICLE DYNAMI(

HAP. 6

v
4

(

We can resolve T at any instant into a radial and a vertical component
T,=Tsin 6 and T.= T cos 6.
Since the body has no vertical acceleration,

T.— W=0.
But
T-= T cos 6 and W = mg,
so that
T cos 6 = mg.

The radial acceleration is v?/R. This acceleration is supplied by T,, the radial
component of T, which is the centripetal force acting on m. Hence

T, =T sin 6§ = mv?*/R.
Dividing this equation by the preceding one, we obtain
tan 6 = v?/Rg, or v? = Rg tan 6,

which gives the constant speed of the bob. If we let 7 represent the time for one
complete revolution of the body, then

R _—
V:ZL:\'Rg tan 6
T

or

= 2R 27R

= ———=—== 27 VR/(g tan 6).
v \'Rg tan 6

T

But R = L sin 6, so that
=27 V|L cos 6)/g.

This equation gives the relation between 7, L, and 6. Notice that 7, called the
period of motion, does not depend on m.
If L=1.0 m and 6 = 30°, what is the period of the motion? We have

[0 m](0.866) _

T=27r\/ 9.8 m/s? 19s

The Rotor. In many amusement parks* we find a device called the rotor. The EXAMPLE 4
rotor is a hollow cylindrical room which can be set rotating about the central
vertical axis of the cylinder. A person enters the rotor, closes the door, and
stands up against the wall. The rotor gradually increases its rotational speed
from rest until, at a predetermined speed, the floor below the person is opened
downward, revealing a deep pit. The person does not fall but remains “pinned
up’’ against the wall of the rotor. Find the coefficient of friction necessary to
prevent falling.

The forces acting on the person are shown in Fig. 6-8. W is the person'’s
weight, f; is the force of static friction between person and rotor wall, and P is
the centripetal force exerted by the wall on the person necessary to keep him
moving in a circle. Let the radius of the rotor be R and the final speed of the
passenger be v. Since the person does not move vertically, but experiences a
radial acceleration v2/R at any instant, we have

/s - W = O
and
P(= ma) = (W/g)|v¥/R).

If us is the coefficient of static friction between person and wall necessary to

figure 6-8

*See “Physics and the Amusement Park” by John L. Roeder in The Physics Teacher, Example 4. The forces on a person
September 1975. in a “rotor”’ of radius R.



prevent slipping, then f; = p” and

fs=W:,U«sP

or
W _gR
W=D "

This equation gives the minimum coefficient of friction necessary to prevent
slipping for a rotor of radius R when a particle on its wall has a speed v. Notice
that the result does not depend on the person’s weight.

As a practical matter the coefficient of friction between the textile material
of clothing and a typical rotor wall (canvas) is about 0.40. For a typical rotor the
radius is 2.0 m, so that v must be about 7.0 m/s or 25 km/h or more.

Let the block in Fig. 6-9a represent an automobile or railway car moving at
constant speed v on a level road-bed around a curve having a radius of curvature
R. In addition to two vertical forces, namely, the force of gravity W and a normal
force N, a horizontal centripetal force P acts on the car. In the case of the auto-
mobile this centripetal force is supplied by a sidewise frictional force exerted
by the road on the tires; in the case of the railway car the centripetal force is
supplied by the rails exerting a sidewise force on the inner rims of the car’s
wheels. Neither of these sidewise forces can be safely relied upon to be large
enough at all times and both cause unnecessary wear. Hence, the roadbed is
banked on curves, as shown in Fig. 6-9b. In this case, the normal force N has
not only a vertical component, as before, but also a horizontal component which
supplies the centripetal force necessary for uniform circular motion; no addi-
tional sidewise forces are needed, therefore, with a properly banked roadbed.

The correct angle 6 of banking can be obtained as follows. There is no vertical
acceleration, so that

Ncos6=W.

The centripetal force is N sin 6, so that N sin § = mv?/R. Dividing the latter
equation by the former and setting W = mg, we obtain

tan 6 = v2/Rg

Notice that the proper angle of banking depends upon the speed of the car and

EXAMPLE 5

figure 6-9
Examples.

(a) a level roadbed.
(b) a banked roadbed.
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the curvature of the road. For a given curvature, the road is banked at an angle
corresponding to an expected average speed. Often curves are marked by signs
giving the proper speed for which the road was banked.

Check the banking formula for the limiting cases v=0; R — =; v large; and
R small. Also note the similarity between Fig. 6-7 of Example 3 and Fig. 6-9b
of this example.

All forces in nature can be classified under four headings, each with a
different relative strength: (1) gravitational forces, which are relatively
very weak, (2) electromagnetic forces, which are of intermediate
strength, (3} nuclear forces which bind neutrons and protons in the
nucleus and are the strongest of all, and (4) the weak interaction force,
which is involved in the B-decay of nuclei and in the interactions of
many elementary particles (see Appendix F).

These forces are ““real” in the sense that we can associate them with
specific objects in the environment. Such forces as the tension in a rope,
the force of friction, the force that we exert on a wall by pushing on it,
or the force exerted by a compressed spring are electromagnetic forces;
all are macroscopic manifestations of the (electromagnetic) attractions
and repulsions between atoms.

In our treatment of classical mechanics so far we have assumed that our mea-
surements and observations were made from an inertial frame. This, we recall,
is a reference frame that is either at rest or is moving at constant velocity with
respect to the average positions of the fixed stars; it is the set of reference
frames defined by Newton'’s first law, namely, that set of frames in which a
body will not be accelerated (a = 0 if there are no identifiable force-producing
bodies in its environment (F = 0}. The choice of a reference frame is always ours
to make, so that if we choose to select only inertial frames, we do not restrict
in any way our ability to apply classical mechanics to natural phenomena.

Nevertheless we can, if we find it convenient, apply classical mechanics
from the point of view of an observer in a noninertial frame. Such a frame might
be one that is attached to a falling body or one that is rotating (and therefore
accelerating} with respect to the fixed stars. We sometimes choose a noninertial
reference frame when we consider, for example, the separation of liquids of
different density in a spinning centrifuge, the global circulation of the winds on
the rotating earth, or the experiences of an astronaut in an orbiting satellite.

We can apply classical mechanics in noninertial frames if we introduce non-
Newtonian forces called inertial forces. Unlike the forces that we have exam-
ined so far, we cannot associate inertial forces with any particular body in the
environment of the particle on which they act and we cannot classify them into
any of the categories listed in the first paragraph of this section. Moreover, if
we view the particle from an inertial frame, the inertial forces disappear. These
forces are, then, simply a technique that permits us to apply classical mechanics
in the normal way to events if we insist on viewing the events from a non-
inertial reference frame.

Consider a rotating merry-go-round on which a marble is lodged against a
raised rim at the outer edge. An observer on the merry-go-round is in a non-
inertial frame. As he kneels down and examines the marble he sees that, with
respect to him, it is not moving; if he pulls it away a bit from the rim toward
the center of rotation, he observes that it moves back again, as if under the
influence of a force directed radially outward. He would declare the marble to
be in equilibrium under the action of this outward force (an inertial force
called, in this case, a centrifugal force) and the radially inward force exerted by
the rim

An observer on the ground (an inertial frame) watching the marble would
describe 1t differently. He would declare the marble to be in uniform circular

6-4
CLASSIFICATION OF
FORCES; INERTIAL
FORCES



motion, accelerated radially inward with a = v2/R. The inward force F exerted
by the rim on the marble accounts for this acceleration from Newton’s second
law, or F = ma = mv?*/R. The marble is definitely not in equilibrium from the
point of view of this observer or of an observer in any inertial frame. Only if
the rim were not exerting this inward force would the marble move with uni-
form speed in a straight line and be in equilibrium. This observer would find no
trace of a force directed radially outward on the marble (the inertial force) and,
indeed, there is no room for such a force in his analysis of the motion.

It is clear from this simple example that the radially outward inertial force
{or centrifugal force) noted by the observer on the rotating merry-go-round must
have a magnitude mv?/R. Thus the magnitude of the inertial force depends on
the speed of the particle as seen from another reference frame, namely, the
ground; the speed of the particle in its own (rotating) reference frame is zero.

This example illustrates why inertial forces are non-Newtonian, namely,
Newton's third law of motion does not apply to them. That is, there is no re-
action force to the inertial (action) force. In the rotating frame, if the rim were
not present we would have an inertial (centrifugal) force acting on the marble
without any reaction force of the marble on another body. When the rim is
present we have two forces acting on the same body, the centripetal force due
to the rim and the inertial (centrifugal) force each acting on the marble. The
marble is viewed as being in equilibrium under the influence of two forces
acting on it but, as we have seen, we can have one force without the other. In
an inertial frame, on the other hand, the (action] force of the rim is the only force
on the marble and the marble exerts a {reaction| force on the rim, equal in mag-
nitude but oppositely directed. If one wished to use the terms centripetal and
centrifugal here, he would have an action-reaction pair acting on different
bodies, consistent with Newton’s third law. But in the accelerated frame, the
forces called by these names act on the same body and are not an action-reaction
pair.

In more general terms we might say that the expression F = ma used in an
inertial frame is changed to F —ma = 0 in a noninertial frame and that the inter-
pretation given to the term —ma in the latter case is that it is an (inertial) force
existing only in the accelerated frame which permits one to regard the object
acted upon as always being in equilibrium. In this sense it is sometimes sim-
pler to use a noninertial frame to describe motion, such as circular motion, the
object being regarded as at rest in such a frame.

In mechanical problems, then, we have two choices: (1) select an inertial
frame as a reference frame and consider only “real” forces, that is, forces that
we can associate with definite bodies in the environment or (2) select a non-
inertial frame as a reference frame and consider not only the “real” forces but
suitably defined inertial forces. Although we usually choose the first alterna-
tive, we sometimes choose the second; both are completely equivalent and the
choice is a matter of convenience. We shall discuss noninertial frames and
inertial forces further in Chapters I1 and 16.

In these first chapters we have laid the groundwork of classical mechanics. We
have presented the laws of motion and have given several examples of the force
laws. In later chapters we shall discuss other kinds of forces and shall continue
to develop the structure of the theory. Here we want to point out where classi-
cal mechanics stands in the framework of modern physics.

Physics is not a static body of doctrine but a developing science. Historically
there have been long periods of deep concern with a certain class of problem,
culminating, often rather suddenly and in unexpected ways, in a “break-
through” in the form of a new, more comprehensive theory.# This occurred
about 1690 (Newtonian mechanics), about 1870 (Maxwell’s theory of electro-
magnetism), 1905 (Einstein’s theory of relativity), and about 1925 (quantum

*See “The Structure of Scientific Revolutions” by Thomas Kuhn, The University of
Chicago Press, 1970.
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mechanics]. Some physicists believe that our present concern for problems in
the area of elementary particles [see Appendix F) will lead us eventually to an-
other major “breakthrough.”

As physics has evolved. many things have changed, such as the problems to
be solved and the tools we use to investigate them. But through it all the gen-
eral method of inquiry or process of solution remains basically the same. Thus
earlier theories of physics are found to have limited ranges of validity and to be
special cases of more comprehensive theories, which in turn are found to have
limitations, and so on. However, independent of any particular area or problem
In physics, we always demand that theory meet the test of experiment, we
search for quantities that are invariant, we are guided by a belief in the sim-
plicity and symmetry of nature, and we seek and use analogies and models.
Major unifying concepts arise which are valid in all domains of physics, such
as the conservation laws. All this is important to understand for its own sake,
independent of mastery of any particular special topic, and is exemplified
throughout the book. If, in addition to mastering classical mechanics, the stu-
dent comes to understand this process, he will find it much easier to understand
and master such theories as relativity theory and quantum theory, wherein the
same method of inquiry applies but whose areas of application, unlike those of
classical mechanics, are not a familiar part of his daily life experience.

Classical mechanics, like all theories in physics, is based on observations of
things that happen in nature. It will help to point out how limited are our nor-
mal experiences of natural phenomena. This is particularly true during our
formative years which is the period when we develop our intuitive notions
(often false!) of what is “common sense’”” in natural events and what is not.

For example, the highest speed that can be used to transmit signals from one
point to another is the speed of light (¢ = 186,000 mi/s = 3.00 x 10* m/s) and
this seems to set an upper limit to the speeds of material objects. However,
gross objects, even the fastest of them, such as jet planes or earth satellites,
have speeds v that are very much less than ¢. For an earth satellitc moving at
17,000 mi/h, v/c is only 0.00025. Classical mechanics was built up over several
centuries on a body of observations of relatively slow-moving objects such as
planets, balls rolling down inclined planes, and falling bodies. Our experience
with moving objects has indeed been limited. until the last few decades, to a
tiny fraction of the range of possible speeds.

During these last decades it has become possible to make measurements on
small particles, of potentially high speed, such as electrons, protons, and other
tundamental particles. A proton accelerated in the 30-billion electron volt
accelerator at the Brookhaven National Laboratories has, for example, v/c =
0.98. Are we to expect that the laws of classical mechanics, which work so
beautifully when v/c < 1, will also describe correctly the collisions, decays, and
interactions of these elementary particles moving at such high spceds? This is
the grossest kind of extrapolation and indecd we find by experiment that it
simply does not work; classical mechanics gives answers that do not agrce with
experiment if the speeds of the objects involved are appreciable compared to
the speed of light. This does not make us think less of classical mechanics,
which serves so well in the region of low speed, precisely the very important
region of our daily experiences. We are led, however. to vicw classical me-
chanics as a special case of a more general theory which would hold for all
speeds up to the speed of light.

Einstein, in 1905, first proposed this more general theory, the special theory
of relativity.* We shall discuss it again later but will state here its fundamental
postulatc. This is that the speed of light c is the same for all observcers in inertial
frames, no matter what the motion of the light source may be. In other words,
if a light source is moving directly toward you at a spced v, you would measure
the same valuc for ¢, if you observed a light pulse passing you, no matter what
the value of v; you would also obtain speed ¢ for the light pulse if the source
were rushing away from you at speed v. If this basic assumption seems to vio-
late “common sense,” we must realize that our mtuitive feclings are based on

For a summary of special relativity, see Supplementary Topic V.



“common sense at low speeds.” We have no direct experience in our daily
activities about what really happens in nature at high speeds. Furthermore, all
of Einstein’s predictions (1) agree with experiment and (2) reduce to the predic-
tions of classical mechanics at low speeds.

We list here just one of the predictions of the theory of relativity that is at
variance with classical mechanics. If two observers watch an object moving
parallel to the common x — x’-axis in Fig. 4-11, they will find, from Eq. 4-19,

v=v' +u, {6-5)

where v’ is the speed as measured by observer S’, v is that measured by observer
S, and u is the relative speed of separation of the two reference frames. Note that
there is nothing in Eq. 6-5 to prevent v from exceeding c if v’ and u are large
enough.

The theory of relativity predicts that Eq. 6-5 is a special case of a more gen-
eral formula, namely,

v +u
s bl
Note that for v/ < ¢ and u < ¢ Eq. 6-6 does indeed reduce to Eq. 6-5. Also, if
v' < cand u < ¢, then v cannot exceed c. If v =u=0.8 ¢, for example, Eq. 6-6
yields v = 0.975 c¢; Eq. 6-5, on the other hand, yields v = 1.6 ¢, which is con-
trary to experience.

For gross objects, Eqs. 6-5 and 6-6 give the same results within experimental
error, so that we naturally use the simpler, Eq. 6-5. If two satellites moving in
opposite directions have speeds v’ = u = 17,000 mi/h, the denominator in Eq.
6-6 has the value 1.0000000007, so that the speed v of one satellite as seen from
the other differs very slightly from the value v’ + u predicted by Eq. 6-5. It would
take speeds almost 3000 times as great as above, nearly 50 million mi/h, gen-
erally achievable only in the subatomic domain, to obtain a difference as great
as one-half of one percent in the two formulas.

We point out a second way in which our daily experiences are limited,
namely, that all the objects that we normally deal with have masses that greatly
exceed, for example, the electron mass (m =9.11 x 103! kg). This turns out to
have an interesting consequence, closely related to the very concept of “par-
ticle’”” on which classical mechanics is based. We have not hesitated to assign a
mass m, a position x, and a velocity v, to a particle, assumed to be moving along
the x-axis.* If we are asked within what accuracy Ax and Av, we could measure
the position x and the velocity v, respectively, we would be inclined to say that,
although there might be limits in practice there are none in principle and,
with sufficient attention to methods of measurement, we can specify x and v,
as closely as we wish. Experiment seems to confirm this view for large objects
like golf balls.

When we deal with objects of very small mass, however, such as electrons,
we learn that the very procedures of measurement introduce fundamental un-
certainties and that, in fact, the more precise our knowledge of x becomes the
less precise is our knowledge of v, and conversely. We can express this in terms
of the famous Heisenberg uncertainty relation, which we write as

h
Ax =
* m Avy

(6-7)

in which h (Planck’s constant) is a fundamental constant of nature and has the
value h = 6.63 x 10 3 kg m?/s. Equation 6-7 shows clearly that if Av, is very
small (which means that we know v, very precisely), then Ax must be rela-
tively large (which means that we do not know x very precisely). Thus it does
not seem possible to measure both the position and the velocity of a particle to
any given precision at the same time. If we cannot do this, then our whole con-
cept of a particle as a mass point following a trajectory, which is a basic concept
of classical mechanics, is open to question.

*We assume v, < ¢ so that considerations of relativity do not enter this new discussion.

(1] |
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Just as for relativity theory, these considerations of quantum mechanics
simply do not make any difference for the gross objects of our daily experience.
Consider a ball bearing with a speed of 10° m/s and a mass of 1.0 g (= 10-3 kg).
Let us assume that we know the speed to be accurate to 0.1%, which means that
Av, =0.001 % 10® = 1 m/s. The uncertainty in the position of the ball bearing is
now given by Eq. 6-7 as

e 6.63 x 1073 kg m?/s
© 1103 kgl(l m/s)

In

7 X108 m

This is such a small distance (being 10 5 times smaller than an atomic nucleus!)
that we could not possibly detect any limitation on the measurement of x set
by Eq. 6-7.

Consider, however, not a ball bearing but an electron (m =9.11 x 103! kg)
whose speed 1s measured to be 2 x 10° m/s, which is about the speed of an elec-
tron in a hydrogen atom. If we assume that we know this speed to be accurate
to, say, 1%, then Av, = 0.01 x 2 X 10° m/s = 2 X 10* m/s. The uncertainty in
position predicted by Eq. 6-7 is then

o = 6.63 < 10-* kg m?/s
T 911 X 1073 kg2 < 10 * m/s)

=3XxX10 *m.

Since the radius of a hydrogen atom is about 5 X 10 ' m we see that the uncer-
tainty with which we can locate the electron in the hydrogen atom, assuming
that we have measured its speed as accurately as we claim, is 600 times the
radius of the atom' The concept of “particle’”” does not mean much under these
circumstances. This simply means that we cannot use classical mechanics to
describe the motions of electrons in atoms; we need quantum mechanics.

The situation is very much like that of relativity theory. Ideas that we find
acceptable in a certain region of experience (ball bearings) fall down when we
apply them to a region outside our direct normal experience |electrons in
atoms). Once again the solution is the same: Classical mechanics turns out to
be an important special case of a more general theory. In this case the general
theory is that of quantum mechanics developed about 1925 to 1926 by Heisen-
berg, Schradinger, Born, and others. Once again, quantum mechanics does not
detract from the merit of classical mechanics, which continues to give results
that agree admirably with experiment for particles of relatively large mass.

The situation most remote from our daily experience deals with particles
that have both small mass and high speed. Here we must use a still more gen-
eral theory, relativistic quantum mechanics, which combines both relativity
theory and quantum mechanics; such a theory was first developed by Dirac in
1927.

In the rest of our treatment of mechanics we return to the familiar special
casc of our daily experience, that of relatively massive and relatively slow-
moving objccts (classical mechanics). From timc to time we will point out
parenthetically how the predictions of classical mechanics must be modified
when we depart from this region of expericnce.

1. Therc is a limit beyond which further polishing of a surface increases
rather than decreases frictional resistance. Can you cxplain this?

o

Is 1t unrcasonablc to cxpect a coefficient of friction to cxceed unity?

3. How could a person who is at rest on completcly frictionless ice covering a
pond reach shore? Could he do this by walking, rolling, swinging his arms,
or kicking his feet? How could a person be placed in such a position in the
first place?’

4. Explain how the range of your car’s headlights limits the safe driving speed
at night.

5 Your car skids across the center line on an icy highway. Should you turn

the front wheels in the direction of skid or in the opposite direction (a) when

questions
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14.
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16.

17.

18.

19.

20.

you want to avoid a collision with an oncoming car, {b} when no other car
is near but you want to regain control of the steering?

. If you want to stop the car in the shortest distance on an icy road, should

you (a) push hard on the brakes to lock the wheels, (b) push just hard enough
to prevent slipping, or (¢} “pump’’ the brakes?

. Discuss how the choice of angle for maximum range of a projectile would

be affected by the resistance of the air to motion of the projectile through it.

. Why are the train roadbeds and highways banked on curves!
. How does the earth’s rotation affect the apparent weight of a body at the

equator?

Explain why a plumb bob will not hang exactly in the direction of the
earth’s gravitational attraction at most latitudes.

Suppose you need to measure whether a table top in a train is truly hori-
zontal. If you use a spirit level, can you determine this when the train is
moving down or up a grade? When the train is moving along a curve? {Hint:
there are two horizontal components.)

In the conical pendulum of Example 3, what happens to the period 7 and the
speed v when # =90°? Why is this angle not achievable physically? Discuss
the case for 6 = 0°.

A coin is put on a photograph turntable. The motor is started, but before
the final speed of rotation is reached, the coin flies off. Explain.

Suppose that a body that is acted upon by exactly two forces is accelerated.
Does it then follow that (a} the body cannot move with constant speed?
(b) the velocity can never be zero? (c) the sum of the two forces cannot be
zero? (d) the two forces must act in the same line?

A car is riding on a country road that resembles a roller coaster track. If the
car travels with uniform speed, compare the force it exerts on a horizontal
section of the road to the force it exerts on the road at the top of a hill and
at the bottom of a hill. Explain.

A passenger in the front seat of a car finds himself sliding toward the door
as the driver makes a sudden left turn. Describe the forces on the passenger
and on the car at this instant if (a) the motion is viewed from a reference
frame attached to the earth and (b} if attached to the car.

Astronauts in the orbiting Skylab spacecraft want to keep a daily record of
their weight. Can you think how they might do it, considering that they are
‘weightless’?

What conclusion might a physicist draw if, while standing in an elevator,
he observes that unequal masses hung over a pulley remain balanced, that
is, there is no tendency for the pulley to turn?

Explain how the question “What is the linear velocity of a point on the
equator?’’ requires an assumption about the reference frame used. Show
how the answer changes as you change reference frames.

What is the distinction between inertial reference frames and those differ-
ing only by a translation or rotation of the axes?

SECTION 6-2

L.

A hockey puck weighing 0.25 1b (1.1 NJ slides on the ice for 50 ft (15 m)
before it stops. (a) If its initial speed was 20 ft/s (6.1 m/s), what is the force
of friction between puck and ice? (b) What is the coefficient of kinetic fric-
tion? Answer: (a) 0.031 1b (0.14 N). (b) 0.12 (0.13).

. Suppose that only the rear wheels of an automobile can accelerate it, and

that half the total weight of the automobile is supported by those wheels.
(a) What is the maximum acceleration attainable if the coefficient of static
friction between tires and road is us? (b) Take ps = 0.35 and get a numerical
value for this acceleration.
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Frictional heat generated by the moving ski is the chief factor promoting
sliding in skiing. The ski sticks at the start, but once in motion will melt
the snow beneath it. Waxing the ski makes it water repellent and reduces
friction with the film of water. A magazine reports that a new type of
plastic ski is even more water repellent and that on a gentle 700-ft slope in
the Alps, a skier reduced his time from 61 to 42 s with new skis. (a) Deter-
mine the average accelerations for each pair of skis. |b) Assuming a 3°slope
compute the coefficient of kinetic friction for each case.

Answer: (a) 0.38 ft/s?; 0.79 ft/s2 (b) 0.041; 0.028.

A fireman weighing 160 1b (710 N slides down a vertical pole with an aver-
age acceleration of 10 ft/s? |3 m/s?). What is the average vertical force he
exerts on the pole?

A man drags a 150-1b crate across a floor by pulling on a rope inclined 15°
above the horizontal. (a) If the coefficient of static friction is 0.50, what
tension in the rope is required to start the crate moving? (b} If .= 0.35,
what is the initial acceleration of the crate?

Answer: |a) 68 1b. (b) 4.2 ft/s2.

A cube of weight W rests on a rough inclined plane which makes an angle ¢
with the horizontal. {a) What is the minimum force necessary to start the
cube moving down the plane? (b) What is the minimum force necessary to
start the cube moving up the plane? (¢) What is the minimum horizontal
{transverse to the slope) force necessary to start the cube moving down the
plane?

. The handle of a floor mop of mass m makes an angle 0 with the vertical di-

rection. Let ux be the coefficient of kinetic friction between mop and floor,
and u be the coefficient of static friction between mop and floor. Neglect
the mass of the handle. (a) Find the magnitude of the force F directed along
the handle required to slide the mop with uniform velocity across the floor.
(b} Show that if # is smaller than a certain angle 6,, the mop cannot be made
to slide across the floor no matter how great a force is directed along the
handle. (c] What is the angle 6,?

Answer: (a) w.mg/(sin 6 — w;. cos 6). (c) O, = tan ! yu..

. A piece of ice slides down a 45%incline in twice the time it takes to slide

down a frictionless 45%incline. What is the coefficient of kinetic friction
between the ice and the incline?

. A block slides down an inclined plane of slope angle ¢ with constant veloc-

ity. It is then projected up the same plane with an initial speed v,. (a) How
far up the incline will it move before coming to rest?! (b) Will it slide down
again’ Answer: (a) v,2/4g sin ¢. [b) No.

. A student wants to determine the coefficients of static friction and kinetic

friction between a box and a plank. He places the box on the plank and grad-
ually raises the plank. When the angle of inclination with the horizontal
reaches 30°, the box starts to slip and slides 4.0 m down the plank in 4.0 s.
What are the coefficients of friction?

. A horizontal force F of 12 1b pushes a block weighing 5.0 1b against a vertical

wall [Fig. 6-10). The coefficient of static friction between the wall and the
block is 0.60 and the coefficient of kinetic friction 1s 0.40. Assume the
block is not moving initially. (a) Will the block start moving? (b) What is
the force exerted on the block by the wall?

Answer: |a) No. (b} A 12-1b force to the left and a 5.0-1b force up.

A 10-1b block of steel is at rest on a horizontal table. The coefficient of
static friction between block and table is 0.50. {a) What is the magnitude of
the horizontal force that will just start the block moving? (b) What is the
magnitude of a force acting upward 60° from the horizontal that will just
start the block moving? (¢) If the force acts down at 60° from the horizontal,
how large can it be without causing the block to move?

. Block B in Fig. 6-11 weighs 160 1b (710 NJ. The coefficient of static friction

figure 6-10
Problem 11

fignre 6-11
Problem 13

45°
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between block and table is 0.25. Find the maximum weight of block A for
which the system will be in equilibrium. Answer: 40 1b (180 N).
Two masses, m;, = 1.65 kg and m. = 3.30 kg, attached by a massless rod
parallel to the incline on which both slide, as shown in Fig. 6-12, travel
down along the plane with m, trailing m.. The angle of incline is 6 = 30°.
The coefficient of kinetic friction between m; and the incline is @, = 0.226;
between m. and the incline the corresponding coefficient is u, = 0.113.
Compute (a) the tension in the rod linking m; and m, and (b} the common
acceleration of the two masses. ()] Would the answers to (a) and (b} be
changed if m, trails m,?

A 4.0-kg block is put on top of a 5.0-kg block. In order to cause the top block
to slip on the bottom one, held fixed, a horizontal force of 12 N must be
applied to the top block. The assembly of blocks is now placed on a hori-
zontal, frictionless table (Fig. 6-13). Find (a) the maximum horizontal force
F which can be applied to the lower block so that the blocks will move to-
gether, and (b} the resulting acceleration of the blocks.

Answer: (a} 27 N. (b} 3.0 m/s2.

A railroad flatcar is loaded with crates having a coefficient of static friction
0.25 with the floor. If the train is moving at 30 mi/h (48 km/h), in how short
a distance can the train be stopped without letting the crates slide?

A 40-kg slab rests on a frictionless floor. A 10-kg block rests on top of the
slab (Fig. 6-14). The static coefficient of friction between the block and the
slab is 0.60 while the kinetic coefficient is 0.40. The 10-kg block is acted
upon by a horizontal force of 100 N. What are the resulting accelerations of
(a) the block, and (b) the slab? Answer: (a) 6.1 m/s2. (b) 0.98 m/s2.
In Fig. 6-15, A is a 10-1b (44-N} block and B is a 5.0-1b (22-N} block. (a)
Determine the minimum weight (block C) which must be placed on A to
keep it from sliding, if u; between A and the table is 0.20. (b) The block C
is suddenly lifted off A. What is the acceleration of block A, if u. between
A and the table is 0.20?

. An 8.0-1b block and a 16-1b block connected together by a string slide down

a 30° inclined plane. The coefficient of kinetic friction between the 8.0-1b
block and the plane is 0.10; between the 16-1b block and the plane it is
0.20. Find (a) the acceleration of the blocks and (b) the tension in the string,
assuming that the 8.0-1b block leads. (¢} Describe the motion if the blocks
are reversed.

Answer: (a) 11 ft/s2. (b) 0.46 1b. (c] Blocks move independently, unless they
subsequently collide.

Body B weighs 100 lb and body A weighs 32 1b (Fig. 6-16). Given us =0.56
and ux = 0.25, (a) find the acceleration of the system if B is initially at rest
and (b) find the acceleration if B is moving initially.

A block of mass m slides in an inclined right-angled trough as in Fig. 6-17.
If the coefficient of kinetic friction between the block and the material
composing the trough is u, find the acceleration of the block.

Answer: g(sin 6 — V2 u cos 6).

SECTION 6-3

22.

In the Bohr model of the hydrogen atom, the electron revolves in a circular
orbit around the nucleus. If the radius is 5.3 X 10 '* meters and the electron
makes 6.6 X 10% rev/s, find (a) the acceleration (magnitude and direction)
of the electron and (b) the centripetal force acting on the electron. (This
force is due to the attraction between the positively charged nucleus and
the negatively charged electron.] The mass of the electron is 9.1 x 103! kg.

figure 6-12
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. A mass m on a frictionless table is attached to a hanging mass M by a cord

through a hole in the table (Fig. 6-18). Find the condition (v and r) with
which m must spin for M to stay at rest. Answer: v¥/r = Mg/m.

24. Show that the periods of two conical pendula of different lengths which are

hung from a ceiling and rotate with their bobs an equal distance below the
ceiling are equal.

. A small coin is placed on a flat, horizontal turntable. The turntable is ob-

served to make three rcvolutions in 3.14 s. (a) What is the speed of the coin
when it rides without slipping at a distance 5.0 cm from the center of the
turntable? (b) What is the acceleration jmagnitude and direction) of the coin
in part (a]? (c) What is the frictional force acting on the coin in part (a) if the
coin has a mass of 2.0 g |d) What is the coefficient of static friction between
the coin and the turntable if the coin is observed to slide off the turntable
when it is more than 10 cm from the center of the turntable?

Answer: a) 30 cm/s. (b) 180 cm/s?, radially inward. (¢} 3.6 X 10-3 N. (d)

0.37.

. A block of mass m at the end of a string is whirled around in a vertical circle

of radius R. Find the critical speed below which the string would become
slack at the highest point?

27. A circular curve of highway is designed for traffic moving at 40 mi/h. (a) If

the radius of the curve is 400 ft, what is the correct angle of banking of the
road? (b) If the curve is not banked, what is the minimum coefficient of
friction between tires and road that would keep traffic from skidding at this
speed? Answer: |a) 16°. (b) 0.27.

2/ A driver’s manual states that a driver traveling at 30 mi/h (48 km/h) and

31.

32.

33.

desiring to stop as quickly as possible travels 33 ft (10 m) before his foot
reaches the brake. He travels an additional 68 ft (21 m) before coming to
rest. |a) What coefficient of friction is assumed in these calculations? (D)
What is the minimum radius for turning a corner at 30 mi/h (48 km/h) with-
out skidding?

. A 5000-1b airplane loops at a speed of 200 mi/h. Find (a) the radius of thc

largest circular loop possible, (b the net force on the plane at the bottom of
this loop, and (¢] the lift on the plane at the bottom of this loop.
Answer: a) 2700 ft. (b) 5000 1b. (c) 10,000 lb.

. A 150-1b student on a steadily rotating Ferris wheel has an apparent weight

of 125 1b at his highest point. (@) What is his apparent weight at the lowest
point? 'b] What would be his apparent weight at the highest point if the
speed of the Ferris wheel were doubled?

Assume that the standard kilogram would weigh exactly 9.80 N at sea levcl
on the earth’s equator if the earth did not rotatc. Then take into account the
fact that the earth does rotate so that this mass moves in a circle of radius
6.40 X 10% m |earth’s radius) at a constant specd of 465 m/s. (a) Determine
the centripctal force needed to keep the standard moving in its circular path.
{b) Determine the force exerted by the standard kilogram on a spring bal-
ance from which it 1s suspended at the equator (its weight).

Answer la) 0.0338 N. (b} 9.77 N.

An old streetcar rounds a corner on unbanked tracks. {a) If the radius of the
tracks is 30 ft and the car’s speed is 10 mi/h, what angle with the vertical
will be madc by the loosely hanging hand straps? (b) s there a force acting
on these straps? If so, is it a centripetal or centrifugal force? Do your answers
depend on what reference frame you choose?

A particle of mass M = 0.305 kg moves counterclockwise in a horizontal
circle of radius r= 2.63 m with uniform speed v = 0.754 m/s as in Fig. 6-19.
Dectermine at the mstant ¢ = 322° imeasurcd counterclockwise from the
positive x-direction) the following quantities: |a) the x-component of the
velocity; [b) the y-component of the acccleration; (¢) the total force on the
particle; (d) the component of the total force on the particle in the direction
of 1ts velocrty.

Answer: 1a) 0.464 m/s. |b) 0.133 m/s2. (¢} 6.59 x 1072 N. {d) Zero.

figure 6-18
Problem 23

figure 6-19
Problem 33



34.

35.

36.

37.

38.

A 1.0-kg ball is attached to a rigid vertical rod by means of two massless
strings each 1.0 m long. The strings are attached to the rod at points 1.0 m
apart. The system is rotating about the axis of the rod, both strings being
taut and forming an equilateral triangle with the rod, as shown in Fig. 6-20.
The tension in the upper string is 25 N. (a) Draw the free-body diagram for
the ball. (b) What is the tension in the lower string? (c) What is the net force
on the ball at the instant shown in the figure? (d) What is the speed of the
ball?

An airplane is flying in a horizontal circle at a speed of 300 mi/h (480 km/h).
If the wings of the plane are tilted 45° to the vertical, what is the radius of
the circle the plane is flying? Answer: 1.1 mi (1.8 km).
Because of the rotation of the earth, a plumb bob may not hang exactly along
the direction of the earth’s gravitational pull (its weight) but deviate slightly
from that direction. Calculate the deviation (a) at 40° latitude, (b) at the
poles, and (c] at the equator.

Imagine that the disc of Fig. 6-6 is attached to a spring rather than a string.
The unstretched length of the spring is /, and the tension in the spring in-
creases in direct proportion to its elongation, the tension per unit elonga-
tion being k. If the disc revolves with a frequency v (revolutions per unit
time), show that (a) the radius R of the uniform circular motion is k/,/|[k —
4m*mv?) and (b) the tension T in the spring is 4m2mkl,v?/(k — 4m2mv?).

A very small cube of mass m is placed on the inside of a funnel (Fig. 6-21)
rotating about a vertical axis at a constant rate of v rev/s. The wall of the
funnel makes an angle 6 with the horizontal. If the coefficient of static fric-
tion between the cube and the funnel is x and the center of the cube is a
distance r from the axis of rotation, what are (a) the largest and (b) the
smallest values of v for which the cube will not move with respect to the
funnel?

1=

figure 6-20
Problem 34

figure 6-21
Problem 38
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work
and energy

A fundamental problem of particle dynamics is to find how a particle
will move when we know the forces that act on it. By “how a particle
will move”” we mean how its position varies with time. If the motion is
one-dimensional, the problem is to find x as a function of time, x(t). In
the previous two chapters we solved this problem for the special case of
a constant force. The method used is this. We find the resultant force F
acting on the particle from the appropriate force law. We then substitute
F and the particle mass m into Newton’s second law of motion. This
gives us the acceleration a of the particle; or

a=F/m.

If the force F and the mass m are constant, the acceleration a must be
constant. Let us choose the x-axis to be along the direction of this con-
stant acceleration. We can then find the speed of the particle from Eq.
3-12,

vV=yv,+at,
and the position of the particle from Eq. 3-15 (with xo = 0), or
X = Vot + 3at?;

note that, for simplicity and convenience, we have dropped the sub-
script x in these equations. The last equation gives us directly what we
usually want to know, namely x(t), the position of the particle as a func-
tion of time.

The problem 1s more difficult, however, when the force acting on a
particle is not constant. In such a case we still obtain the acceleration
of the particle, as before, from Newton'’s second law of motion. How-
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ever, in order to get the speed or position of the particle, we can no
longer use the formulas previously developed for constant acceleration
because the acceleration now is not constant. To solve such problems,
we use the mathematical process of integration, which we consider in
this chapter.

We confine our attention to forces that vary with the position of the
particle in its environment. This type of force is common in physics.
Some examples are the gravitational forces between bodies, such as the
sun and earth or earth and moon, and the force exerted by a stretched
spring on a body to which it is attached. The procedure used to deter-
mine the motion of a particle subject to such a force leads us to the con-
cepts of work and kinetic energy and to the development of the work-
energy theorem, which is the central feature of this chapter. In Chapter
8 we consider a broader view of energy, embodied in the law of conserva-
tion of energy, a concept which has played a major role in the develop-
ment of physics.

Consider a particle acted on by a force. In the simplest case the force F
is constant and the motion takes place in a straight line in the direction
of the force. In such a situation we define the work done by the force on
the particle as the product of the magnitude of the force F and the dis-
tance d through which the particle moves. We write this as

W = Fd.

However, the constant force acting on a particle may not act in the
direction in which the particle moves. In this case we define the work
done by the force on the particle as the product of the component of the
force along the line of motion by the distance d the body moves along
that line. In Fig. 7-1 a constant force F makes an angle ¢ with the x-axis
and acts on a particle whose displacement along the x-axis is d. If W
represents the work done by F during this displacement, then according
to our definition

W = (F cos &d. {7-1)

Of course, other forces must act on a particle that moves in this way
{its weight and the frictional force exerted by the plane, to name two).
A particle acted on by only a single force may have a displacement in a
direction other than that of this single force, as in projectile motion.
But it cannot move in a straight line unless the line has the same direc-
tion as that of the single force applied to it. Equation 7-1 refers only to
the work done on the particle by the particular force F. The work done
on the particle by the other forces must be calculated separately. The
total work done on the particle is the sum of the works done by the sepa-
rate forces.

-2
WORK DONE BY A
CONSTANT FORCE

figure 7-1

A force F makes the block undergo
a displacement d. The component
of F that does the work has
magnitude F cos ¢; the work done
is Fd cos ¢ (= F - d).
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WORK AND ENERGY
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CHAP.

When ¢ is zero, the work done by F is simply Fd, in agreement with
our previous equation. Thus, when a horizontal force draws a body hori-
zontally, or when a vertical force lifts a body vertically, the work done
by the force is the product of the magnitude of the force by the distance
moved. When ¢ is 90°, the force has no component in the direction of
motion. That force then does no work on the body. For instance, the
vertical force holding a body a fixed distance off the ground does no
work on the body, even if the body is moved horizontally over the
ground. Also, the centripetal force acting on a body in motion does no
work on that body because the force is always at right angles to the
direction in which the body is moving. Of course, a force does no work
on a body that does not move, for its displacement is then zero. In Fig.
7-2 we illustrate common examples in which a force applied to a body
does no work on that body.
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figure 7-2

Work is not always done by a force that is applied to a body. (a) The block
is moving to the right at constant speed v over a frictionless surface. Work
is not done by either the weight W or the normal force N. (b) The ball
moves in a circle under the influence of a centripetal force T. There is a
centripetal acceleration a but no work is done by T. In both (a) and (b) the
forces being considered (W. N, and T) are at right angles to the displacement
so that W=F - d = Fd cos ¢ = Fd cos 90° = 0. (c) A cylinder hangs from a
cord. No work is done either by T, the tension in the cord, or by W the
weight of the cylinder. (d) A cylinder rests in a groove; no work is done by
W, N, or N-. In both (¢) and (d) the work done by the individual forces is

| zero because the displacement is zero.

Notice that we can write Eq. 7-1 either as (F cos ¢ld or Fld cos ¢).
This suggests that the work can be calculated in two different ways:
Either we multiply the magnitu<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>