


smth. phi sical coivsTAivrs

(See Appendix B for a more complete list,

mental values.)

Speed of light c

Mass-energy relation c2

Gravitational constant G

Universal gas constant* R

Permeability constant /x,.

Permittivity constant e ( >

Avogadro constant* iV„

Boltzmann constant k

Planck constant h

Elementary charge e

Electron rest mass m<.

Electron charge to mass ratio e/m<

Proton rest mass m„

showing also the best experi-

3.00 x 108 m/s
1.86 x 105 mi/s

8.99 x 10 lfi
J/kg

931 MeV/u

6.67 x lO" 11 N-m2/kg2

3.44' x 10 8 lb-ft2/slug2

8.31 J/mol-K

0.0823 liatm/mol-K

1.26 x 10~6 H/m

8.85 x 10 12 F/m

6.02 x 1023 molecules/mol

1.38 x 10-23 J/molecule-K

8.63 x 10 •' eV/molecule-K

6.63 x 10 34
J-s

4.14 x 10 15 eV-s

1.60 x 10 ,!, C

9.11 x 10 31 kg

1.76 x 10" C/kg

1.67 x lO 27 kg

* Here, and throughout this book, 1 mole" = 1 gram molecular weight' [= 10 a kg

molecular weightl.



SOME PHYSICAL PROPERTIES

Air (dry, at 20° C and 1 atm)

Density

Specific heat at constant pressure

Ratio of specific heats (y)

Speed of sound

Water (20° C and 1 atm)

Density

Speed of sound

o

Index of refraction (A. = 5890A)

Specific heat at constant pressure

Heat of fusion (0° C)

Heat of vaporization (100° C)

The Earth

Mass
Mean radius

Mean earth-sun distance

Mean earth-moon distance

Standard gravity

Standard atmosphere

1.29 kg/m3

1.00 x 103 J/kg-K

0.240 cal/gm-K

1.40

331 m/s

1090 ft/s

1.00 x 103 kg/m3

1.00gm/cm3

1460 m/s

4790 ft/s

1.33

4180 J/kg-K

1.00 cal/gm-K

3.33 x 105 J/kg

79.7 cal/gm

2.26 x 106 J/kg

539 cal/gm

5.98 x 1024 kg

6.37 x 106 m
3960 mi
1.49 x 108 km
9.29 x 107 mi
3.80 x 105 km
2.39 x 105 mi
9.81 m/s2

32.2 ft/s2

1.01 x 105 Pa

14.7 lb/in2

760 mm-Hg
29.9 in-Hg
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preface to

the third edition

of part one
Physics is available in a single volume or in two separate parts; Part I

includes mechanics, sound and heat, and Part II includes electromagne-

tism, optics and quantum physics. The first edition was published in

1960 [Physics for Students of Science and Engineering) and the second

in 1966 (Physics).

The text is intended for students studying calculus concurrently,

such as students of science and engineering. The emphasis is on build-

ing a strong foundation in the principles of classical physics and on
solving problems. Attention is given, however, to practical application,

to the most modern theories, and to historical and philosophic issues

throughout the book. This is accomplished by inclusion of special sec-

tions and thought questions, and by the entire manner of presentation

of the material. There is a large set of worked-out examples, interspersed

throughout the book, and an extensive collection of problems at the end

of each chapter. Much care has been given to pedagogic devices that

have proved effective for learning.

It has been eleven years since the publication of the second edition

of Physics. During that time the book has continued to be well received

throughout the world. We have had abundant correspondence with users

over those years and concluded that a new edition is now appropriate.

In accordance with the increasing use of metric units in the United

States and their general use throughout the world, we have greatly in-

creased the emphasis on the metric system, using the Systeme Inter-

nationale (SI) units and nomenclature throughout. Where it seems to be

sensible, in this transition period for the United States, we retain some
features of the British Engineering system. To help the student making
the transition to the SI to get a physical feeling for its units, we have



stressed equivalencies between the two systems, especially in problems

and worked-out examples, by frequently presenting the same data in

both systems.

The entire book was carefully reviewed for pedagogic improvement,

based chiefly on the experience of users and on the most recent scien-

tific literature. As a result, we have rewritten selected areas significantly

for improvements in presentation, accuracy, or physics. We have in-

cluded new worked-out examples for topics or areas needing them. We
have modernized all references, added new ones, and have improved

many figures for greater clarity. The tables and the appendices have

been expanded and updated to give newer data and more information

than before. And we have added a supplementary topic on special rela-

tivity.

Major improvements have been made in the questions and problems.

Overall in Part I there has been a net increase over the second edition of

35% in their number, with 430 out of the total of 1567 being new. The
set of questions, now numbering 611 compared with 413 before, covers

a wider range of ideas, puts somewhat more stress on current and ap-

plied topics, and contains a large increase in up-to-date useful references

to the popular scientific literature. We encourage students and teachers

to make use of them. As with the questions, most of the previous prob-

lems have been retained, though some have been revised for greater

clarity. But 225 new tested problems have been added to Part I to im-

prove the coverage of the material and the spread of level for the student

and to give the teacher a fresher choice.

To assist students and teachers in organizing arid evaluating this large

number of problems, 956 now compared with 746 before, we have done

several things. First, we have grouped problems within each chapter by

section number; namely the first section needed to be covered in order

to be able to work out the problem. Then, within each set of section

problems, we have arranged the problems in the approximate order of in-

creasing difficulty. Naturally, neither the assignment by section nor by

difficulty is absolute, given different ways of solving some problems and

different pedagogic values and tastes. Finally, we have coded the illus-

trations to the problems and have put the answers to the odd-numbered

problems right at the end of these problems rather than at the end of

the book.

Lastly, we have restyled the physical layout of the book to give it a

less crowded appearance than formerly, making it easier now for the

student to read the material, to make notations and to differentiate be-

tween the various components of each chapter (text, figures, examples,

tables, quotes, references, questions, problems, and so forth).

We are grateful to John Wiley and Sons and to Donald Deneck, phy-

sics editor, for outstanding cooperation. We acknowledge the valuable

assistance of Dr. Edward Derringh with the problem sets and of Mrs.

Carolyn Clemente with the wide range of secretarial services required.

We hope that this third edition of Physics will contribute to the im-

provement of physics education.

January 1977 ROBERT RESNICK
Troy, New York 1218] Department of Physics

Rensselaer Polytechnic Institute

Hanover, New Hampshire 03755 DAVID HALLIDAY
3 Clement Road
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7

measurement
The building blocks of physics are the physical quantities that we use to

express the laws of physics. Among these are length, mass, time, force,

velocity, density, resistivity, temperature, luminous intensity, magnetic

field strength, and many more. Many of these words, such as length and
force, are part of our everyday vocabulary. You might say for example:

"I will go to any length to satisfy you as long as you do not force me to

do so." In physics, however, we must define words that we associate

with physical quantities, such as force and length, clearly and precisely

and we must not confuse them with their everyday meanings. In this

example the precise scientific definitions of length and force have no
connection at all with the uses of these words in the quoted sentence.

We say that we have defined a physical quantity such as mass, for

example, when we have laid down a set of procedures, a recipe if you
will, for measuring that quantity and assigning a unit, such as the kilo-

gram, to it. That is, we set up a standard. The procedures are quite ar-

bitrary. We can define the kilogram in any way we want. The important

thing is to define it in a useful and practical way, and to obtain inter-

national acceptance of the definition.

There are so many physical quantities that it becomes a problem as to

how to organize them. They are not independent of each other. For a

simple example, a speed is the ratio of a length to a time. What we do is

select from all possible physical quantities a certain small number that

we choose to call basic, all others being derived from them. We then

assign standards to each of these basic quantities and to no others. If,

for example, we select length as a basic quantity, we choose a standard

called the meter (see Section 1-3) and we define it in terms of precise

laboratory operations.

1-1

THE PHYSICAL
QUANTITIES,
STANDARDS, AND
UNITS



Table 1-1

SI base units

Quantity Name Symbol

Length

Mass
Time
Electric current

Thermodynamic temperature

Amount of substance

Luminous intensity

meter"

kilogram
second
ampere
kelvin

mole
candela

m
kg
s

A
K
mol
cd

"The officially recommended spelling is "metre." However, many
SI supporters in this country prefer "meter," which we adopt. We
will also use "liter" in preference to the recommended "litre."

Often if we express physical properties such as the radius of the earth

or the time interval between two nuclear events in SI units (base or

derived), we end up with very large or very small numbers. For conve-

nience, the 14th General Conference on Weights and Measures, again

building on previous work, recommended the prefixes shown in Table

1-2. Thus we can write the mean radius of the earth (
= 6.37 x 106 m) as

6.38 Mm and a time interval of the size often encountered in nuclear

physics, 2.35 x 10 9
s say, as 2.35 ns. Prefixes for factors greater than

unity have Greek roots; those for factors less than unity have Latin

roots (except that femto and atto, recently added, have Danish roots).

Table 1-2

SI prefixes

Factor Prefix Symbol Factor Prefix Symbol

10> deka da 10- 1 deci d

102 hecto h 10"2 centi c

103 kilo k 10~3 milli m
106 mega M 10" 6 micro M
109 giga G 10- 9 nano n
10 12 tera T 10 12 pico P
10 15 peta P 10 15 femto f

10 18 exa E 10 18 atto a

To fortify Table 1-1 we need seven sets of operational procedures that

tell us how to produce in the laboratory the seven SI base units. We will

explore those for length, mass, and time in the next three sections.

Two other major systems of units compete with the International

System (SI). One is the Gaussian system, in terms of which much of the

literature of physics is expressed. We will not use this system in this

book. Appendix G gives conversion factors to SI units.

The second is the British system, still in daily use in this country,

Britain, and elsewhere. The basic units, in mechanics, are length (the

foot), force (the pound), and time (the second). Again Appendix G gives

conversion factors to SI units. We will use SI units in this book except

that in mechanics we will sometimes use the British system, especially

in the early chapters. The British system is being phased out in Britain

in favor of the officially adopted International System. In fact, as of

1970, the countries Ceylon (later renamed Sri Lanka), Gambia, Guyana,

Jamaica, Liberia, Malawi, Nigeria, Sierra Leone, and the United States

had in common the fact that they had not by that date adopted the



metric system (which later emerged as SI), or officially indicated that

they intended to do so.*

The first international standard of length was a bar of a platinum- |-3
iridium alloy called the standard meter, and was kept at the International THE STANDARD
Bureau of Weights and Measures. The distance between two fine lines OF LENGTH**
engraved on gold plugs near the ends of the bar, when the bar was held

at a temperature of 0°C and supported mechanically in a prescribed way,

was defined to be one meter. Historically, the meter was intended to be

one ten-millionth of the distance from the north pole to the equator

along the meridian line through Paris. However, accurate measure-

ments taken after the standard meter bar was constructed showed that

it differs slightly (about 0.023%) from its intended value.

Because the standard meter is not very accessible, accurate master

copies of it were made and sent to standardizing laboratories throughout

the world. These secondary standards were used to calibrate other, still

more accessible, measuring rods. Thus until recently every measuring

rod or device derived its authority from the standard meter through a

complicated chain of comparisons using microscopes and dividing en-

gines. Since 1959 this statement had also been true for the yard, whose
legal definition in this country was adopted in that year to be

1 yard = 0.9144 meter (exactly)

which is equivalent to

1 in. = 2.54 cm (exactly)

There are several objections to the meter bar as the primary standard

of length: It is potentially destructible, by fire or war for example, and it

is not very accessible. These are not idle threats. When the British

Houses of Parliament burned in 1834 the British standard yard and stan-

dard pound were destroyed. The International Bureau of Weights and

Measures was established by France as a neutral international zone and

was, fortunately, so respected by the Nazis during World War II.

Most important, the accuracy with which the necessary intercom-

parisons of length can be made by the technique of comparing fine

scratches using a microscope is no longer satisfactory for modern sci-

ence and technology. Evidence of this is suggested by the trifling mid-

course corrections required on space missions. If, among other things,

we did not know the distance to the moon in meters as a function of

time with some precision, these missions would be much more difficult.

The suggestion that the length of a light wave be used as a length

standard was first made in 1828 by J. Babinet. The later development of

the interferometer (see Chapter 45) provided scientists with a precision

optical device in which a light wave can be used as a length comparison

probe. Visible light has a wavelength of about 0.5 /xm (see Table 1-2)

and length measurements of bars of even many centimeters long can be

made to a small fraction of a wavelength. An accuracy of 1 part in 109 in

the intercomparison of lengths using light waves is possible.

ion to the Metric System Lord Ritchie-Caldei Scieati I
rican, July

1970. The journal Metrit News (Swam Publishing Company, P.O Box 248 Roscoe Illinois

61073} gives up-to-dati information about metrificatiorj problems as does the Metru

n Guide Bulletin
| [. Keller Associates 145 W. Wisconsin Avenue Neenah Wis

cousin 54956).

lln Metre II Barrel] Contemporary Physics 3, 415 196



In 1960 the 11th General Conference on Weights and Measures

adopted an atomic standard for the meter. The wavelength in vacuum of

a particular orange-red radiation, identified by the spectroscopic nota-

tion 2p u.
— 5d-, and emitted by atoms of a particular isotope of krypton,

Kr86 , in electrical discharge was chosen (see Fig. 1-1). Specifically, one

meter is now defined to be 1,650,763.73 wavelengths of this light. This

number of wavelengths was arrived at by carefully measuring the length

of the standard meter bar in terms of these light waves. This comparison

was done so that the new standard, based on the wavelength of light,

would be as consistent as possible with the old standard based on the

meter bar. The new standard permits length comparisons to a factor of

ten better than is possible with the meter bar.

figure 1-1

A Kr86 light source shown removed

from the container in which it is

housed. In operation the lamp is

cooled with liquid nitrogen. (Cour-

tesy the National Physical

Laboratories, Teddington, England.

Crown copyright reserved.)

The choice of an atomic standard offers advantages other than in-

creased precision in length measurements. The Kr86 atoms are available

everywhere, are identical, and emit light of the same wavelength. The
particular wavelength chosen is uniquely characteristic of Kr86 and is

sharply defined. The isotope can readily be obtained in pure form.

Given the atomic length standard as basic we still need convenient

secondary standards calibrated against it for practical use. Often, as in

measuring intramolecular or interstellar distances, we cannot make a

direct comparison to a standard. We must use indirect methods to relate

the distance in question to the primary standard of length. For example,

we know the distances to nearby stars because their positions against

the background of much more distant stars shift as the earth moves
around its orbit. If we measure this angular shift (parallax), and if we



know the diameter of the earth's orbit in meters, we can calculate the

distance to the nearby star.

Table 1-3 shows some measured lengths. Note that they vary by a

factor of about 1037
.

Table 1-3

Some measured lengths

Length Meters

Distance to the nearest galaxy (in Andromeda)
Radius of our galaxy

Distance to the nearest star (Alpha Centauri)

Mean orbit radius for our most distant planet [Plutol

Radius of the sun
Radius of the earth

Height of Mt. Everest

Height of a typical person

Thickness of a page in this book

Size of a poliomyelitis virus

Radius of a hydrogen atom
Effective radius of a proton

2 X 1022

6 X 10 19

4.3 X 1016

5.9 X 10 12

6.9 X 108

6.4 X 106

8.9 X 103

1.8 X 10°

1 X io- 4

1.2 X io- 8

5.0 X io-»
1.2 x 10 13

The SI standard of mass is a platinum-iridium cylinder kept at the Inter-

national Bureau of Weights and Measures and assigned, by international

agreement, a mass of one kilogram. Secondary standards are sent to stan-

dardizing laboratories in other countries and the masses of other bodies

can be found by an equal-arm balance technique to a precision of two
parts in IO8

.

The U.S. copy of the international standard of mass, known as Proto-

type Kilogram No. 20, is housed in a vault at the National Bureau of

Standards (see Fig. 1-2). It is removed no more than once a year for

checking the values of tertiary standards. Since 1889 Prototype No. 20

has been taken to France twice for recomparison with the master kilo-

gram. When it is removed from the vault two people are always present,

one to carry the kilogram in a pair of forceps, the second to catch the

kilogram if the first person should fall.

Table 1-4 shows some measured masses. Note that they vary by a

factor of about 1070
. Most masses have been measured in terms of the

standard kilogram by indirect methods. For example, we can measure

the mass of the earth (see Section 16.3) by measuring in the laboratory

the gravitational force of attraction between two lead spheres. Their

masses must be known by direct comparison with the standard kilo-

gram, using, say, an equal-arm balance.

On the atomic scale we have a second standard of mass, not an SI

unit. It is the mass of the C 12 atom which, by international agreement,

has been assigned an atomic mass of 12 unified atomic mass units

iabbreviation u), exactly and by definition. We can find the masses of

other atoms to considerable accuracy by using a mass spectrometer.

Table 1 -5 shows some selected atomic masses, including the probable

errors of measurement. We need a second standard of mass because

present laboratory techniques permit us to compare atomic masses to

each other with greater precision than we can compare them to the

Standard kilogram. The relationship is approximately

1-4
THE STANDARD
OF MASS

figure 1-2

This is national standard kilogram

No. 20 which is kept at the United

States National Bureau of Standards.

It is an accurate copy of the

International standard kept at the

International Bureau of Weights and

Measures near Paris. The standard

kilogram is the platinum cylinder

housed mulct the double bell-jai

1 u= 1.660 x l() « kg.



Table 1-4 Table 1-5

Some measured masses Some measured atomic masses

Object Kilograms Mass in Atomic
Isotope mass units

Our galaxy 2.2 x 1041

The sun 2.0 x 1030 H 1
1 .00782522 ± 0.00000002

The earth 6.0 x 1024 C 12 12.00000000 (exactly)

The moon 7.4 x 1022 Cu64 63.9297568 ±0.0000035
The waters of the Ag102 101.911576 ±0.000024
oceans 1.4 x 1021 Cs 137 136.907074 ±0.000005

An ocean liner 7.2 x 107 p^l90 189.959965 ±0.000026
An elephant 4.5 x 103 pu238 238.049582 ±0.000011
A person 5.9 x 10'

A grape 3.0 x 10 s

A speck of dust 6.7 x 10" 10

A tobacco mosaic
virus 2.3 x 10 13

A penicillin

molecule 5.0 x 10 17

A uranium atom 4.0 x 10 28

A proton 1.7 x 10"27

An electron 9.1 x 10~31

Co

5o

t3

O
•a

m
o

The measurement of time has two aspects. For civil and for some sci-

entific purposes we want to know the time of day so that we can order

events in sequence. In most scientific work we want to know how long

an event lasts (the time interval). Thus any time standard must be able

to answer the questions "At what time does it occur?" and "How long

does it last?" Table 1-6 shows the range of time intervals that can be

measured. They vary by a factor of about 1040 .

We can use any phenomenon that repeats itself as a measure of time.

The measurement consists of counting the repetitions. We could use an

oscillating pendulum, a mass spring system, or a quartz crystal, for

example. Of the many repetitive phenomena in nature the rotation of

1-5
STANDARD OF TIME*

Table 1-6

Some measured time intervals

Time Interval Seconds

Age of the earth

Age of the pyramid of Cheops
Human life expectancy (USA)

Time of earth's orbit around the sun (1 year)

Time of earth's rotation about its axis (1 day)

Period of a typical satellite

Half-life of the free neutron

Time between normal heartbeats

Period of concert-A tuning fork

Half-life of the muon
Period of oscillation of 3-cm microwaves
Typical period of rotation of a molecule
Half-life of the neutral pion

Period of oscillation of a 1-MeV gamma ray

(calculated)

Time for a fast elementary particle to pass

through a medium-sized nucleus (calculated)

1.3 x 10 17

1.2 x 10 11

2 x 109

3.1 x 107

8.6 x 104

5.1 x 103

7.0 x 102

8.0 x 10-'

2.3 x 10"3

2.2 x 10"6

1.0 x 10- 10

1 x 10" 12

2.2 x 10" 16

4 x 10-"

2 x 10~23

* See "Accurate Measurement of Time," Louis Essen, Physics Today, 1960.



the earth on its axis, which determines the length of the day, has been

used as a time standard for centuries. It is still the basis of our civil time

standard, one (mean solar) second being defined to be 1/86,400 of a

(mean solar) day. Time defined in terms of the rotation of the earth is

called universal time |UT).

Universal time must be measured by astronomical observations ex-

tended over several weeks. Thus we need a good terrestrial clock, cali-

brated by the astronomical observations. Quartz crystal clocks based on
the electrically sustained periodic vibrations of a quartz crystal serve

well as secondary time standards. The best of these have kept time for a

year with a maximum error of 0.02 s.

One of the most common uses of a time standard is to measure fre-

quencies. In the radio range frequency comparisons to a quartz clock

can be made electronically to a precision of at least 1 part in 10 10 and,

indeed, we often need such precision. However this precision is about

100 times greater than that with which a quartz clock itself can be cali-

brated by astronomical observations. To meet the need for a better time

standard, atomic clocks have been developed in several countries, using

periodic atomic vibrations as a standard.

A particular type of atomic clock, based on a characteristic frequency

associated with the Cs133 isotope, has been in continuous operation at

the National Physical Laboratory in England since 1955. Figure 1-3 shows
a similar clock at the National Bureau of Standards in this country.

figure 1-3

Atomic cesium beam frequency

standard at the Boulder laboratories

of the National Bureau of Standards.

In 1967 the second based on the cesium clock was adopted as an in-

ternational standard by the Thirteenth General Conference on Weights
and Measures. The second was defined as 9,192,631,770 periods of the

particular Cs183 transition selected. This action increased the accuracy

of time measurements to 1 part in LO12
, an improvement over the ac-

curacy associated with astronomical methods oi about 10'. If two
cesium clocks are operated at this precision, and if there are no other



sources of error, the clocks will differ by no more than one second after

running for 6000 years. Even better potential atomic clocks are being

studied.

Figure 1-4 shows, by comparison with the cesium clock, variations in

the rate of rotation of the earth over nearly a three-year period. Note

that the earth's rotation rate is high in summer and low in winter

(northern hemisphere) and decreases steadily from year to year. You
may ask how we can be sure that the rotating earth and not the cesium

clock is at fault. There are two answers. ( 1 ) The relative simplicity of the

atom compared to the earth leads us to account for any difference be-

tween these two timekeepers to the earth. Tidal friction between the

water and the land, for example, causes a slowing down of the earth's

rotation. Also the seasonal motion of the winds introduces a seasonal

variation in the rotation. Other variations may be associated with the

melting and refreezing of polar icecaps. (2) The solar system contains

other timekeepers such as the orbiting planets and the orbiting moons of

the planets. The rotation of the earth shows variations with respect to

these, too, which are similar to but less accurately observable than the

variations shown in Fig. 1-4.

The time standard can be made available at remote locations by radio

transmission.* WWV in Colorado and WWVH in Hawaii, operated by

the National Bureau of Standards, are examples of such stations. They
broadcast on frequencies of 2.5, 5, 10, 15, 20, and 25 x 106 Hz stabilized

to 1 part in 10 11 by comparison with a cesium clock. One hertz (abbrevi-

ation Hz) is 1 cycle/s. At 5-min intervals WWV alternately broadcasts an

accurate 440 Hz tone (concert A) and a 600 Hz tone. Ten times per hour

it broadcasts time signals using a binary digit coding system. Two other

stations, WWVB and WWVL, both at Fort Collins, Colorado, provide

standards of even higher accuracy for special purposes.

1. How would you criticize this statement: "Once you have picked a standard

by the very meaning of 'standard' it is invariable"?

2. Many capable investigators, on the evidence, believe in the reality of ex-

trasensory perception. Assuming that ESP is indeed a fact of nature, what
physical quantity or quantities would you seek to define to describe this

phenomenon quantitatively?

3. According to a point of view adopted by some physicists and philosophers,

if we cannot describe procedures for determining a physical quantity, we
say that the quantity is undetectable and should be given up as having no
physical reality. Not all scientists accept this view. What in your opinion

are the merits and drawbacks of this point of view?

4. Do you think that a definition of a physical quantity for which no method of

measurement is given has meaning?

5. List characteristics other than accessibility and invariability that you would
consider desirable for a physical standard.

6. Can you imagine a system of base units (Table 1-1) in which time was not

included?

7. Of the seven base units listed in Table 1-1 only one, the kilogram, has a

prefix (see Table 1-2). Would it be wise to redefine the mass of that platinum-

iridium cylinder at the International Bureau of Weights and Measures as

one gram, rather than one kilogram?

+ 80

+ 40

-40

-80

-120

-160
1955 1956 1957

figure 1-4

Variation in the rate of rotation of

the earth as revealed by comparison

with a cesium clock. (Adapted from

L. Essen, Physics Today, July 1960.)
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* See "NBS Time and Frequency Dissemination Services; Special Publication 432," Na-

tional Bureau of Standards, January, 1976 (write to the U.S. Government Printing Office,

Washington, DC. 20402).



8. Can we define temperature as a derived quantity, in terms of length, mass,

and time" Think of a pendulum.

9. The meter was originally intended to be one ten-millionth of the meridian

line from the north pole to the equator, passing through Paris. In Section 1-3

we learned that this definition was in disagreement with the standard meter

bar by 0.023^. Does this mean that the standard meter bar is inaccurate to

this extent'

10. In defining the meter bar as the standard of length why specify its tempera-

ture!
1 Can length be called a fundamental quantity if another physical quan-

tity, such as temperature, must be specified in choosing a standard ?

11. If someone told you that every dimension of every object had shrunk to

half its former value overnight, how could you refute this statement"

12. Can length be measured along a curved line" If so, how?

13. Can you suggest a way to measure (a) the radius of the earth, <b> the dis-

tance between the sun and the earth, (c) the radius of the sun?

14. Can you suggest a way to measure (a) the thickness of a sheet of paper,

(b) the thickness of a soap bubble film, (c) the diameter of an atom?

15. Why do we find it useful to have two standards of mass, the kilogram and

the C 12 atom?

16. How does one obtain the relation between the mass of the standard kilo-

gram and the mass of the C 12 atom?

17. Is the current standard kilogram of mass accessible, invariable, reproduci-

ble, indestructible? Does it have simplicity for comparison purposes? Would
an atomic standard be better in any respect? Why don't we use an atomic

standard, as we do for length and time?

18. Suggest practical ways by which one could determine the mass of the vari-

ous objects listed in Table 1-4.

19. Suggest objects whose mass would fall in the wide range in Table 1-4 be-

tween that of an ocean liner and all the water in the oceans and estimate

their mass.

20. Name several repetitive phenomena occurring in nature which could serve

as reasonable time standards.

21. You could define "one second"to be 1.20 pulse beats of the current president

of the American Physical Society. Galileo used a similar definition in some
of his work. Putting aside considerations of invariability, why is a definition

based on the atomic clock better?

22. What criteria should a good clock satisfy!
1

23. The time it takes the moon to return to a given position as seen against

the background of the fixed stars is called a sidereal month. The time inter-

val between identical phases of the moon is called a lunar month. The lunar

month is longer than a sidereal month. Why?

24. From what you know about pendula, cite the drawbacks to using the period

of a pendulum as a time standard.

25. Can you think of a way to define a length standard in terms of a time stan-

dard or vice versa? Think about a pendulum clock. If so, can length and time

both be considered as basic quantities?

26. Critics of the metric system often cloud the issue by saying things such as

"Instead of buying one pound of butter you will have to ask for 0.452 kg

of butter.'' The implication is that life would be more complicated. How
would you refute this?

SECTION 1-2

1 Use the prefixes m Table 1-2 and express {a) 10" phones; (/>) 10 8 phones,

[c] 10' cards; \d) 10" Ins e ]
10" bulls; (/] 10 ' mates; |g) 10 - pedes, [h] 10 •

Nannettes, ,) in '* boos
;

(/') 10 IH boys, [k] 2 x 102 withitS; |/) 2 x 10s mock-
ingbirds Now that you have the idea, invent a few more similar expres-

problems



sions. (See, in this connection, p. 61 of A Random Walk in Science, edited by

R. L. Weber, Crane, Russak, and Co., Inc., New York, 1974).

SECTION 1-3

2. What is your height in meters?

3. Calculate the number of kilometers in 20 miles using only the following

conversion factors: 1 mile = 5280 ft, 1 ft = 12 in., 1 in. = 2.54 cm, 1 meter =

100 cm, and 1 km = 1000 meters. Answer: 32.2 km.

4. A rocket attained a height of 300 km. What is this distance in miles?

5. [a) In track meets both 100 yards and 100 meters are used as distances for

dashes. Which is longer? By how many meters is it longer? By how many
feet? [b] Track and field records are kept for the mile and the so-called

metric mile (1500 meters). Compare these distances.

Answer: [a] 100 meters exceeds 100 yards by 8.56 meters or 28.1 feet, [b]

One mile exceeds one metric mile by 109 m or 358 ft.

6. Astronomical distances are so large compared to terrestrial ones that much
larger units of length are used for easy comprehension of the relative dis-

tances of astronomical objects. An astronomical unit (AU) is equal to the

average distance from the earth to the sun, about 92.9 x 106 miles. Aparsec

is the distance at which one astronomical unit would subtend an angle of

1". A light-year is the distance that light, traveling through a vacuum with

a speed of 186,000 miles/s, would cover in one year, [a) Express the distance

from earth to sun in parsecs and in light years, [b] Express a light year and a

parsec in miles.

7. Master machinists would like to have master gauges
(
1 in. long, for example)

good to 0.0000001 in. Show that the platinum-iridium meter is not measur-

able to this accuracy but that the Kr86 meter is. Use data given in this

chapter.

Answer: Pt-Ir meter bar good to 10 7 meter; Kr86 standard good to 10~ 9

meter; 10 7 in. = 2.5 x 10 9 meter,- 10 7 meter > 10 9 meter.

8. Give the relation between [a) a square inch and a square centimeter; [b] a

square mile and a square kilometer; (c) a cubic meter and a cubic centi-

meter; [d] a square foot and a square yard.

9. Assume that the average distance of the sun from the earth is 400 times the

average distance of the moon from the earth. Now consider a total eclipse

of the sun and state conclusions that can be drawn about [a] the relation be-

tween the sun's diameter and the moon's diameter; [b] the relative volumes
of the sun and the moon, (c) Find the angle intercepted at the eye by a dime
that just eclipses the full moon and from this experimental result and the

given distance between the moon and the earth (= 3.80 x 105 km) estimate

the diameter of the moon.
Answer: [a] dsuJdmoon = 400. [b] Vsun/Vmwm = 6.4 x 10 7

. |c) 3.5 x 103 km.

SECTION 1-4

10. Using appropriate conversions and data in the chapter, determine the num-
ber of hydrogen atoms (isotope number 1) required to obtain one kilogram

of mass.

1 1. If you remember Avogadro's number, you can think of the mass of the earth

as being 10 moles of kilograms. What does this statement mean, and how
accurate is it? The actual mass of the earth is 5.98 x 1024 kg.

Answer: Error = 0.67%.

12. [a) Assuming that the density (mass/volume) of water is exactly one gram
per cubic centimeter, express the density of water in kilograms per liter.

[b) Suppose that it takes exactly 10 hours to drain a container of 1.00 liter

of water. What is the average mass flow rate, in kilograms per second, of

water from the container?



SECTION 1-5

13. A convenient substitution for the number of seconds in a year is tt x 107
. To

within what percentage error is this correct :
. Answer: —0.44%.

14. [a] A unit of time sometimes used in microscopic physics is the shake. One
shake equals 10~ 8

s. Are there more shakes in a second than there are sec-

onds in a year? [b] Mankind has existed for about 106 years, whereas the uni-

verse is about 10 10 years old. If the age of the universe is taken to be one day,

for how many seconds has mankind existed-

15. The maximum speeds of various animals are given roughly as follows in

miles per hour: (a) snail, 3 x 10~ 2
;
(b) spider, 1.2; (c) squirrel, 12; \d) man,

28; \e) rabbit, 35; [f] fox, 42; [g) lion, 50
;
and [h] cheetah, 70. Convert these

data to meters per second.

Answer: (a) 0.013. \b) 0.54. \c) 5.4. [d] 13. (e) 16. [f] 19. [g] 22. [h] 31 m/s.

16. From Fig. 1-2 calculate by what length of time the earth's rotation period in

midsummer differs from that in the following spring.

1 7. Five clocks are being tested in a laboratory. Exactly at noon, as determined

by the WWV time signal, on the successive days of a week the clocks read

as follows:

Clock Sun. Mon. Tues. Wed. Thurs. Fri. Sat.

A 12:36:40 12:36:56 12:37:12 12:37:27 12:37:44 12:37:59 12:38:14

B 11:59:59 12:00:02 11:59:57 12:00:07 12:00:02 11:59:56 12:00:03

C 15:50:45 15:51:43 15:52:41 15:53:39 15:54:37 15:55:35 15:56:33

D 12:03:59 12:02:52 12:01:45 12:00:38 11:59:31 11:58:24 11:57:17

E 12:03:59 12:02:49 12:01:54 12:01:52 12:01:32 12:01:22 12:01:12

How would you arrange these five clocks in the order of their relative value

as good timekeepers' Justify your choice.

Answer: C, D, A, B, E (best to worst). The important criterion is the con-

stancy of the daily variation, not its magnitude.

18. Assuming that the length of the day uniformly increases by 0.001 s in a

century, calculate the cumulative effect on the measure of time over twenty

centuries. Such a slowing down of the earth's rotation is indicated by ob-

servations of the occurrences of solar eclipses during this period.

19. Express the speed of light, 3 x 108 m/s, in [a] feet/nanosecond and [b] in

millimeters/picosecond. Answer: [a] 0.98 ft/ns. [b] 0.3 mm/ps.

20. An astronomical unit (AU) is the average distance of the earth from the sun,

approximately 149,000,000 km. The speed of light is about 3.0 x 108 m/s.

Express the speed of light in terms of astronomical units per minute.

21. A certain spaceship has a speed of 18,600 mi/h. What is its speed in light-

years per century- A light-year is the distance light travels in one year with

a speed of 186,000 mi/s. Answer: 2.8 x 10 •1 light-years/century.

22. [a] The radius of the proton is about 10 I5 m
;
the radius of the observable

universe is about 1028 cm. Identify a physically meaningful distance which
is approximately halfway between these two extremes on a logarithmic

scale. \b) The mean life of a neutral pion (an elementary particle) is about

2 x 10 16
s. The age of the universe is about 4 x 109 years. Identify a phy-

sically meaningful time interval that is approximately halfway between
these two extremes on a logarithmic scale.



2
vectors

A change of position of a particle is called a displacement. It a particle 2-1
moves from position A to position B (Fig. 2- la), we can represent its dis- VECTORS AND SCALARS
placement by drawing a line from A to B-, the direction of displacement

can be shown by putting an arrowhead at B indicating that the displace-

ment was from A to B. The path of the particle need not necessarily be a

straight line from A to B
;
the arrow represents only the net effect of the

motion, not the actual motion.

In Fig. 2- lb, for example, we plot an actual path followed by a particle

from A to B. The path is not the same as the displacement AB. If we
were to take snapshots of the particle when it was at A and, later, when

figure 2-1

Displacement vectors, (a) Vectors AB and A'B' are identical since they have

the same length and point in the same direction, (b) The actual path of the

particle in moving from A to B may be the curve shown; the displacement

remains the vector AB. At some intermediate point P the displacement from

A is the vector AP. (c) After displacement AB the particle undergoes another

displacement BC. The net effect of the two displacements is represented by

the vector AC.



it was at some intermediate position P, we could obtain the displace-

ment vector AP, representing the net effect of the motion during this in-

terval, even though we would not know the actual path taken between

these points. Furthermore, a displacement such as A'B' [Fig. 2-la),

which is parallel to AB, similarly directed, and equal in length to AB,

represents the same change in position as AB. We make no distinction

between these two displacements. A displacement is therefore char-

acterized by a length and a direction.

In a similar way, we can represent a subsequent displacement from B

to C iFig. 2-lc). The net effect of the two displacements will be the same
as a displacement from A to C. We speak then of AC as the sum or re-

sultant of the displacements AB and BC. Notice that this sum is not an

algebraic sum and that a number alone cannot uniquely specify it.

Quantities that behave like displacements are called vectors.* Vec-

tors, then, are quantities that have both magnitude and direction and
combine according to certain rules of addition. These rules are stated

below. The displacement vector is a convenient prototype. Some other

physical quantities which are vectors are force, velocity, acceleration,

the electric field, and the magnetic field. Many of the laws of physics

can be expressed in compact form using vectors; derivations involving

these laws are often greatly simplified if we do this.

Quantities that can be completely specified by a number and unit

and that therefore have magnitude only are called scalars. Some physi-

cal quantities which are scalars are mass, length, time, density, energy,

and temperature. Scalars can be manipulated by the rules of ordinary

algebra.

To represent a vector on a diagram we draw an arrow. We choose the

length of the arrow proportional to the magnitude of the vector (that is,

we choose a scale), and we choose the direction of the arrow to be the

direction of the vector, with the arrowhead giving the sense of the direc-

tion. For example, a displacement of 40 ft north of east on a scale of

1.0 in. per 10 ft would be represented by an arrow 4.0 in. long, drawn at

an angle of 45° above a line pointing east with the arrowhead at the top

right extreme. A vector such as this is represented conveniently in print-

ing by a boldface symbol such as d. In handwriting it is convenient to

put an arrow above the symbol to denote a vector quantity, such as d.

Often we shall be interested only in the magnitude of the vector and

not in its direction. The magnitude of d may be written as |d|, called the

absolute value of d; more frequently we represent the magnitude alone

by the italic letter symbol d. The boldface symbol is meant to signify

both properties of the vector, magnitude and direction.

Consider now Fig. 2-2 in which we have redrawn and relabeled the

vectors of Fig. 2-lc. The relation among these displacements (vectors)

can be written as

a + b = r. (2-11

The rules to be followed in performing this (vector) addition geometri-

cally are these: On a diagram drawn to scale lay out the displacement

I Im word vector means carrier in Latin which suggests a displacement Yon might

want to review what your analytic geometry and I alt ulus text says about vet tors A good

reference that explores tin in.it nr in depth is About Vectors, by Banesh Hoffman, Pren

Odd < litis \ |
1966,

2-2
ADDITION OF VECTORS,
GEOMETRICAL METHOD

iifiurv 2-2

The vector sum a + b

with Fig. 2-lc.

r. Compare



vector a; then draw b with its tail at the head of a, and draw a line from

the tail of a to the head of b to construct the vector sum r. This is a dis-

placement equivalent in length and direction to the successive displace-

ments a and b. This procedure can be generalized to obtain the sum of

any number of successive displacements.

Since vectors are new quantities, we must expect new rules for their

manipulation. The symbol "+" in Eq. 2-1 simply has a different meaning

from its meaning in arithmetic or scalar algebra. It tells us to carry out

a different set of operations.

(a)

figure 2-3

(a) The commutative law for vector

r ~-yC? + r \

sums, which states that a + b =

b + a. (b) The associative law,

which states that d + (e + I) =
(d + e) + f.

(b)

Using Fig. 2-3 we can prove two important properties of vector addi-

tion:

and

a 4- b = b + a,

d + |e + f) = (d + e) + f.

(commutative law) (2-2)

(associative law) (2-3)

These laws assert that it makes no difference in what order or in what
grouping we add vectors; the sum is the same. In this respect, vector

addition and scalar addition follow the same rules.

The operation of subtraction can be included in our vector algebra by

defining the negative of a vector to be another vector of equal magnitude

but opposite direction. Then

a-b = a + (-b) (2-4)

as shown in Fig. 2-4.

Remember that, although we have used displacements to illustrate

these operations, the rules apply to all vector quantities.

figure 2-4

The vector difference a — b =

a + l-b).

The geometrical method of adding vectors is not very useful for vectors

in three dimensions; often it is even inconvenient for the two-dimen-

sional case. Another way of adding vectors is the analytical method, in-

volving the resolution of a vector into components with respect to a

particular coordinate system.

Figure 2-5a shows a vector a whose tail has been placed at the origin

of a rectangular coordinate system. If we drop perpendicular lines from
the head of a to the axes, the quantities a.,- and a„ so formed are called

the components of the vector a. The process is called resolving a vector

into its components. Figure 2-5 shows a two-dimensional case for con-

venience; the extension of our conclusions to three dimensions will be

clear.

A vector may have many sets of components. For example, if we ro-

tate the x-axis and y-axis in Fig. 2-5a by 10° counterclockwise, the com-
ponents of a would be different. Furthermore, we may use a nonrec-

2.Q
RESOLUTION AND
ADDITION OF VECTORS,
ANALYTIC METHOD



figure 2-5

Two examples of the resolution of a

vector into its scalar components in a

particular coordinate system.

tangular coordinate system, that is, the angle between the two axes

need not be 90°. Thus the components of a vector are only uniquely

specified if we specify the particular coordinate system being used. The
vector need not be drawn with its tail at the origin of the coordinate

system to find its components — although we have done so for conve-

nience; the vector may be moved anywhere in the coordinate space and,

as long as its angles with the coordinate directions are maintained, its

components will be unchanged.

The components a.,- and a u in Fig. 2-5a are readily found from

as = a cos and a y = a sin 0, (2-5)

where 6 is the angle that the vector a makes with the positive x-axis,

measured counterclockwise from this axis. Note that, depending on the

angle 6, as and a y can be positive or negative. For example, in Fig. 2-5b,

b u is negative and bx is positive. The components of a vector behave like

scalar quantities because, in any particular coordinate system, only a

number with an algebraic sign is needed to specify them.

Once a vector is resolved into its components, the components them-

selves can be used to specify the vector. Instead of the two numbers a

[magnitude of the vector) and 6 (direction of the vector relative to the

x-axis), we now have the two numbers a.r and a y . We can pass back and

forth between the description of a vector in terms of its components
a Sl a„ and the equivalent description in terms of magnitude and direc-

tion a and 6. To obtain a and from ax and ay, we note from Fig. 2-5a that

and
a= Va.,2 + a,/

tan 8 = a,Ja.r.

(2-6a)

|2-6h)

The quadrant in which lies is determined from the signs of a., and a,,.

When resolving a vector into components it is sometimes useful to

introduce a vector of unit length in a given direction. Thus vector a in

Fig. 2-6a may be written, for example, as

a = naa, (2-7)

where u„ is a unit vector in the direction of a. Often it is convenient to

figure 2-6

(a) The vector a may he written as

u„a in which u„ is a unit vector in

the direction oi a. (b) The unit

\ ectoi i, j, and k, used to specify

the positive \ \ and z directions

respectively



draw unit vectors along the particular coordinate axes chosen. In the

rectangular coordinate system the special symbols i, j, and k are usually

used for unit vectors in the positive x-, y-, and z-directions, respectively;

see Fig. 2-6b. Note that i, j, and k need not be located at the origin. Like

all vectors, they can be translated anywhere in the coordinate space as

long as their directions with respect to the coordinate axes are not

changed.

The vectors a and b of Fig. 2-5 may be written in terms of their com-

ponents and the unit vectors as

and

a = \a.r + )ay

b = ibx + )by)

[2-Sa]

(2-8b)

see Fig. 2-7. The vector relation Eq. 2-8a is equivalent to the scalar re-

lations of Eq. 2-6; each equation relates the vector (a, or a and 6) to its

components [ax and ay ). Sometimes we will call quantities such as \ax

and )a y in Eq. 2-8a the vector components of a
;
they are drawn as vectors

in Fig. 2-7'a. The word component alone will continue to refer to the

scalar quantities a.r and ay .

figure 2-7

Two examples of the resolution of a

vector into its vector components

in a particular coordinate system;

compare with Figure 2-5.

We now consider the addition of vectors by the analytical method.

Let r be the sum of the two vectors a and b lying in the x-y plane, so that

r = a (2-9)

In a given coordinate system, two vectors such as r and a + b can only be

equal if their corresponding components are equal, or

and
i,=a J + b.r (2-10fl)

rv = ay + by. (2- 10b)

These two algebraic equations, taken together, are equivalent to the

single vector relation Eq. 2-9. From Eqs. 2-6 we may find r and the angle

6 that r makes with the x-axis
;
that is,

and

= Vr,.2 + r,/

tan 9 = r,Jr.r.

Thus we have the following analytic rule for adding vectors: Resolve

each vector into its components in a given coordinate system; the alge-

braic sum of the individual components along a particular axis is the

component of the sum vector along that same axis
;
the sum vector can

be reconstructed once its components are known. This method for add-

ing vectors may be generalized to many vectors and to three dimensions
(see Problems 13 and 18).
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The advantage of the method of breaking up vectors into components,

rather than adding directly with the use of suitable trigonometric rela-

tions, is that we always deal with right triangles and thus simplify the

calculations.

In adding vectors by the analytical method, the choice of coordinate

axes determines how simple the process will be. Sometimes the com-
ponents of the vectors with respect to a particular set of axes are known
to begin with, so that the choice of axes is obvious. Other times a judi-

cious choice of axes can greatly simplify the job of resolution of the

vectors into components. For example, the axes can be oriented so that

at least one of the vectors lies parallel to an axis.

An airplane travels 130 miles [= 209 km) on a straight course making an angle

of 22.5° east of due north. How far north and how far east did the plane travel

from its starting point'

We choose the positive x-direction to be east and the positive y-direction to

be north. Next (Fig. 2-8) we draw a displacement vector from the origin (starting

point), making an angle of 22.5° with the y-axis |north) inclined along the posi-

tive x-direction (east). The length of the vector is chosen to represent a magni-

tude of 130 miles. If we call this vector d, then dx gives the distance traveled

east of the starting point and d u gives the distance traveled north of the starting

point. We have

= 90.0° -22.5° = 67.5°,

so that (see Eqs. 2-5)

dr = dcosd= (130 miles) cos 67.5° = 50.0 miles (= 80.5 km),

EXAMPLE 1

and

du = d sin 6 = (130 miles) sin 67.5° = 120 miles (= 193 km).
figure 2-8

Example 1

An automobile travels due east on a level road for 30 km. It then turns due north
at an intersection and travels 40 km before stopping. Find the resultant dis-

placement of the car.

We choose a coordinate system fixed with respect to the earth, with the posi-

tive x-direction pointing east and the positive y-direction pointing north. The
two successive displacements, a and b, are then drawn as shown in Fig. 2-9. The
resultant displacement r is obtained from r = a -I- b. Since b has no x-component
and a has no y-component, we obtain (see Eqs. 2-10)

r .,. = as + bx = 30 km + = 30 km,

r„ = a,, + by = + 40 km = 40 km.

The magnitude and direction of r are then (see Eqs. 2-6)

r = V77T77 = V|30 km)2 + (40 km)2 = 50 km,

tan H rjr.r = |§^ = 1 .33, H = tan '
1 1 .33) = 53°.

The resultant vector displacement r has a magnitude oi 50 km and makes an

angle oi >3 north oi cast.

EXAMPLE 2

40 miles

30 miles

figure 2-i>

Example 1



EXAMPLE 3Three coplanar vectors are expressed, with respect to a certain rectangular co-

ordinate system, as

a = 4i - j,

b = -3i + 2j,

and c = —3j,

in which the components are given in arbitrary units. Find the vector r which is

the sum of these vectors.

FromEqs. 2-10 we have

t, = a, + b., + c, =4-3 + 0=1,
and

t,i = a,, + by + c,j = — 1 + 2 — 3 = —2.

Thus
r = ir, + )t„

= i - 2j.

Figure 2-10 shows the four vectors. From Eqs. 2-6 we can calculate that the figure 2-10
magnitude of r is \ 5 and that the angle that r makes with the positive x-axis, Three vectors, a, b, and c, and their

measured counterclockwise from that axis, is vector sum r.

-3 -2

tan -2/11 = 297°.

We have assumed in the previous discussion that the vectors being

added together are of like kind; that is, displacement vectors are added

to displacement vectors, or velocity vectors are added to velocity vec-

tors, fust as it would be meaningless to add together scalar quantities of

different kinds, such as mass and temperature, so it would be meaning-

less to add together vector quantities of different kinds, such as dis-

placement and electric field.

However, like scalars, vectors of different kinds can be multiplied by

one another to generate quantities of new physical dimensions. Because

vectors have direction as well as magnitude, vector multiplication can-

not follow exactly the same rules as the algebraic rules of scalar multi-

plication. We must establish new rules of multiplication for vectors.

We find it useful to define three kinds of multiplication operations

for vectors: ( 1 ) multiplication of a vector by a scalar, (2) multiplication of

two vectors in such a way as to yield a scalar, and (3) multiplication of

two vectors in such a way as to yield another vector. There are still

other possibilities, but we shall not consider them here.

The multiplication of a vector by a scalar has a simple meaning: The
product of a scalar k and a vector a, written ka, is defined to be a new
vector whose magnitude is k times the magnitude of a. The new vector

has the same direction as a if k is positive and the opposite direction if

k is negative. To divide a vector by a scalar we simply multiply the

vector by the reciprocal of the scalar.

When we multiply a vector quantity by another vector quantity, we
must distinguish between the scalar (or dot) product and the vector

2-4
MULTIPLICATION OF
VECTORS*

* The material of this section will be used later in the text. The scalar product is used first

in Chapter 7 and the vector product in Chapter 11. The instructor who wishes to post-

pone this section can do so. Its presentation here gives a unified treatment of vector alge-

bra and serves as a convenient reference for later work.



ior cross) product. The scalar product of two vectors a and b, written as

a • b, is defined to be

a • b = ab cos <f>, (2-111

where a is the magnitude of vector a, b is the magnitude of vector b, and

cos d> is the cosine of the (smaller) angle d> between the two vectors*

(see Fig. 2-11).

Since a and b are scalars and cos d> is a pure number, the scalar prod-

uct of two vectors is a scalar. The scalar product of two vectors can be

regarded as the product of the magnitude of one vector and the com-
ponent of the other vector in the direction of the first. Because of the

notation a • b is also called the dot product of a and b and is spoken as

"a dot b."

We could have defined a • b to be any operation we want, for example,

to be a ll3b li4 tan (d>/2), but this would turn out to be of no use to us in

physics. With our definition of the scalar product, a number of impor-

tant physical quantities can be described as the scalar product of two
vectors. Some of them are mechanical work, gravitational potential

energy, electrical potential, electric power, and electromagnetic energy

density. When such quantities are discussed later, their connection with

the scalar product of vectors will be pointed out.

The vector product of two vectors a and b is written as a x b and is

another vector c, where c = a x b. The magnitude of c is defined by

c = ab sin 4>, 12-12)

where </> is the (smaller) angle* between a and b.

The direction of c, the vector product of a and b, is defined to be per-

pendicular to the plane formed by a and b. To specify the sense of the

vector c we must refer to Fig. 2-12. Imagine rotating a right-handed

screw whose axis is perpendicular to the plane formed by a and b so as to

turn it from a to b through the angle 4> between them. Then the direc-

tion of advance of the screw gives the direction of the vector product

a x b (Fig. 2- 12a). Another convenient way to obtain the direction of a

vector product is the following. Imagine an axis perpendicular to the

plane of a and b through their origin. Now wrap the fingers of the right

hand around this axis and push the vector a into the vector b through

the smaller angle between them with the fingertips, keeping the thumb
erect; the direction of the erect thumb then gives the direction of the

vector product a x b (Fig. 2-12b).t Because of the notation, a x b is also

called the cross product of a and b and is spoken as "a cross b."

Notice that b x a is not the same vector as a x b, so that the order of

factors in a vector product is important. This is not true for scalars be-

cause the order of factors in algebra or arithmetic does not affect the

resulting product. Actually, a x b = —b x a (Fig. 2- 12c). This can be de-

duced from the fact that the magnitude ab sin d> equals the magnitude

figure 2-11

The scalar product a • b (= ab cos <f>)

is the product of the magnitude of

either vector [a, say) by the

component of the other vector in

the direction of the first vector

[b cos </>, say).

• There are two different angles between a pair of vectors, depending on the sense of rota-

tion We always choose the smallei ol the two in vector multiplication. In Eq. 2 11 it does

not matter hecause cos{2tt — <£>) = cos
<f>. But in Eq. 2-12 it does matter because sin|27r — <f>)

= —sin (l>.

t The procedun 12 are a convention. Two vectors such as a and b form

a plane and there are two din i tions thai point away from .my plane. We choose the right

hand or ri^ht ha ention; choosing the left band oi a left handed screv

would have led to the opposite I boi< I foi the dine uon of a x b.



ba sin </>, but the direction of a x b is opposite to that of b x a; this is so

because the right-handed screw advances in one direction when rotated

from a to b through <}> but advances in the opposite direction when ro-

tated from b to a, through </>. You can obtain the same result by applying

the right-hand rule.

If (f> is 90°, a, b, and c [— a x b) are all at right angles to one another

and give the directions of a three-dimensional right-handed coordinate

system.

,c = a x b Ac = a x b

(J

figure 2-12
The vector product, [a] In c = a x b,

the direction of c is that in which a

right-handed screw advances when
turned from a to b through the

smaller angle. (£>) The direction of

c can also be obtained from the

"right-hand rule": If the right hand

is held so that the curled fingers

follow the rotation of a into b, the

extended right thumb will point in

the direction of c. (c) The vector

product changes sign when the

order of the factors is reversed:

a x b = —b x a. Apply the right-hand

rule or the rule for the advance of a

right-handed screw to show that c

and c' have opposite directions.

Vc' = b x a

The reason for defining the vector product in this way is that it proves

to be useful in physics. We often encounter physical quantities that are

vectors whose product, defined as above, is a vector quantity having im-

portant physical meaning. Some examples of physical quantities that

are vector products are torque, angular momentum, the force on a mov-
ing charge in a magnetic field, and the flow of electromagnetic energy.

When such quantities are discussed later, their connection with the

vector product of two vectors will be pointed out.

The scalar product is the simplest product of two vectors. The order

of multiplication does not affect the product. The vector product is the

next simplest case. Here the order of multiplication does affect the

product, but only by a factor of minus one, which implies a direction

reversal. Other products of vectors are useful but more involved. For

example, a tensor can be generated by multiplying each of the three

components of one vector by the three components of another vector.

Hence a tensor (of the second rank) has nine numbers associated with it,

a vector three, and a scalar only one. Some physical quantities that can

be represented by tensors are mechanical and electrical stress, moments
and products of inertia, and strain. Still more complex physical quanti-

ties are possible. In this book, however, we are concerned only with

scalars and vectors.
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A certain vector a in the x-y plane is 250° counterclockwise from the positive
x-axis and has a magnitude 7.4 units. Vector b has magnitude 5.0 units and is
directed parallel to the z-axis. Calculate [a) the scalar product a • b and lb) the
vector product a x b.

Id) Because a and b are perpendicular to one another, the angle
<f> between

them is 90° and cos 4> = cos 90° = 0. Therefore, from Eq. 2-11, the scalar product
is

a • b = ab cos 4> = ab cos 90° = (7.4)(5.0) = 0,

consistent with the fact that neither vector has a component in the direction of
the other.

[b] The magnitude of the vector product is, from Eq. 2-12,

|a x b| = ab sin <j> = |7.4)(5.0) sin 90° = 37.

The direction of the vector product is perpendicular to the plane formed by
a and b. Therefore, as shown in Fig. 2-13, it lies in the x-y plane (perpendicular to
b) at an angle of 250° - 90° = 1 60° from the + x-axis (perpendicular to a ) in accor-
dance with the right-hand rule.

EXAMPLE 4

a x b

Vectors turn out to be very useful in physics. It will be helpful to look a
little more deeply into why this is true. Suppose that we have three
vectors a, b, and r, which have components ax, a,h az} bx, /?„, bz) and r.,,

ty, r respectively, in a particular coordinate system xyz. Let us suppose
further that the three vectors are related so that

(2-13)
r = a + b.

By a simple extension of Eqs. 2-10 this means that

r,=a.r +b,
; Ty = ay + byj and rz = ag + bt (2-14)

Now consider another coordinate system x'y'z' which has these prop-
es: (1) its origin does not coincide with the origin of the first, or xyz,

system and |2) its three axes are not parallel to the corresponding axes in
Jl)t

first system. In other words, the second set of coordinates has been
both translated and rotated with respect to the first.

The components of the vectors a, b, and r in the new system would
•ve in general, to be different; we may represent them by

a,, a, a
. b

;
and /v, /y, rz>, respectively. These new com

ponents would be found, however, to be related (see Problem 39) in thai

;flj" +/ >V = a,/' + /v; and r: - = a ; - + b : -. (2-15)

figure 2-13
Example 4

2-5
VECTORS AND THE
LAWS OF PHYSICS



That is, in the new system we would find once again (see Eq. 2-13) that

r = a + b.

In more formal language: Relations among vectors, of which Eq. 2-13

is only one example, are invariant (that is, are unchanged) with respect

to translation or rotation of the coordinates. Now it is a fact of experi-

ence that the experiments on which the laws of physics are based and

indeed the laws of physics themselves are similarly unchanged in form
when we rotate or translate the coordinate system. Thus the language of

vectors is an ideal one in which to express physical laws. If we can ex-

press a law in vector form, the invariance of the law for translation and

rotation of the coordinate system is assured by this purely geometrical

property of vectors.

It was thought until about 1956 that all laws of physics were invariant under

another kind of transformation of coordinates, the substitution of a right-

handed coordinate system for a left-handed one (see Fig. 2-14). In that year, how-
ever, some experiments involving the decay of certain elementary particles

were studied in which the result of the experiment did turn out to depend on the

"handedness" of the coordinate system used to express the results. In other

words, the experiment and its image in a mirror would yield different results!*

This surprising result led to a re-examination of the whole question of the sym-

metry of physical laws
;
these studies remain among the most challenging in

modern physics.

1. Three astronauts leave Cape Canaveral, go to the moon and back, and

splash down in the Pacific Ocean. An Admiral bids them goodby at the Cape

and then sails to the Pacific Ocean in an aircraft carrier where he picks

them up. For their respective journeys do the astronauts or the Admiral

have the larger displacement?

2. Can two vectors of different magnitude be combined to give a zero resul-

tant- Can three vectors'

3. Can a vector have zero magnitude if one of its components is not zero?

4. Does it make any sense to call a quantity a vector when its magnitude is

zero?

5. If three vectors add up to zero, they must all be in the same plane. Make this

plausible.

6. Does a unit vector have units?

7. Name several scalar quantities. Is the value of a scalar quantity dependent

on the coordinate system chosen 7

8. We can order events in time. For example, event b may precede event c but

follow event a, giving us a time order of events a, b, c. Hence there is a

sense of time, distinguishing past, present, and future. Is time a vector

therefore? If not, why not?

9. Do the commutative and associative laws apply to vector subtraction?

10. Can a scalar product be a negative quantity?

11. [a] If a • b = 0, does it follow that a and b are perpendicular to one another?

[b] If a • b = a • c, does it necessarily follow that b equals c?

12. If a x b = 0, must a and b be parallel to each other? Is the converse true?

13. [a) Show that if all of the components of a vector are reversed in direction,

then the vector itself is reversed in direction, [b] Show that if the compo-

te

sn

o

-a

M

figure 2-14
Showing [a] a left-handed and [b] a

right-handed coordinate system.

Notice that [a] and [b] are related in

that each may be viewed as the

image of the other in mirror MM.
The "handedness" of a coordinate

system cannot be changed by

rotating it. Note that in [b], i x j
= k,

whereas in [a), i x j
= —k.

questions

* C. N. Yang and T. D. Lee were awarded the Nobel prize in 1957 for their theoretical pre-

diction that this would be the case. See "The Overthrow of Parity" by Phillip Morrison,

Scientific American, April 1957, for a very readable review of this matter.



nents of a vector product are all reversed, then the vector product is not

changed. |c) Is a vector product, then, a vector?

14. Thus far we have discussed addition, subtraction, and multiplication of

vectors. Why do you suppose that we do not discuss the division of vectors-'

Is it possible to define such an operation?

15. Must you specify a coordinate system when you [a] add two vectors, [b] form
their scalar product, (c) form their vector product, [d] find their components?

16. It is conventional to use the right hand in rules for vector algebra. What
changes would be required if a left-hand convention were adopted instead?

SECTION 2-2

1. Consider two displacements, one of magnitude 3 m and another of magni-

tude 4 m. Show how the displacement vectors may be combined to get a

resultant displacement of magnitude [a] 7 m, [b) 1 m, and (c) 5 m.
Answer: The displacements should be: \a) parallel, [b] antiparallel, [c] per-

pendicular.

2. What are the properties of two vectors a and b such that

(a) a + b = c and a + b = c,

(b) a + b = a-b,

(c) a + b = c and a 2 + b2 = c2
.

3. Two vectors a and b are added. Show that the magnitude of the resultant

cannot be greater than a + b or smaller than \a — b\, where the vertical bars

signify absolute value.

4. A car is driven east for a distance of 50 km, then north for 30 km, and then

in a direction 30° east of north for 25 km. Draw the vector diagram and de-

termine the total displacement of the car from its starting point.

5. A golfer takes three putts to get his ball into the hole once he is on the green.

The first putt displaces the ball 12 ft north, the second 6.0 ft southeast, and
the third 3.0 ft southwest. What displacement was needed to get the ball

into the hole on the first putt- Answer: 6.0 ft, 20.5° E of N.

6. Vector a has a magnitude of 5.0 units and is directed east. Vector b is di-

rected 45° west of north and has a magnitude of 4.0 units. Construct vector

diagrams for calculating [a] |a + b) and [b] [b —a). Estimate the magnitudes
and directions of (a + b) and |b — a) from your diagrams.

SECTION 2-3

7. Find the sum of the vector displacements c and d whose components in

kilometers along three perpendicular directions are

cs = 5.0, c„ = 0, cz = -2.0; dx = -3.0, du
= 4.0, d:

= 6.0.

Answer: r., = 2.0 km
;
r„ = r: = 4.0 km.

8. [a] A man leaves his front door, walks 1000 ft east, 2000 ft north, and then

takes a penny from his pocket and drops it from a cliff 500 ft high. Set up a

coordinate system and write down an expression, using unit vectors, for the

displacement of the penny, [b] The man then returns to his front door, fol-

lowing a different path on the return trip. What is his resultant displace-

ment for the round trip?

9. Two vectors are given by a = 4i - 3j + k and b = — i + j + 4k. Find [a]

a + b, (b) a — b, and (c) a vector c such that a — b + c = 0.

Answer: [a) 3i - 2j ik. b) 5i -4j - 3k. [c] Negative of [h\.

10. A room has the dimensions 10 ft x 12 ft x 14 ft. A fly starting at one cornel

ends up at a diametrically opposite cornel \a) What is the magnitude ot its

displacement? \b) Could the length ot its path be Less than this distance?

Greatei than this distance? Equal to this distance? [c] chouse a suitable

problems
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coordinate system and find the components of the displacement vector in

this frame, [d] If the fly walks rather than flies, what is the length of the

shortest path it can take?

Given two vectors a = 4i — 3j and b = 6i + 8j, find the magnitude and direc-

tion of a, of b, of a + b, of b — a, and of a — b.

Answer: The magnitudes are 5, 10, 11, 11, and 11. The angles with the posi-

tive x-axis are 323°, 53°, 27°, 80° and 260°.

Two vectors of lengths a and b make an angle 6 with each other when
placed tail to tail. Prove, by taking components along two perpendicular

axes, that the length of their sum is

r = Va 2 + b- + lab cos 0.

13. Generalize the analytical method of resolution and addition to the case of

three or more vectors, in two dimensions.

Two vectors a and b have equal magnitudes, say 10 units. They are oriented

as shown in Fig. 2-15 and their vector sum is r. Find [a] the x- and y-com-

ponents of r
;

(b) the magnitude of r
;
and (c) the angle r makes with the

x-axis.

A particle undergoes three successive displacements in a plane, as follows:

4.0 m southwest, 5.0 m east, 6.0 m in a direction 60° north of east. Choose
the y-axis pointing north and the x-axis pointing east and find [a) the com-

ponents of each displacement, [b] the components of the resultant displace-

ment, (c) the magnitude and direction of the resultant displacement, and

(d) the displacement that would be required to bring the particle back to the

starting point.

Answer: [a] ax = —2.8 m, ay = —2.8 m
;

bx = +5.0 m, by = 0;

c.r = +3.0 m, cy = +5.2 m.

(b) dx = +5.2 m, dy
= +2.4 m.

(c) 5.7 m, 25° north of east.

(d) 5.7 m, 25° south of west.

16. Use a scale of 2 m to the inch and add the displacements of Problem 15

graphically. Determine from your graph the magnitude and direction of

the resultant.

17. A person flies from Washington to Manila, [a] Describe the displacement

vector. \b) What is its magnitude if the latitude and longitude of the two
cities are 39° N, 77° W, and 15° N, 121° E? Answer: (b) 11,230 km.

18. Generalize the analytical method of resolving and adding two vectors to

three dimensions.

Let N be an integer greater than one
;
then19
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figure 2
Problems

15
14 and 25

2-7T 477 , . _ , . ITT
cos + cos — + cos— + • • • + cos [N — 1 —- =

;N N N

that is,

I
lirn

cos —— = 0.N

Also

X •
l7Tn nsin— = 0.

Prove these two statements by considering the sum of N vectors of equal

length, each vector making an angle of Itt/N with that preceding.



SECTION 2-4

20. A vector d has a magnitude 2.5 m and points north. What are the magni-

tudes and directions of the vectors

[a] -d, |b) d/2.0, (c) -2.5d and \d) 4.0d?

21. In the coordinate system of Fig. 2.6b show that

ii=jj=kk=l
and

ij = jk = ki = 0.

22. In the right-handed coordinate system of Fig. 2-6£> show that

ixi = jx j
= kxk =

i x j
= k

;
k x i =

j ; j x k = i.

23. Show for any vector a that [a] a • a = a 2 and that [b] a x a = 0.

24. Use the standard (right-hand) xyz system of coordinates. Given vector a in

the +x-direction, vector b in the +y-direction, and the scalar quantity d:

[a] What is the direction of a x b? [b] What is the direction of b x a? (c) What
is the direction of b/d? (d) What is a • b?

25. For the two vectors in Problem 14, find [a] a • b, and \b) a x b.

Answer: (a) -26. [b] 97k.

26. A vector a of magnitude ten units and another vector b of magnitude six

units point in directions differing by 60°. Find [a] the scalar product of the

two vectors and [b] the vector product of the two vectors.

27. Show that the area of the triangle contained between the vectors a and b

is l|a x b|, where the vertical bars signify absolute value (see Fig. 2-16).

28. Show that the magnitude of a vector product gives numerically the area of

the parallelogram formed with the two component vectors as sides (see

Fig. 2-16). Does this suggest how an element of area oriented in space could
be represented by a vector?

Show that a • |b x c) is equal in magnitude to the volume of the parallele-

piped formed on the three vectors a, b, and c.

Prove that two vectors must have equal magnitudes if their sum is per-

pendicular to their difference.

31. Scalar product in unit vector notation. Let two vectors be represented in

terms of their coordinates as

29

30

and

a = \as + )a„ + ka~

b = ibx + jby + kbz

Show analytically that

a b = asbs + a,,b„ + a :b z .

[Hint: See Problem 21.)

32. Use the definition of scalar product a • b = ab cos <£ and the fact that a • b =
a x bj- + aubu + a :b~ (see Problem 31) to obtain the angle between the two
vectors given by a = 3i + 3j - 3k and b = 2i + j + 3k.

.^^. Vector product in unit vector notation. Show analytically that a x b =
i{a„b: - a z b„) + j|a*b, - a.rb: ) + k[axbu

- a„b,). [Hint: See Problem 22.)

34. Three vectors are given by a = 3i + 3j - 2k, b = -i - 4j + 2k, and c = 2i +
2j + k. Find {a) a • (b x c), [b] a • (b + c) and (c) a x (b + c).

35. Let b and c be the intersecting face diagonals of a cube of edge a, as shown
in I ig. 2-17. [a) Find the components ol the vector d, where d b X c.

[b] Find the values of b • c, of d • c, and of d • b.

(c) Find the angle between the body diagonal e, as shown in Fig. 2-17, and
the face diagonal b.

Answer: \a) d., = dt = a*, d„ -a2
, [b] b • c = a2

, d • c = d • b = 0. (c) 35

J6, Suppose a, b, .iikI c .in- any three non< oplanai vectors Ihev are not neces
s.mlv mutually .it right angles [a] Bhov\ thai

w
b sin <t> ^w

^-:
figur«> 2-16
Problems 27 and 28

figure 2-17

Problem 35



(b) Let

a • (b x c) = b • (c x a) = c (a x b).

bxc„ cxa^ axb
A =

' B =
' C = '

where v = a • (b x c). Evaluate the dot product of each of a, b, c with each of

A, B, C. (c) If a, b, c have dimensions of length, what are the dimensions of

A, B, C?

37. Two vectors a and b have components, in arbitrary units a., = 3.2, a u = 1.6;

bx = 0.50, by = 4.5. [a] Find the angle between a and b. (b) Find the com-
ponents of a vector c which is perpendicular to a, is in the x-y plane, and

has a magnitude of 5.0 units.

Answer: [a] 57°. (b) cx = ±2.2 units; c u
= +4.5 units.

38. [a] We have seen that the commutative law does not apply to vector prod-

ucts, that is, a x b does not equal b x a. Show that the commutative law

does apply to scalar products, that is, a • b = b • a. |b) Show that the dis-

tributive law applies to both scalar products and vector products, that is,

show that

(b + c) b + a • c and that a x lb + cl = a x b + a x c.

(c) Does the associative law apply to vector products, that is, does a x

(b x c) equal (a x b) x c? Does it make any sense to talk about an associative

law for scalar products'
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SECTION 2-5

39. Invahance of vector addition under rotation of the coordinate system.

Figure 2-18 shows two vectors a and b and two systems of coordinates which
differ in that the x and x' axes and the y and y' axes each make an angle <f>

with each other. Prove analytically that a + b has the same magnitude and

direction no matter which system is used to carry out the analysis.

figure 2-18
Problem 39



3
motion in

one dimension
Mechanics, the oldest of the physical sciences, is the study of the

motion of objects. The calculation of the path of a baseball or of a space

probe sent from Earth to Mars is among its problems. So too is the

analysis of tracks formed in bubble chambers, representing the colli-

sions, decay, and interactions of elementary particles (see Fig. 10-11 and

Appendix F).

When we describe motion we are dealing with that part of mechanics
called kinematics. When we relate motion to the forces associated with

it and to the properties of the moving objects, we are dealing with

dynamics. In this chapter we shall define some kinematical quantities

and study them in detail for the special case of motion in one dimen-

sion. In Chapter 4 we discuss some cases of two- and three-dimensional

motion. Chapter 5 deals with the more general case of dynamics.

3-1
MECHANICS

An object can rotate as it moves. For example, a baseball may be spin-

ning while it is moving as a whole in some trajectory. Also, a body may
vibrate as it moves, as, for example, a falling water droplet. These com-
plications can be avoided by considering the motion of an idealized

body called a particle. Mathematically, a particle is treated as a point,

an object without extent, so that rotational and vibrational considera-

tions arc not involved.

Actually, there is no such thing in nature as an object without extent.

The concept ol "particle" is nevertheless very useful because real

objects often behave to a very good approximation as though they were

parti* Us. A body need not be "small" in the usual sense of the word in

order to he treated as .) particle. For example, if we consider the distance

30

PARTICLE KINEMATICS



from the earth to the sun, with respect to this distance the earth and

the sun can usually be considered to be particles. We can find out a

great deal about the motion of the sun and planets, without appreciable

error, by treating these bodies as particles. Baseballs, molecules, pro-

tons, and electrons can often be treated as particles. Even if a body is too

large to be considered a particle for a particular problem, it can always

be thought of as made up of a number of particles, and the results of

particle motion may be useful in analyzing the problem. As a simplifi-

cation, therefore, we confine our present treatment to the motion of a

particle.

Bodies that have only motion of translation behave like particles. An
observer will call motion translational if the axes of a reference frame

which is imagined rigidly attached to the object, say x', y', and z'

,

always remain parallel to the axes of his own reference frame, say x, y,

and z. In Fig. 3-1, for example, we show the translational motion of an

object moving from positions A to B to C. Notice that the path taken is

not necessarily a straight line. Notice too that throughout the motion

every point of the body undergoes the same displacements as every

other point. We can assume the body to be a particle because in de-

scribing the motion of one point on the body we have described the

motion of the body as a whole.

m

t-i

c
n

rn

Co

do

figure 3-1

Translational motion of an object.

Translation can occur in three

dimensions, but only two are

shown for simplicity.

The displacement, the velocity, and the acceleration of a particle are

vectors. Because this chapter deals with motion in one dimension only,

we really do not need the full power of the vector method to deal with

it. Nevertheless we find it useful to begin by considering motion in two
dimensions (the extension to three is not difficult). From this vantage

point we then specialize to the particular case of one-dimensional

motion. This procedure allows us to keep in mind the essential vector

character of all motion.

The velocity of a particle is the rate at which its position changes
with time. The position of a particle in a particular reference frame is

given by a position vector drawn from the origin of that frame to the

particle. At time t t , let a particle be at point A in Fig. 3-2a, its position

in the x-y plane being described by position vector ri. At a later time U_

let the particle be at point B, described by position vector r>. The dis-

placement vector describing the change in position of the particle as it

moves from A to B is Ar (= i, - r,) and the elapsed time for the motion
between these points is At (= t2 - t,). The average velocity tor the par-

ticle during this interval is defined by

AVERAGE VELOCITY



_ _ Ar _ displacement (a vector)

At elapsed time |a scalar)
13-1)

A bar above a symbol indicates an average value for the quantity in

question.

The quantity v is a vector, for it is obtained by dividing the vector

Ar by the scalar At. Velocity, therefore, involves both direction and

magnitude. Its direction is the direction of Ar and its magnitude is

|

Ar/At
|

. The magnitude is expressed in distance units divided by time

units, as, for example, meters per second or miles per hour.

The velocity defined by Eq. 3-1 is called an average velocity because

the measurement of the net displacement and the elapsed time does

not tell us anything at all about the motion between A and B. The path

may have been curved or straight; the motion may have been steady or

erratic. The average velocity involves simply the total displacement

and the total elapsed time. For example, suppose a man leaves his

house and goes on an automobile trip, returning to his house in a time

At (five hours, say) after he left it. His average velocity for the trip is

zero because his displacement for this particular time interval At is

zero.

figure 3-2

(a) A particle moves from A to B in

time At (= t> — t t )
undergoing a

displacement Ar (= t> — r,|. The
average velocity v between A and

B is in the direction of Ar. (b) As B

moves closer to A the average

velocity approaches the

instantaneous velocity v at A; v is

tangent to the path at A.

If we were to measure the time of arrival of the particle at each of

many points along the actual path between A and B in Fig. 3-2a, we
could describe the motion in more detail. If the average velocity turned

out to be the same (in magnitude and direction) between any two points

along the path, we would conclude that the particle moved with con-

stant velocity, that is, along a straight line (constant direction) at a

uniform rate (constant magnitude).

Suppose that a particle is moving in such a way that its average velocity,

measured for a number of different time intervals, does not turn out to

be constant. This particle is said to move with variable velocity. Then
we must seek to determine a velocity of the particle at any given in-

stant of time, called the instantaneous velocity.

Velocity can vary by a change in magnitude, by a change in direction,

or both. For the motion portrayed in Fig. 3-2a, the average velocity

during the time interval t% — /, may differ both in magnitude and direc

timi from tin average velocity obtained during another time interval

t\, In Fig, 3 lb we illustrate tins by choosing the point B to be sue

3-4
INSTANTANEOUS
VELOCITY



cessively closer to point A. Points B' and B" show two intermediate

positions of the particle corresponding to the times t% and t 2
" and de-

scribed by position vectors r2
' and t->", respectively. The vector dis-

placements Ar, Ar', and Ar" differ in direction and become successively

smaller. Likewise, the corresponding time intervals At (= t 2 — ti),

Ar' (= t>' — t\), and At" (= t 2
" — U) become successively smaller.

As we continue this process, letting B approach A, we find that the

ratio of displacement to elapsed time approaches a definite limiting

value. Although the displacement in this process becomes extremely

small, the time interval by which we divide it becomes small also and

the ratio is not necessarily a small quantity. Similarly, while growing

smaller, the displacement vector approaches a limiting direction, that

of the tangent to the path of the particle at A. This limiting value of

Ar/At is called the instantaneous velocity at the point A, or the velocity

of the particle at the instant t,.

If Ar is the displacement in a small interval of time At, following the

time t, the velocity at the time t is the limiting value approached by

Ar/At as both Ar and At approach zero. That is, if we let v represent the

instantaneous velocity,

v = hm -T--
A<-0 At

The direction of v is the limiting direction that Ar takes as B approaches

A or as At approaches zero. As we have seen, this limiting direction is

that of the tangent to the path of the particle at point A.

In the notation of the calculus, the limiting value of Ar/At as At

approaches zero is written dr/dt and is called the derivative of r with

respect to t. We have then

, . Ar dt

a™ At dt
(3-2)

The magnitude v of the instantaneous velocity is called the speed and

is simply the absolute value of v. That is,

v = I v I

= \dt/dt\ (3-3)

Speed, being the magnitude of a vector, is intrinsically positive.

Just as a particle is a physical concept making use of the mathemati-
cal concept of a point, so here velocity is a physical concept using the

mathematical concept of differentiation. In fact, the calculus was in-

vented in order to have a proper mathematical tool for treating funda-

mental mechanical problems.

In the next section we shall examine the concept of instantaneous

velocity in detail for the special case of motion in one dimension, some-
times called rectilinear motion.

Here again we approach one-dimensional motion by first considering 3-5
two-dimensional motion and then considering the special case in which
only one dimension is involved.

Figure 3-3 shows a particle moving along a path in the x-y plane. At
time t its position with respect to the origin is described by position

vector r (see Fig. 3-3a) and it has a velocity v (see Fig. 3-3b) tangent to

its path as shown. We can write (see Eq. 2-8)

ONE-DIMENSIONAL
MOTION- VARIABLE
VELOCITY

r = ix -f jy, (3-4)
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where i and
,
are unit vectors in the positive x- and y-directions re-

spectively, and x and y are the (scalar) components of vector r. Because
i and

j
are constant vectors, we have, on combining Eqs. 3-2 and 3-4,

dt
l

dt
+)

dt'

which we can express as

v = ivx + )vy (two-dimensional motion), (3-5)

where vx (= dx/dt) and vy [= dy/dt) are the (scalar) components of the
vector v.

We now consider motion in one dimension only, chosen for con-
venience to be the x-axis. We must then have v« = so that Ea 3-5
reduces to

v - ivx (one-dimensional motion) (3-6)

Since i points in the positive x-direction, v, will be positive (and
equal to +v) when v points in that direction, and negative (and equal to
-v) when it points in the other direction. Since, in one-dimensional
motion there are only two choices as to the direction of v, the full
power of the vector method is not needed, as we have pointed out- we
can work with the (scalar) velocity component v r alone

The limiting process As an illustration of the limiting process in one dimen-
sion consider the following table of data taken for motion along the x-axis The
rirst tour columns are experimental data. The symbols refer to Fig. 3-4 in which
the particle is moving from left to right, that is, in the positive x-direction The
particle was at position x,

{
W0 cm from the origin) at time f, (1.00 s) It was atposition x, at time t2 . As we consider different values for x„ and different cor-responding times t-,, we find

figure 3-3
A particle at time t has [a] a
position described by r, [b\ an
instantaneous velocity v, and (c) an
instantaneous acceleration a. The
vector components ix and jy of Eq.
3-4, ivx and jvs of Eq. 3-5, and iax
and \av of Eq. 3-10 are also shown,
as are the unit vectors i and j.

EXAMPI.E 1

cm t,, s

100.0

100.0

100.0

100.0
linn)

moo
100.0
100.0

Mill ii

1.00

1.00

1.00

I 0(1

1.00

1 .00

I 00

1 .00

I 00

x->, cm

200.0

180.0

160.0

140.0

120.0

I 10(1

103.0

101.0

t-i, s

11.00

9.60

7.90

5.90

3.56

2.33

1.69

1.42

1 I 1

x> — x,

A\, cm

100.0

80.0

60.0

40.0

20.0

10.0

5.0

3.0

1.0

u-t,
= At, s

Ax/At,

cm/s

10.00 + 10.0
S.60 +9.3
6.90 +8.7
4.90 +8.2
2.56 + 7.8

1.33 + 7.5

0.69 + 7.3

0.42 + 7.1

14 + 7.1

I quation I .' which h„l ( k for the- general case ol motion in three dimensions is



,. Ar dt

a,^ At dt

For one-dimensional motion along the x-axis we have a similar relation, scalar

in character, in which each vector quantity is replaced by its corresponding

component or

dx
vx = hm— = -r-

4(->o At dt
(3-7)

It is clear from the table that as we select values of x-> closer to Xi, At approaches

zero and the ratio Ax/At approaches the apparent limiting value +7.1 cm/s. At

time ti, therefore, v, = +7.1 cm/s, as closely as we are able to determine from

the data. Since v.,- is positive, the velocity v (= iv.,
;
see Eq. 3-6) points to the

right in Fig. 3-4. This is tangent to the path in the direction of motion, as it

must be.

w
in

a

Da

H
5

n
Co

Time ti Time ti

3-|

—

Ax( = X2 - *i)->-

X

X l

*.£ "

figure 3-4

A particle is moving to the right

along the x-axis.

Figure 3-5a shows six successive "snapshots" of a particle moving along the

x-axis with variable velocity. At t = it is at position x = + 1.00 m to the right

of the origin; at t = 2.5 s it has come to rest at x = +5.00 m
;
at t = 4.0 s it has

returned to x = + 1 .40 m. Figure 3-5£> is a plot of position x versus time t for this

motion. The average velocity for the entire 4.0-s interval is the net displace-

ment or change of position (+0.40 m) divided by the elapsed time (4.0 s) or v.r
=

+0.10 m/s. (We call ~v~s average velocity and vx velocity, for one-dimensional

motion, even though velocity is a vector and not a scalar. This conforms to

common usage and should cause no misunderstandings. These quantities are

not speeds but they may be negative, whereas speed is intrinsically positive.)

The average velocity vector v points in the positive x-direction (that is, to the

right in Fig. 3-5<a) because the net displacement points in this direction. The
quantity vx can be obtained directly from the slope of the dashed line af in Fig.

3-5fc>, where by slope we mean the ratio of the net displacement gf to the elapsed

time ga. (The slope is not the tangent of the angle fag measured on the graph

with a protractor. This angle is arbitrary because it depends on the scales we
choose for x and t.)

The velocity v., at any instant is found from the slope of the curve of Fig.

3-5£> at that instant. Equation 3-7 is in fact the relation by which the slope of

the curve is defined in the calculus. In our example the slope at b, which is the

value of vx at b, is + 1.7 m/s
;
the slope at d is zero and the slope at /is— 6.2 m/s.

When we determine the slope dx/dt at each instant t, we can make a plot of vx
versus t, as in Fig. 3-5c. Note that for the interval < t < 2.5 s, v., is positive so

that the velocity vector v points to the right in Fig. 3-5a
;
for the interval 2.5 s <

t < 4.0 s vx is negative so that v points to the left in Fig. 3-5a.

EXAMPLE 2

Often the velocity of a moving body changes either in magnitude, in

direction, or both as the motion proceeds. The body is then said to have

an acceleration. The acceleration of a particle is the rate of change of

its velocity with time. Suppose that at the instant ti a particle, as in

Fig. 3-6, is at point A and is moving in the x-y plane with the instanta-

neous velocity v,, and at a later instant t 2 it is at point B and moving

3-6
ACCELERATION
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figure 3-5
(a) Six consecutive "snapshots" of a
particle moving along the x-axis.

M The vector joined to the particle is
its instantaneous velocity; that
below the particle is its

instantaneous acceleration.

<b> (b) A plot of x versus t for the
motion of the particle.

(c) (c) A plot of Vj. versus t.

(d) (d) A plot of ax versus t.

with the instantaneous velocity v. The average acceleration a duringhe mo ion from A to B is defined to be the change of velocity dividedny tne time interval, or

a = v-j ~ v.

ti-U
Av
M 13-8)

The quantity a is a vector, for it is obtained by dividing a vector Av
scalar At. Acceleration is therefore characterized by magnitude and

direction. Its direction is the direction of Av and its magnitude is



|Av/At|. The magnitude of the acceleration is expressed in velocity

units divided by time units, as for example meters per second per sec-

ond (written m/s2 and read "meters per second squared"), cm/sec2
, and

ft/sec2
.

We call a of Eq. 3-8 the average acceleration because nothing has

been said about the time variation of velocity during the interval At.

We know only the net change in velocity and the total elapsed time. If

the change in velocity (a vector) divided by the corresponding elapsed

time, Av/At, were to remain constant, regardless of the time intervals

over which we measured the acceleration, we would have constant

acceleration. Constant acceleration, therefore, implies that the change

in velocity is uniform with time in direction and magnitude. If there is

no change in velocity, that is, if the velocity were to remain constant

both in magnitude and direction, then Av would be zero for all time

intervals and the acceleration would be zero.

If a particle is moving in such a way that its average acceleration,

measured for a number of different time intervals, does not turn out to

be constant, the particle is said to have a variable acceleration. The
acceleration can vary in magnitude, or in direction, or both. In such

cases we seek to determine the acceleration of the particle at any given

time, called the instantaneous acceleration.

The instantaneous acceleration is defined by

, . Av d\
a = lim -r- = -rr-

a<-» At dt
(3-9)

That is, the acceleration of a particle at time t is the limiting value of

Av/At at time t as both Av and At approach zero. The direction of the

instantaneous acceleration a is the limiting direction of the vector

change in velocity Av. The magnitude a of the instantaneous accelera-

tion is simply a = |a| = \d\/dt\. When the acceleration is constant the

instantaneous acceleration equals the average acceleration. You should

note that the relation of a to v, in Eq. 3-9, is the same as that of v to r,

in Eq. 3-2.

Two special cases illustrate that acceleration can arise from a change

in either the magnitude or the direction of the velocity. In one case we
have motion along a straight line with uniformly changing speed (as

in Section 3-8). Here the velocity does not change in direction but its

magnitude changes uniformly with time. This is a case of constant

acceleration. In the second case we have motion in a circle at constant

speed (Section 4-4). Here the velocity vector changes continuously in

direction but its magnitude remains constant. This, too, is accelerated

motion, though the direction of the acceleration vector is not constant.

Later we will encounter other important cases of accelerated motion.

Av = V2 — vi

figure 3-6

A particle has velocity v, at point A
and moves to point B, where its

velocity is v2 . The triangle shows

the (vector) change in velocity

Av (= v2
— v^ experienced by the

particle as it moves from A to B.

From Eqs. 3-5 and 3-9 we can write, for motion in two dimensions as in

Fig. 3-3,

d\ . dv. dvu
a =^ = 1 ^r +

' dt

ONE-DIMENSIONAL
MOTION- VARIABLE
ACCELERATION

or

a = ia.r + Sa,,, (3-10)

where a, (= dvjdt) and a y (= dvijdt) are the (scalar) components of the

acceleration vector a (see Fig. 3-3c).



We again restrict ourselves to motion in one dimension only, chosen

for convenience to be the x-axis. Since vy for such motion does not

change with time (and is, in fact, zero), a,„ which is dvjdt, must also

be zero so that

\a.r . 13-11)

Since i points in the positive x-direction, a? will be positive when a

points in this direction and negative when it points in the other direc-

tion.

The motion of Fig. 3-5a is one of variable acceleration along the x-axis. To find

the acceleration* ax at each instant we must determine dvjdt at each instant.

This is simply the slope of the curve of vx versus t at that instant. The slope of

Fig. 3-5c at point b is —1.3 m/s2 and that at point d is —1.8 m/s2
, as shown in

the figure. The result of calculating the slope for all points is shown in Fig. 3-5d.

Notice that a.,- is negative at all instants, which means that the acceleration

vector a points in the negative x-direction. This means that v.r is always de-

creasing with time, as is clearly seen from Fig. 3-5c. The motion is one in which

the acceleration vector has a constant direction but varies in magnitude (see

Fig. 3-5fl).

EXAMPLE 3

Let us now further restrict our considerations to motion which not only

occurs in one dimension (the x-axis) but for which a.,- — a constant. For

such constant acceleration the average acceleration for any time in-

terval is equal to the (constant) instantaneous acceleration a.,-. Let r, =
and let tt be any arbitrary time t. Let v. r() be the,value of vx at t = and

let vx be its value at the arbitrary time t. With this notation we find ax

(see Eq. 3-8) from

Av v.r — V.,n

At r-0

or

vx = Vj-o + ax t. (3-12)

This equation states that the velocity v., at time t is the sum of its value

at time t = plus the change in velocity during time t, which is axt.

Figure 3-7c shows a graph of v, versus r for constant acceleration; it

is a graph of Eq. 3-12. Notice that the slope of the velocity curve is con-

stant, as it must be because the acceleration a., {=dv,,/dt) has been as-

sumed to be constant, as Fig. 3-7d shows.

When the velocity v, changes uniformly with time, its average value

over any time interval equals one-half the sum of the values of v., at the

beginning and at the end of the interval. That is, the average velocity

v~, between t = and r = r is

v.,- = l(v.,<> + v.,| (3-13)

This relation would not be true if the acceleration were not constant,

for then the curve of v., versus t would not be a straight line.

3-8
ONE-DIMENSIONAL
MOTION- CONSTANT
ACCELERATION

As tor velocity, we commonly call a,, for one-dimensional motion thi acceleration even

though acceleration is .i vector and ./. is correctly an acceleration component lot one

dimension, 1 1 motion there is only one component it the axis is chosen along the line oi

tin mution



If the position of the particle at t

be found from

is Xo, the position x at t = t can

X = Xo + Vxt

which can be combined with Eq. 3-13 to yield

X = X + MVxo+ V.,-)t. (3-14)

The displacement due to the motion in time t is x — x». Often the origin

is chosen so that x = 0.

Notice that aside from initial conditions of the motion, that is, the

values of x and vx at t = (taken here as x = x
( > and v., = v.,<>), there are

four parameters of the motion. These are x, the displacement; vXl the

velocity; ax, the acceleration; and t, the elapsed time. If we know only

that the acceleration is constant, but not necessarily its value, from any

two of these parameters we can obtain the other two. For example, if

a j- and t are known, Eq. 3-12 gives vx, and having obtained vXl we find x

from Eq. 3-14.

(a)

figure 3-7

(a) Five successive "snapshots" of

rectilinear motion with constant

acceleration. The arrows on the

spheres represent v
;
those below

represent a.

(b)

(0

(d)

(b) The displacement increases

quadratically according to

x = Vxot + iaA2
. Its slope increases

uniformly and at each instant has

the value vx , the velocity.

(c) The velocity v., increases

uniformly according to vx = vxu + aj

Its slope is constant and at each

instant has the value a.,-, the

acceleration.

(d) The acceleration a,,- has a

constant value; its slope is zero.

Figure 3-5 shows similar plots for

one-dimensional motion in which
the acceleration is not constant.



In most problems in uniformly accelerated motion, two parameters

are known and a third is sought. It is convenient, therefore, to obtain

relations between any three of the four parameters. Equation 3-12 con-

tains v, . a,, and t, but not x
;
Eq. 3-14 contains, x, v., , and r but not ax . To

complete our system of equations we need two more relations, one con-

taining x, a.,, and t but nor vx and another containing x, vx , and ax but

not t. These are easily obtained by combining Eqs. 3-12 and 3-14.

Thus, if we substitute into Eq. 3-14 the value of vx from Eq. 3-12, we
thereby eliminate v., and obtain

x = x 4- vx0t + }axt
2

. (3-15)

When Eq. 3-12 is solved for t and this value for t is substituted into Eq.

3-14, we obtain

vx2 = v.r0
2 + 2ax[x - x

)
13-16)

Equations 3-12, 3-14, 3-15, and 3-16 (see Table 3-1) are the complete set

of equations for motion along a straight line with constant acceleration.

Table 3-1

Kinematic equations for straight line motion with constant acceleration

|The position x„ and the velocity v., at the initial instant t = are the given

initial conditions)

Equation

Number Equation

Contains
vx a.

3-12

3-14

3-15

3-16

v., = v.,o + a,t

X = Xo + ilVxo + vx )t

x = x + vx0t + \aTt 2

vx2 = vx02 + 2ax{x - Xo)

* J J J
y y x y
j * j j
y y y x

A special case of motion with constant acceleration is one in which

the acceleration is zero, that is, a x = 0. In this case the four equations in

Table 3-1 reduce to the expected results vx = v.r0 (the velocity does not

change) and x = x„ + vxi)t (the displacement changes linearly with time).

The curve of Fig. 3-7b is a displacement-time graph for motion with constant

acceleration; that is, it is a graph of Eq. 3-15 in which x ( >
= 0. The slope of the

tangent to the curve at time t equals the velocity v., at that time. Notice that the

slope increases continuously with time from vxo at t = 0. The rate of increase

ol this slope should give the acceleration a.,, which is constant in this case. The
curve of Fig. 3-7/? is a parabola since Eq. 3-15 is the equation for a parabola

having slope v./0 at t = 0. We obtain, on successive differentiation of Eq. 3-15,

x = x»+ v.,„t 4- la,t-

dx/dt = vx0 + aA or v.r = vx0 + axt,

which gives the velocity v., at time t (compare Eq. 3-12), and

dv.,/dt = a x ,

the constant acceleration. The displacement-time graph for uniformly acceler-

ated rectilinear motion will therefore always be parabolic.

EXAMPLE 4

You should not feel compelled to memorize relations such as those of IJ-JI

Table 3-1. The important thing is to be able to follow the line of reason- CONSISTENCY OF
ingused to obtain the results. These relations will be recalled automati- UNITS AND
call) aftei you have used them repeatedly to solve problems, partly as DIMENSIONS



a result of the familiarity acquired, but chiefly as a result of the better

understanding obtained through application.

We can use any convenient units of time and distance in these equa-

tions. If we choose to express time in seconds and distance in meters,

for self-consistency we must express velocity in m/s and acceleration

in m/s2
. If we are given data in which the units of one quantity, as vel-

ocity, are not consistent with the units of another quantity, as accelera-

tion, then before using the data in our equations we should transform

both quantities to units that are consistent with one another. Having

chosen the units of our fundamental quantities, we automatically deter-

mine the units of our derived quantities consistent with them. In carry-

ing out any calculation, always remember to attach the proper units to

the final result, for the result is meaningless without this label.

Suppose we wish to find the speed of a particle which has a uniform acceleration EXAMPLE 5
of 5.00 cm/s2 for an interval of 0.50 h if the particle has a speed of 10.0 ft/s at

the beginning of this interval. We decide to choose the foot as our length unit

and the second as our time unit. Then

ax = 5.00 cm/s2 = 5.00 cWs^ x ( n \^ ) x f-^M =^ ft/s2 = 0.164 ft/s2 .

\2.54rm/ \l2^nj 30.5

The time interval

n rnY /60 TTHn\ / 60 S \
At = t -t„ = 0.50Xx(-T^-jx(r—

)

'60imu\ „/ 60 s \ 1800 ^

Note that the conversion factors in large parentheses are equal to unity. Taking

the initial time t = 0, as in Eq. 3-12, we then have

v,. = v.,o + axt = 10.0 ft/s + |0.164 ft/s2 )(1800 s) = 305 ft/s.

One way to spot an erroneous equation is to check the dimensions

of all its terms. The dimensions of any physical quantity can always be

expressed as some combination of the fundamental quantities, such as

mass, length, and time, from which they are derived. The dimensions

of velocity are length (L) divided by time (T)
;
the dimensions of acceler-

ation are length divided by time squared, etc. In any legitimate physical

equation the dimensions of all the terms must be the same. This

means, for example, that we cannot equate a term whose total dimen-

sion is a velocity to one whose total dimension is an acceleration. The
dimensional labels attached to various quantities may be treated just

like algebraic quantities and may be combined, canceled, and so on,

just as if they were factors in the equation. For example, to check Eq.

3.15, x = x„ + vxot + }a.r t
2

, dimensionally, we note that x and x have the

dimension of a length. Therefore the two remaining terms must also

have the dimension of a length. The dimension of the term vMt is

^^ x time = length or ^xT=L,
time b T

and that of ja.,t 2 is

^^ x time2 = length or ^ x T* = L.
time2 ° T2



The equation is therefore dimensionally correct. You should check the

dimensions of all the equations you use.

The speed of an automobile traveling due east is uniformly reduced from 45.0 EXAIHJ*IjE 6
miles per hour to 30.0 miles per hour in a distance of 264 ft.

[a] What is the magnitude and direction of the constant acceleration?

We choose, arbitrarily, the direction from west to east to be the positive

x-direction. We are given x and vx and we seek ax . The time is not involved.

Equation 3.16 is therefore appropriate |see Table 3-1). We have Vx =+30.0 mi/h,

v.™ = +45.0 mi/h, x - x = +264 ft = 0.0500 mi. From Eq. 3-16, vx2 = vJ(,

2 +
2dx(x — Xo), we obtain

vx2 - vx02

2|x - xo)

[30.0 mi/h)2 - (45.0 mi/h) 2
, ,„ tni .„„

or a.r = '
'

—- L = - 1 . 13 x 104 mi/h2 = -4.58 ft/s2 .

2(0.0500 mi)

The direction of the acceleration a is due west, that is, in the negative x-direc-

tion because as is negative. The car is slowing down as it moves eastward, as it

must do if it is being accelerated toward the west. When the speed of a body is

decreasing, we often say that it is decelerating.

[b\ How much time has elapsed during this deceleration

?

If we use only the original data, Table 3-1 shows that Eq. 3-14 is appropriate.

From Eq. 3-14, x = x + 2iv.r0 + vx)t, we obtain

_ 2(x - xo)

Vxo + Vx

or

= (2)10.0500 mi) 1 , ^
1

(45.0 + 30.0) mi/h 750

If we use the derived data of part [a], Eq. 3-12 is appropriate. This gives us a

check. From Eq. 3-12, vx = vxu + aA. we have

Vx - Vxo

a.,

(30.0 - 45.0) mi/h , „„ ,_.,
or t = LT—

—

.'
.,,

= 1.33 x l0- 3 h = 4.80 s.
-1.13 x 104 mi/h2

(c) If one assumes that the car continues to decelerate at the same rate, how
much time would elapse in bringing it to rest from 45.0 mi/h"

Equation 3-12 is useful here. We have vx0 = 45.0 mi/h, a.r = — 1.13 x 104

mi/h 2
, and the final velocity vx = 0. Then from Eq. 3-12, vx = Vxo + aA. we

obtain

Vx - v..-o

" l

,

" 45
;°'
m
^„ = 4.00xl0-h=14.4s.

-1.13 x 104 mi/h2

\d) What total distance is required to bring the car to rest from 45.0 mi/h?

Equation 3-15 is appropriate here. We have v,„ = 45.0 mi/h, a, = — 1.13 x 104

mi/h 2
, t = 4.00 x 10 •' h. From Eq. 3-15, x = x„ + vx0t + }aA 2

, we obtain

x - x„ = vxnt + \a , t
2

I - 11 mi lb] A no - 10 :1 h) + i(-1.13 x 10' m/h-')(4.00 x 10 ' hi-

= 0.0V()Onii 475 ft.



The nucleus of a helium atom (alpha-particle) travels along the inside of a

straight hollow tube 2.0 m long which forms part of a particle accelerator, [a] If

one assumes uniform acceleration, how long is the particle in the tube if it

enters at a speed of 1.0 x 104 m/s and leaves at 5.0 x 106 m/s? [b) What is its

acceleration during this interval :
.

[a] We choose an x-axis parallel to the tube, its positive direction being that

in which the particle is moving and its origin at the tube entrance. We are given

x and vx and we seek t. The acceleration ax is not involved. Hence we use Eq.

3-14, x = x (1 + llVj-o + vx) t with x = or

2x

Vxo + Vj-

(2)(2.0m)

(500+ 1) x 104 m/s
.0 x 10" 7

s,

or 0.80 microseconds |= 0.80 /as).

[b] The acceleration follows from Eq. 3-12, vx = v., n + a.,t. or

ax =
vx ~ v.,o _ (500- 1) x 104 m/s

8.0 x 10~ 7 s
+6.3 x 10 12 m/s2

,

or 6 trillion meters per second per second! Although this acceleration is enor-

mous by standards of the previous example, it occurs over an extremely short

time. The acceleration a is in the positive x-direction, that is, in the direction

in which the particle is moving, because a.,- is positive.

EXAMPLE 7 W

m

2
t-i

z
Ci

o
t3

Co

o

The most common example of motion with (nearly) constant accelera-

tion is that of a body falling toward the earth. In the absence of air re-

sistance we find that all bodies, regardless of their size, weight, or

composition, fall with the same acceleration at the same point of the

earth's surface, and if the distance covered is not too great, the accelera-

tion remains constant throughout the fall. This ideal motion, in which

air resistance and the small change in acceleration with altitude are

neglected, is called "free fall."

The acceleration of a freely falling body is called the acceleration due

to gravity and is denoted by the symbol g. Near the earth's surface its

magnitude* is approximately 32 ft/s2 , 9.8 m/s2
, or 980 cm/s2

, and it is

directed down toward the center of the earth. The variation of the

exact value with latitude and altitude will be discussed later (Chapter

16).

3-10
FREELY FALLING
BODIES

The nature of the motion of a falling object was long ago a subject of interest in

natural philosophy. Aristotle had asserted that "the downward movement . . .

of any body endowed with weight is quicker in proportion to its size." It was
not until many centuries later when Galileo Galilei (1564-1642) appealed to

experiment to discover the truth, and then publicly proclaimed it, that Aris-

totle's authority on the matter was seriously challenged. In the later years of

his life, Galileo wrote the treatise entitled Dialogues Concerning Two New
Sciences in which he detailed his studies of motion.

Aristotle's belief that a heavier object will fall faster is a commonly held

view. It appears to receive support from a well-known lecture demonstration

in which a ball and a sheet of paper are dropped at the same instant, the ball

reaching the floor much sooner than the paper. However, when the lecturer first

crumples the paper tightly and then repeats the demonstration, both ball and

* See "Absolute value of g at the National Bureau of Standards" by D. R. Tate, /. Res.

NBS 70C, April-fune, 1966.



paper strike the floor at essentially the same time. In the former case, it is the

effect of greater resistance of the air which makes the paper fall more slowly

than the ball. In the latter case, the effect of air resistance on the paper is re-

duced and is about the same for both bodies, so that they fall at about the same

rate. Of course, a direct test can be made by dropping bodies in vacuum. Even

in easily obtainable partial vacuums we can show that a feather and a ball of

lead thousands of times heavier drop at rates that are practically indistin-

guishable.

In Galileo's time, however, there was no effective way to obtain a partial

vacuum, nor did equipment exist to time freely falling bodies with sufficient

precision to obtain reliable numerical data. Nevertheless, Galileo proved his

result by showing first that the character of the motion of a ball rolling down
an incline was the same as that of a ball in free fall.* The incline merely served

to reduce the effective acceleration of gravity and to slow the motion thereby.

Time intervals measured, for example, by the volume of water discharged from

a tank could then be used to test the speed and acceleration of this motion.**

Galileo showed that if the acceleration along the incline is constant, the ac-

celeration due to gravity must also be constant; for the acceleration along the

incline is simply a component of the vertical acceleration of gravity, and

along an incline of constant slope the ratio of the two accelerations remains

fixed.

He found from his experiments that the distances covered in consecutive

time intervals were proportional to the odd numbers 1, 3, 5, 7, . . ., etc. Total

distances for consecutive intervals thus were proportional to 1 + 3, 1 + 3 + 5,

1+3 + 5 + 7, and so on, that is, to the squares of the integers 1 , 2, 3, 4, etc. But if

the distance covered is proportional to the square of the elapsed time, velocity

acquired is proportional to the elapsed time, a result which is true only if

motion is uniformly accelerated. He found that the same results held regardless

of the mass of the ball used.

We shall select a reference frame rigidly attached to the earth. The
y-axis will be taken as positive vertically upward. Then the accelera-

tion due to gravity g will be a vector pointing vertically down (toward

the center of the earth) in the negative y-direction. (This choice is

arbitrary. In other problems it may be convenient to choose down as

positive.) Our equations for constant acceleration are applicable here.

We simply replace x by y and sety = in Eqs. 3-12, 3-14, 3-15, and3-16,

obtaining

Vy = Vy + dyt,

y = i{VyO + Vy)t,

y = vy0t + iaut 2
,

13-17)

v !l0
2 + la uy,

and, for problems in free fall, we set a„ = —g. Notice that we have

chosen the initial position as the origin, that is, we have chosen y =
at t = 0. Note also that y, is the magnitude of the acceleration due to

gravity.

3-11
EQUATIONS OF
MOTION IN FREE FALL

< ..il il< i is Discovery of the Law of Free Fall' by Stillman Drake, ,S< wiiliin \ni, ;

May, 1973.

The Kok' nt Musk hi Galileo s Experiments" by Stillman Drake Scientific Ameri

can, June, 1975.



A body is dropped from rest and falls freely. Determine the position and speed EX/%J^U*UE 8
of the body after 1.0, 2.0, 3.0, and 4.0 s have elapsed.

We choose the starting point as the origin. We know the initial speed and the

acceleration and we are given the time. To find the position we use

y = vvot - igt 2
.

Then, vy0 = and g = 32 ft/s2 , and with r = 1.0 s we obtain

y = -1(32 ft/s2 )( 1.0 s)
2 = -16 ft.

To find the speed with t= 1.0 s, we use

and obtain

vy
= vuo

- gt

v.v = 0-(32ft/s2
)(1.0 s) = -32ft/s.

After 1 .0 s of falling from rest, the body is 16 ft (= 4.9 m) below its starting point

and has a velocity directed downward whose magnitude is 32 ft/s (= 9.8 m/s)
;

the negative signs for y and vy show that the associated vectors each point in the

negative y-direction, that is, downward.

Show that the values of y, v,„ and a„ obtained at times t = 2.0, 3.0, and 4.0 s

are those shown in Fig. 3-8 and determine the metric equivalents.

9

9>

t y Vy ay

s ft ft/s ft/s
2

. -32

1.0 -16 -32 -32 ^
I h

2.0

3.0

4.0

-64

-144

-256

-64

-96

-128

-32

-32

-32

figure 3-8

A body in free fall; showing y, vy,

and a,, at particular times t.

A ball is thrown vertically upward from the ground with a speed of 80 ft/s EXAMPLE 9
|= 24.4 m/s).

[a] How long does it take to reach its highest point?

At its highest point, vy
= 0, and we have vv0 = +80 ft/s. To obtain the time t

we use vy = v„„ — gt, or

t =
VyQ ~ Vy

t
(80 - 0) ft/s

t =—„,,,,„— = 2.5 s.

32 ft/s2

[b] How high does the ball rise? Using only the original data, we choose the

relation vv
2 = v,,»

2 — 2gy, or



VyO2 — Vy2

= '!° ^17,° - +100 ft |= 30.S m).
2 X 32 ft/S2

(c) At what times will the ball be 96 ft 1= 29 m) above the ground" Using

y = Vy t — }gt 2
, we have

jgt 2 - vu0t + y = 0,

4i32 ft/s2
)t

2 - (80 ft/s)t + 96 ft = 0,

or

t
2 - S.Ot + 6.0 = 0,

which yields t = 2.0 s and t = 3.0 s.

At t = 2.0 s, the ball is moving upward with a speed of 16 ft/s (= 4.9 m/s), for

vu
= vu0

- gt = 80 ft/s - (32 ft/s2)(2.0 s) = + 16 ft/s.

At t = 3.0 s, the ball is moving downward with the same speed, for

vu = v,j0 - gt = 80 ft/s - (32 ft/s2 )|3.0 s) = - 16 ft/s.

Notice that in this 1.0-s interval the velocity changed by —32 ft/s (=—9.8 m/s),

corresponding to an acceleration of —32 ft/s2 (= —9.8 m/s2
).

You should be able to convince yourself that in the absence of air resistance

the ball will take as long to rise as to fall the same distance, and that it will

have the same speed going down at each point as it had going up.

1. Can you think of physical phenomena involving the earth in which the

earth cannot be treated as a particle?

2. Each second a rabbit moves half the remaining distance from his nose to a

head of lettuce. Does he ever get to the lettuce-' What is the limiting value

of his average velocity? Draw graphs showing his velocity and position as

time increases.

3. Average speed can mean the magnitude of the average velocity vector. An-

other meaning given to it is that average speed is the total length of path

traveled divided by the elapsed time. Are these meanings different? If so,

give an example.

4. When the velocity is constant, does the average velocity over any time in-

terval differ from the instantaneous velocity at any instant?

5. Is the average velocity of a particle moving along the x-axis +| vxo + v.,.) when
the acceleration is not uniform? Prove your answer with the use of graphs.

6. Does the speedometer on an automobile register speed as we defined it?

7. [a) Can a body have zero velocity and still be accelerating? [b] Can a body

have a constant speed and still have a varying velocity? (c) Can a body have

a constant velocity and still have a varying speed?

8. Can an object have an eastward velocity while experiencing a westward

acceleration ?

9. Can the direction of the velocity of a body change when its acceleration is

constant'

10. Can a body be increasing in speed as its acceleration decreases? Explain

11. Of the following situations, which one is impossible? [a] A body having

\t lucity east and acceleration cast, M a body having velocity east anil ac

celeration west; (c) a body having zero velocity but acceleration not zero;

[d] a body having constant acceleration and variable velocity [e| .1 body

having constant velocity and variable acceleration,

12 [f a particle is released from resi \ .„, = 0)aty„ at the time t = 0, Eq. I

for constant acceleration says thai ii is ai position j ai two differeni times

questions



o

namely, +\'2y/a,
l
and —Vlyla,,. What is the meaning of the negative root *

of this quadratic equation?

13. What happens to our kinematic equations under the operation of time re- 2
versal, that is, replacing f by — £? Explain. &>

14. Consider a ball thrown vertically up. Taking air resistance into account,

would you expect the time during which the ball rises to be longer or

shorter than the time during which it falls"

15. [a) A body is thrown upwards with a certain speed on a world where the ^
acceleration due to gravity is double that on earth. How high does it rise

compared to the height it rises on earth" [b] If the initial speed were dou-

bled, what change would that make?

16. Can there be motion in two dimensions with acceleration in only one

dimension?

17. A person standing on the edge of a cliff at some height above the ground

below throws one ball straight up with initial speed u and then throws

another ball straight down with the same initial speed. Which ball, if either,

has the larger speed when it hits the ground? Neglect air resistance.

18. A tube in the shape of a rectangle with rounded corners is placed in a vertical

plane, as shown in Fig. 3-9. You introduce two ball bearings at the upper

right-hand corner. One travels by path AB and the other by path CD. Which
will arrive first at the lower left-hand corner?

figure 3-9

Question 18.

19. We expect a truly general relation to be valid regardless of the choice of

coordinate system. By demanding that general equations be dimensionally

consistent we insure that the equations are valid regardless of the choice

of units. Is there any need then for units or coordinate systems?

20. From what you know about angular measure, what dimensions would you

assign to an angle? Can a quantity have units without having dimensions?

21. If m is a light stone and M is a heavy one, according to Aristotle M should

fall faster than m. Galileo attempted to show that Aristotle's belief was
logically inconsistent by the following argument. Tie m and M together to

form a double stone. Then, in falling, m should retard M, because it tends to

fall more slowly, and the combination would fall faster than m but more
slowly than M ; but according to Aristotle the double body (M + m) is

heavier than M and hence should fall faster than M.
If you accept Galileo's reasoning as correct, can you conclude that M

and m must fall at the same rate? What need is there for experiment in

that case?

If you believe Galileo's reasoning is incorrect, explain why.

SECTION 3-3

1. How far does a car, moving at 55 mi/h (88 km/h), travel forward during the

one second of time that the driver takes to look at an accident on the side

on the road? Answer: 81 ft (24 m).

2. The legal speed limit on a thruway is changed from 65 mi/h (105 km/h) to

problems



55 mi/h (88.5 km/h) to conserve fuel. How much time is thereby added to

the trip from the Buffalo entrance to the New York City exit of the New
York Thruway for someone traveling at the legal speed limit over this

435-mile (700 km) stretch of highway?

3. Compare your average speed in the following two cases, [a] You walk 240 ft

at a speed of 4.0 ft/s and then run 240 ft at a speed of 10 ft/s along a straight

track. \b) You walk for 1.0 min at a speed of 4.0 ft/s and then run for 1.0 min
at 10 ft/s along a straight track. Answer: (a) 5.7 ft/s. [b] 7.0 ft/s.

4. A train moving at an essentially constant speed of 60 km/h moves east for

40 min, then in a direction 45° east of north for 20 min, and finally west for

50 min. What is the average velocity of the train during this run?

5. Two trains, each having a speed 40 km/h are headed for each other on the

same straight track. A bird that can fly 60 km/h flies off one train when they

are 80 km apart and heads directly for the other train. On reaching the

other train it flies directly back to the first train, and so forth, [a] How many
trips can the bird make from one train to the other before they crash?

Explain. \b) What is the total distance the bird travels?

Answer: [a] an infinite number, [b] 60 km.

SECTION 3-6

6. A particle moving along the positive x-axis has the following positions at

various times:

x(meters) 0.080 0.050 0.040 0.050 0.080 0.13 0.20

{(seconds) 0.0 1.0 2.0 3.0 4.0 5.0 6.0

(a) Plot displacement (not position) versus time, (b) Find the average veloc-

ity of the particle in the intervals 0.0 to 1.0 s, 0.0 to 2.0 s, 0.0 to 3.0 s, 0.0 to

4.0 s. (c) Find the slope of the curve drawn in part a at the points t = 0.0, 1.0,

2.0, 3.0, 4.0, and 5.0 s. \d) Plot the slope (units?) versus time, [e] From the

curve of part [d] determine the acceleration of the particle at times t = 2.0,

3.0, and 4.0 s.

SECTION 3-7

7. The graph of x versus t (see Fig. 3- 10a) is for a particle in straight line mo-
tion, [a] State for each interval whether the velocity vx is +, — , or 0, and

whether the acceleration a., is +, — , or 0. The intervals are OA, AB, BC,

and CD. [b] From the curve is there any interval over which the accelera-

tion is obviously not constant! (Ignore the behavior at the end points of the

intervals.)

Answer: [a] v.r a,- [b] No.Vx a.,

OA +
AB + -

BC
CD — +

8. Answer the previous questions for the motion described by the graph of

Fig. 3-106.

figure 3-10a figure 8-10b
Problem 7 Problem 8



9. An electron, starting from rest, has an acceleration that increases linearly £
with time, that is, a = kt, the change in acceleration being k = (1.5 m/s2

)/s.

[a] Plot a versus t during the first 10-s interval, [b] From the curve of part [a]

plot the corresponding v versus t curve and estimate the electron's velocity O
5.0 s after its motion starts, (c) From the v versus t curve of part [b] plot the

corresponding x versus t curve and estimate how far the electron moved
during the first 5.0 s of its motion. Answer: [b] 19 m/s. (c) 31 m.

10. The position of a particle moving along the x-axis depends on the time

according to the relation j£
"a

x = ^(l -e-«)

in which v,o and k are constants, [a] Plot a curve of x versus f. Notice that

x = at f = and that x = v.,-Jk at t = <*, that is, the total distance through

which the particle moves is v,Jk. [b] Show that the velocity v.,- is given by

v, = vx0e~kt

so that the velocity decreases exponentially with time from its initial value

of v., , coming to rest only in infinite time, (c) Show that the acceleration a.,

is given by

a j- = -kvr

so that the acceleration is directed opposite to the velocity and has a mag-

nitude proportional to the speed, (d) This particular motion is one with

variable acceleration. Give a plausible physical argument explaining how
it can take an infinite time to bring to rest a particle that travels a finite

distance.

1 1 . A particle moves along the x-axis with a displacement versus time as shown
in Fig. 3-11. Sketch roughly curves of velocity versus time and acceleration

versus time for this motion.

SECTION 3-8

12. A jumbo jet needs to reach a speed of 225 mi/h (360 km/h) on the runway
for takeoff. Assuming a constant acceleration and a runway 1.1 miles (1.8

km) long, what minimum acceleration from rest is required'

13. An automobile increases its speed uniformly from 25 to 55 km/h in one-

half minute. A bicycle rider uniformly speeds up to 30 km/h from rest in

one-half minute. Compare the accelerations.

Answer: Both accelerations are equal to 0.28 m/s2
.

14. A rocket-driven sled running on a straight level track is used to investigate

the physiological effects of large accelerations on humans. One such sled

can attain a speed of 1600 km/h in 1.8 s starting from rest, [a] Assume the

acceleration is constant and compare it to g. [b] What is the distance trav-

eled in this time!'

15. A rocketship in free space moves with constant acceleration equal to 9.8

m/s2
. [a] If it starts from rest, how long will it take to acquire a speed one-

tenth that of light? \b) How far will it travel in so doing ?

Answer: [a] 36 days. \b) 4.6 x 10 10 km.

figure 3-11

Problem 1

1
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16. An arrow while being shot from a bow was accelerated over a distance of

2.0 ft. If its speed at the moment it left the bow was 200 ft/s, what was the

average acceleration imparted by the bow? Justify any assumptions you
need to make.

17. A subway train accelerates from rest at one station at a rate of 1.20 m/s2 for

half of the distance to the next station, then decelerates at this same rate

for the final half. If the stations are 1 100 m apart, find [a] the time of travel

between stations and [b] the maximum speed of the train.

Answer: [a) 60.6 s. [b) 36.4 m/s (=81.4 mi/h).

18. Suppose that you were called upon to give some advice to a lawyer con-

cerning the physics involved in one of her cases. The question is whether a

driver was exceeding a 30 mi/h speed limit before he made an emergency
stop, brakes locked and wheels sliding. The length of skid marks on the

road was 19.2 ft. The police officer made the assumption that the maximum
deceleration of the car would not exceed the acceleration of a freely falling

body and arrested the driver for speeding. Was he speeding? Explain.

19. Two trains, one traveling at 60 mi/h and the other at 80 mi/h, are headed
toward one another along a straight level track. When they are 2.0 miles
apart, both engineers simultaneously see the other's train and apply their

brakes. If the brakes decelerate each train at the rate of 3.0 ft/s2 , determine
whether there is a collision. Answer: No.

20. A train started from rest and moved with constant acceleration. At one time
it was traveling 30 ft/s and 160 ft farther on it was traveling 50 ft/s. Calcu-
late \a) the acceleration, \b) the time required to travel the 160 ft mentioned,
(c) the time required to attain the speed of 30 ft/s, \d) the distance moved
from rest to the time the train had a speed of 30 ft/s.

21. An electron with initial velocity vx0 = 1.0 x 104 m/s enters a region of

width 1.0 cm where it is electrically accelerated (Fig. 3-12). It emerges with
a velocity vT = 4.0 x 106 m/s. What was its acceleration, assumed constant?

(Such a process occurs in the electron gun in a cathode-ray tube, used in

television receivers and oscilloscopes.) Answer: 8.0 x 10 14 m/s2
.

22. A meson is shot with speed 5.00 x 106 m/s into a region where an electric

field produces an acceleration on the meson of magnitude 1.25 x 10 14 m/s2

directed opposite to the initial velocity, [a) How far does the meson travel

before coming to rest? [b] How long does the meson remain at rest ?

23. A car moving with constant acceleration covers the distance between two
points 180 ft apart in 6.0 s. Its speed as it passes the second point is 45 ft/s.

[a) What is its speed at the first point? [b] What is its acceleration? (c) At
what prior distance from the first point was the car at rest?

Answer: [a] 15 ft/s. (b) 5.0 ft/s2 . (c) 23 ft.

24. The speed of an automobile traveling east is uniformly reduced from 45
mi/h to 30 mi/h in a distance of 264 ft. \a) What is the magnitude and direc-

tion of the constant acceleration : [b] How much time has elapsed during
this deceleration? (c) If the car continues to decelerate at the same rate,

how much time would elapse in bringing it to rest from 45 mi/h? [d] What
distance is required to bring the car to rest from 45 mi/h? See Question 8.

25. At the instant the traffic light turns green, an automobile starts with a con-
stant acceleration as of 6.0 ft/s2 . At the same instant a truck, traveling with
a constant speed of 30 ft/s, overtakes and passes the automobile, {a) How far

beyond the starting point will the automobile overtake the truck? [b] How
fast will the car be traveling at that instant? (It is instructive to plot a

qualitative graph of x versus t for each vehicle.)

Answer: [a] 300 ft. \b) 60 ft/s.

26. An automobile traveling 35 mi/h
I

- 56 km/h) is 110 ft I
=35 m) from a

barrier when the driver slams on the brakes. Four seconds later the car hits

the barrier, [a] What was the automobile's deceleration before impact'
[b] How fast was the car traveling at imp.u t

Nonaccelerated

regions

Path of -

electrons

Accelerating

region

figure 3-12

Problem 21
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27. The engineer of a train moving at a speed v, sights a freight train a distance

d ahead of him on the same track moving in the same direction with a

slower speed v_>. He puts on the brakes and gives his train a constant de-

celeration a. Show that

(v, - v->

if d > ——, there will be no collision;
2a

if d < —*——— , there will be a collision.
2a

(It is instructive to plot a qualitative graph of x versus t for each train.)

28. A driver's handbook states that an automobile with good brakes and going

50 mi/h can stop in a distance of 186 ft. The corresponding distance for 30

mi/h is 80 ft. Assume that the driver reaction time, during which the ac-

celeration is zero, and the acceleration after he applies the brakes are both

the same for the two speeds. Calculate [a] the driver reaction time and [b]

the acceleration.

SECTION 3-9

29. The position of a particle along the x-axis depends on the time according to

the equation

x = at2 - bt 3
,

where x is in meters and t in seconds, {a) What dimensions and units must
a and b have" For the following, let their numerical values be 3.0 and 1.0,

respectively, [b] At what time does the particle reach its maximum positive

x-position? (c) What total length of path does the particle cover in the first

4.0 s? (d) What is its displacement during the first 4.0 s? (e) What is the

particle's velocity at the end of each of the first four seconds" (/) What is the

particle's acceleration at the end of each of the first four seconds? (g) What
is the average velocity for the time interval t = 2.0 to t = 4.0 seconds?

Answer: {a) a: LT"2
, m/s2

;
b: LT 3

, m/s3
. [b] t = 2 s. (c) 24 m. [d] -16 m.

(e) 3.0, 0.0, -9.0, -24.0 m/s. (/) 0.0, -6.0, -12.0, -18.0 m/s2
. (g) -10 m/s.

SECTION 3-11

30. [a] With what speed must a ball be thrown vertically upward in order to

rise to a height of 50 ft? [b] How long will it be in the air:

31. A tennis ball is dropped onto the floor from a height of 4.0 ft. It rebounds to

a height of 3.0 ft. If the ball was in contact with the floor for 0.010 s, what
was its average acceleration during contact? Answer: 3000 ft/s2

32. While thinking of Isaac Newton, a person standing on a bridge overlooking

a highway inadvertently drops an apple over the railing just as the front end
of a truck passes directly below the railing. If the vehicle is moving at

55 km/h (34 mi/h) and is 12 m (39 ft) long, how far above the truck must
the railing be if the apple just misses hitting the rear end of the truck?

33. A lead ball is dropped into a lake from a diving board 16 ft above the water.

It hits the water with a certain velocity and then sinks to the bottom with

this same constant velocity. It reaches the bottom 5.0 s after it is dropped.

[a] How deep is the lake? \b) What is the average velocity of the ball? (c) Sup-

pose all the water is drained from the lake. The ball is thrown from the

diving board so that it again reaches the bottom in 5.0 s. What is the initial

velocity of the ball? Answer: [a] 128 ft. [b] 29 ft/s. (c) 51 ft/s upward.

34. A rocket is fired vertically and ascends with a constant vertical acceleration

of 64 ft/s2 for 1.0 min. Its fuel is then all used and it continues as a free

particle, [a] What is the maximum altitude reached? [b) What is the total

time elapsed from take-off until the rocket strikes the earth?

35. A balloon is ascending at the rate of 12 m/s at a height 80 m above the

ground when a package is dropped. How long does it take the package to

reach the ground-
1 Answer: 5.4 s.



36. A stone is dropped into the water from a bridge 144 ft (44 m) above the

water. Another stone is thrown vertically down 1.0 s after the first is

dropped. Both stones strike the water at the same time, [a] What was the

initial speed of the second stone? [b] Plot speed versus time on a graph for

each stone, taking zero time as the instant the first stone was released.

37. An open elevator is ascending with a constant speed v (32 ft/s). A ball is

thrown straight up by a boy on the elevator when it is a height h (100 ft)

above the ground. The initial speed of the ball with respect to the elevator

is Vo (64 ft/s). [a] What is the maximum height attained by the ball? (£>) How
long does it take for the ball to return to the elevator?

Answer: [a] 244 ft. [b] 4.0 s.

38. An arrow is shot straight up in the air with an initial speed of 250 ft/s. If on
striking the ground it imbeds itself 6.0 in. into the ground, find [a) the ac-

celeration (assumed constant) required to stop the arrow and [b) the time
required for it to come to rest. Neglect air resistance during the arrow's

flight.

39. A parachutist after bailing out falls 50 m without friction. When the para-

chute opens, he decelerates downward 2.0 m/s2
. He reaches the ground with

a speed 3.0 m/s. [a] How long is the parachutist in the air? [b] At what height

did he bail out? Answer: (a) 17 s. [b] 290 m.

40. A shell is fired directly up from a gun
;
a rocket, propelled by burning fuel,

takes off vertically from a launching area. Plot qualitatively (numbers not

required) possible graphs of a u versus r, of vv versus r, and of y versus r for

each. Take t = at the instant the shell leaves the gun barrel or the rocket

leaves the ground. Continue the plots until the rocket and the shell fall back
to earth; neglect air resistance; assume that up is positive and down is

negative.

41. If a body travels half its total path in the last second of its fall from rest,

find [a] the time and {b) height of its fall, (c) Explain the physically un-

acceptable solution of the quadratic time equation.

Answer: \a) 3.4 s. \b) 57 m.

42. Two bodies begin a free fall from rest from the same height 1.0 s apart. How
long after the first body begins to fall will the two bodies be 10 m apart?

43. A steel ball bearing is dropped from the roof of a building (the initial velocity

of the ball is zero). An observer standing in front of a window 4.0 ft high

notes that the ball takes i s to fall from the top to the bottom of the win-
dow. The ball bearing continues to fall, makes a completely elastic collision

with a horizontal sidewalk, and reappears at the bottom of the window 2.0 s

after passing it on the way down. How tall is the building? (The ball will

have the same speed at a point going up as it had going down after a com-
pletely elastic collision.) Answer: 68 ft.

44. Water drips from the nozzle of a shower onto the floor 81 in. below. The
drops fall at regular intervals of time, the first drop striking the floor at the

instant the fourth drop begins to fall. Find the location of the individual

drops when a drop strikes the floor.

45. An elevator ascends with an upward acceleration of 4.0 ft/s2 . At the instant

its upward speed is 8.0 ft/s, a loose bolt drops from the ceiling of the ele-

vator 9.0 ft from the floor. Calculate [a] the time of flight of the bolt from
ceiling to floor and [b] the distance it has fallen relative to the elevator

shaft. Answer: [a) 0.71 s. [b] 2.3 ft.

46. A dog sees a flowerpot sail up and then back past a window 5.0 ft (1.5 m)
high. If the total time the pot is in sight is 1.0 s, find the height above the

window that the pot rises



. . ,4
motion in a plane

In this chapter we return to a consideration of motion in two dimen-
sions taken, for convenience, to be the x-y plane. Figure 4-1 shows a

particle at time t moving along a curved path in this plane. Its position,

or displacement from the origin, is measured by the vector t; its velocity

is indicated by the vector v which, as we have seen in Section 3-4, must
be tangent to the path of the particle. The acceleration is indicated by
the vector a; the direction of a, as we shall see more explicitly later, does

not bear any unique relationship to the path of the particle but depends
rather on the rate at which the velocity v changes with time as the

particle moves along its path.

4-1
DISPLACEMENT,
VELOCITY, AND
ACCELERATION

The vectors r, v, and a are interrelated (see Eqs. 3-4, 3-5, and 3- 10) and
can be expressed in terms of their components, using unit vector nota-

tion, as

ix + jy,

lV.r + )Vy
dx

dt

(4-1)

(4-2)

(c)

figure 4-1

A particle moves along a curved

path in the x-y plane, (a) Its position

r, (b) its velocity v, and (c) its

acceleration a are shown at time t,

along with the vector components
of those vectors. Note that x, y, vx,

vy, and ax are positive but that ay is

negative. Compare to Fig. 3-3. 53



and 14-3)

These equations can easily be extended to three dimensions by adding

to them the terms kz, kvZl and ka : , respectively in which k is a unit

vector in the z-direction.

In Chapter 3 we considered the special case in which the particle

moved in one dimension only, say along the x-axis, where the vectors

r, v, and a were directed along this axis, either in the positive x-direction

or the negative x-direction. The components y, v,„ and a y were zero and

we described the motion in terms of equations relating the scalar quan-

tities x, v.r , and ax . Or, when the particle moved along the y-axis, the

components x, vXl and ax were zero and the motion was described in

terms of equations relating the scalar quantities y, v,,, and a„. In this

chapter we consider motion in the x-y plane so that, in general, both

sets of components have nonzero values.

Let us consider first the special case of motion in a plane with constant

acceleration. Here, as the particle moves, the acceleration a does not

vary either in magnitude or in direction. Hence the components of a

also will not vary, that is, a., = constant and a„ = constant. We then have

a situation which can be described as the sum of two component mo-
tions occurring simultaneously with constant acceleration along each

of two perpendicular directions. The particle will move, in general,

along a curved path in the plane. This may be so even if one component
of the acceleration, say a,,, is zero, for then the corresponding compo-
nent of the velocity, say vXl may have a constant, nonzero value. An
example of this latter situation is the motion of a projectile which fol-

lows a curved path in a vertical plane and, neglecting the effects of air

resistance, is subject to a constant acceleration g directed down along

the y-axis only.

We can obtain the general equations for plane motion with constant

a simply by setting

a,= constant and a,, — constant.

The equations for constant acceleration, summarized in Table 3-1, then

apply to both the x- and y-components of the position vector r, the

velocity vector v, and the acceleration vector a (see Table 4-1).

Table 4-1

Motion with constant acceleration in the x-y plane

Equation
No. x-Motion Equations

Equation

No. y- Motion Equations

A-Aa

4-4/7

4-4c

4-4J

v.,. = v,„ + axt

X = Xo + |(V,d+ Vx)t

X = X„ + I rol I \axt*

V.,-
2 = V.,-o

2 + 2fl.r|X — Xo)

4-4fl'

4-4/7'

4-4c'

4-4d'

Vy = VyQ +a yt

y = yo+ UVyO + Vy)t

y = y<i + Vyot + }a„t 2

4-2
MOTION IN A PLANE
WITH CONSTANT
ACCELERATION

The two sets ut equations in Table 4-1 are related in that the time

parameter 1 is the same for each, since / represents the time at which

the particle, moving in a curved path in the x-y plane, occupied a posi-

tion described by the position components x and y

The equations of motion in Table 4-1 may also he expressed in



vector form. For example, substituting Eqs. 4-Aa, 4-a' into Eq. 4-2 yields w

v = ivx + \vy
So

= i[vx0 + axt) + ){vy0 + ayt) 5

(iv.,.„ + )Vyo) + [la.,- + )a,,)t. y
t->

The first quantity in parentheses is the initial velocity vector v (see

Eq. 4-2) and the second is the (constant) acceleration vector a (see Eq.

4-3). Thus the vector relation ^

v = v + at [4-5a)

On

is equivalent to the two scalar relations Eqs. 4-4a, a' in Table 4-1. It ^
shows simply and compactly that the velocity v at time t is the sum of

the initial velocity v which the particle would have in the absence of

acceleration plus the (vector) change in velocity, at, acquired during the

time t under the constant acceleration a. Similarly, the scalar equa-

tions 4-4c, c' are equivalent to the single vector equation

r = r„ + v„r + |at 2
,

(4-5b)

which is also easily interpreted. The proof of this and other relations is

left to Problem 3.

An example of curved motion with constant acceleration is projectile t-li
motion. This is the two-dimensional motion of a particle thrown PROJECTILE MOTION
obliquely into the air. The ideal motion of a baseball or a golf ball is an

example of projectile motion.* We assume that we can neglect the

effect of the air on this motion.

The motion of a projectile is one of constant acceleration g, directed

downward, and thus should be described by the equations in Table 4- 1

.

There is no horizontal component of acceleration. If we choose a coordi-

nate system with the positive y-axis vertically upward, we may put

a u
= —g and ax = in these equations.

Let us further choose the origin of our coordinate system to be the

point at which the projectile begins its flight (see Fig. 4-2). Hence the

origin will be the point at which the ball leaves the thrower's hand or

the fuel in the rocket burns out, for example. In Table 4- 1 this choice

of origin implies that x rt
= y = 0. The velocity at t — 0, the instant the

projectile begins its flight, is v„, which makes an angle O with the posi-

tive x-direction. The x- and y-components of v (l (see Fig. 4-2) are then

vx0 = v cos 0„ and v,/0 = v sin 0».

Because there is no horizontal component of acceleration, the hori-

zontal component of the velocity will be constant. In Eq. 4-4a we set

ax = and v.r0 = vt) cos 0„, so that

Vx = Vo COS ( |. (4-6(3)

The horizontal velocity component retains its initial value throughout

the flight.

The vertical component of the velocity will change with time in

accordance with vertical motion with constant downward acceleration.

* See Galileo Galilei, Dialogues Concerning Two New Sciences, the "Fourth Day," for a

fascinating discussion of Galileo's research on projectiles.



In Eq. 4-4#
' we set

a,,=

so that

and vyo = Vo sin d{) ,

v sin 9 — gt. (4-6fl')

The vertical velocity component is that of free fall. Indeed, if we view

the motion of Fig. 4-2 from a reference frame that moves to the right

with a speed v,„, the motion will be that of an object thrown vertically

upward with an initial speed Vo sin 0„.

The magnitude of the resultant velocity vector at any instant is

= VvJ+ V 2 14-7)

The angle that the velocity vector makes with the horizontal at that

instant is given by

tan0 = ^
V,r

The velocity vector is tangent to the path of the particle at every point,

as shown in Fig. 4-2.

figure 4-2

The trajectory of a projectile,

showing the initial velocity v and

its vector components and also the

velocity v and its vector components

at five later times. Note that

Vj = vxQ throughout the flight. The
distance R is called the range.

The x-coordinate of the particle's position at any time, obtained from

Eq. 4-4c with x„ = 0, a, = 0, and v.,v = v () cos (1 , is

x = [Vo cos 9o\i (4-6c)

The '. coordinate obtained from Eq. 4-4c-
' with v„ 0, au

= —g, and

VyO ~ Vo Sill do, IS

y= Vo sin 6 )t Jgt2 . (4-6c'|

I quations 4 6< i y,\w us x and y .is functions oi the common param



eter t, the time of flight. By combining and eliminating t from them, we
obtain

y = (tan 6 )x
2(v„ cos do)

2
(4-8)

which relates y to x and is the equation of the trajectory of the projec-

tile. Since Vo, do, and g are constants, this equation has the form

y=bx — ex2
,

the equation of a parabola. Hence the trajectory of a projectile is para-

bolic*

A plane is flying at a constant horizontal velocity of 500 km/h at an elevation of EXAMPLE
5.0 km toward a point directly above its target. At what angle of sight <j> should

a survival package be released to strike the target (Fig. 4-3)?

figure 4-3

Example 1. A survival package is

released from an airplane with

horizontal velocity v .

We choose a reference frame fixed with respect to the earth, its origin O
being the release point. The motion of the package at the moment of release is

the same as that of the plane. Hence the initial package velocity v ( > is hori-

zontal and its magnitude is 500 km/h. The angle of projection 0» is zero.

We find the time of fall from Eq. 4-6c'. With Bo = and y = 5.0 km this gives

2y (2)(-5.0 x 103 m)

(9.8 m/s2
)

= 31.9 s

Note that the time of fall does not depend on the speed of the plane for a hori-

zontal projection. (See, however, Problem 11.)

The horizontal distance traveled by the package in this time is given by Eq.

4-6c, x = (v„ cos Bo)t, or

x = (500 km/h) x 103m/km) x (1 h/3600 s) x (31.9 s) = 4430 m.
so that the angle of sight (Fig. 4-3) should be

<f>
= tan ' tan

4430 m
5000 m

42°.

Does the motion of the package appear to be parabolic when viewed from a

reference frame fixed with respect to the plane?

* See "Galileo's Discovery of the Parabolic Trajectory" by Stillman Drake and James

MacLachlan in Scientific American, March 1975.



A soccer player kicks a ball at an angle of 37° from the horizontal with an initial

speed of 50 ft/s. |A right triangle, one of whose angles is 37°, has sides in the

ratio 3:4:5, or 6:8:10.) Assuming that the ball moves in a vertical plane:

[a] Find the time {, at which the ball reaches the highest point of its trajec-

tory.

At the highest point, the vertical component of velocity vy is zero. Solving

Eq. 4-6a' for r, we obtain

£
= v sin O — v v

With

we have

0, v = 50 ft/s, 37°, g = 32 ft/s2
,

|50(-fc)-01 ft/sec 15

32 ft/sec2

[b] How high does the ball go?

The maximum height is reached at t

16

we have

15/16 s. By using Eq. 4-6c',

y = (v sin 0„)r - igt 2
,

ymax = (50 ft/8)[MH s) - i(32 ft/s2)(|t)
2 s2 = 14 ft.

(c) What is the range of the ball and how long is it in the air?

The horizontal distance from the starting point at which the ball returns to

its original elevation (ground level! is the range R. We set y = in Eq. 4-6c' and

find the time U required to transverse this range. We obtain

U =
2v„ sin O 2(50 ft/s)

32 ft/s2

15=— sec.

Notice that t> = 2r,. This corresponds to the fact that the same time is required

for the ball to go up (reach its maximum height from ground) as is required for

the ball to come down (reach the ground from its maximum height).

The range R can then be obtained by inserting this value t-2 for f in Eq. 4-6c.

We obtain, from x = (v cos o )f

,

R = (vo cos 0„)r 2 = (50 ft/s)(A)(¥ s) = 75 ft.

[d] What is the velocity of the ball as it strikes the ground? From Eq. 4-6fl

we obtain

vx = vo cos 0o = (50 ft/s)(-rTr) = 40 ft/s.

From Eq. 4-6a' we obtain for t = t> = V s,

vu = vo sin 0„ -gt = (50 ft/s)|-f%) - (32 ft/s2 )(-^ s) = -30 ft/s.

Hence, from Eq. 4-7,

v = Vv., 2 + v„2 = V(40 ft/s)2 + (-30 ft/s)2 = 50 ft/s,

and

tan = v„/v.r = -?::.

so that = —37°, or 37° clockwise from the x-axis. Notice that = — O , as we
expect from symmetry (Fig. 4-2).

EXAMPLE 2

In a favorite lecture demonstration an air gun is sighted at an elevated target

which is released in free fall by a trip mechanism as the bullet' leaves the

muzzle. No matter what the initial speed ol the bullet, it always hits the tailing

target.

The simplest way to understand tins is the following it there were no

leration due to gravity the targel would not fall and the bullet would nun e

EXAMPLE 3



figure 4-4

Example 3. In the motion of a

projectile, its displacement from the

origin at any time t can be

thought of as the sum of two

vectors: v pt, directed along Vqp, and

|gt2
, directed down.

OP

along the line of sight directly into the target (Fig. 4-4). The effect of gravity is

to cause each body to accelerate down at the same rate from the position it

would otherwise have had. Therefore, in the time t, the bullet will fall a dis-

tance igt 2 from the position it would have had along the line of sight and the

target will fall the same distance from its starting point. When the bullet reaches

the line of fall of the target, it will be the same distance below the target's ini-

tial position as the target is and hence the collision. If the bullet moves faster

than shown in the figure [v» larger), it will have a greater range and will cross the

line of fall at a higher point; but since it gets there sooner, the target will fall a

correspondingly smaller distance in the same time and collide with it. A similar

argument holds for slower speeds.

For an equivalent analysis, let us use Eq. 4-5b.

t = r„ + Vot + jat 2

to describe the positions of the projectile and the target at any time t. For the

projectile P, r (l
= and a = g, and we have

tP = v pt + ht 2
-

For the target T, r = ior , v = 0, and a = g, leading to

It = tor + ht 2
-

If there is a collision, we must have tp = t r . Inspection shows that this will al-

ways occur at a time t given by t„r = v„ ; >r, that is, in the time t (= ToT/v p) re-

quired for the projectile to travel to the target position along the line of sight,

assuming that its initial velocity remains unchanged.

In Section 3-6 we saw that acceleration arises from a change in velocity.

In the simple case of free fall the velocity changed in magnitude only,

but not in direction. For a particle moving in a circle with constant

speed, called uniform circular motion, the velocity vector changes con-

tinuously in direction but not in magnitude. We seek now to obtain the

acceleration in uniform circular motion.

The situation is shown in Fig. 4-5a. Let P be the position of the par-

ticle at the time t and P' its position at the time t + At. The velocity at

P is v, a vector tangent to the curve at P. The velocity at P' is v', a vector

tangent to the curve at P' . Vectors v and v' are equal in magnitude, the

speed being constant, but their directions are different. The length of

path traversed during Af is the arc length PP' , which is equal to v At,

v being the constant speed.

Now redraw the vectors v and v', as in Fig. 4-5b, so that they originate

4-4
UNIFORM CIRCULAR
MOTION



figure 4-5

Uniform circular motion. The
particle travels around a circle at

constant speed. Its velocity at two
points P and P' is shown. Its

change in velocity in going from

P to P' is Av.

at a common point. We are free to do this as long as the magnitude and

direction of each vector are the same as in Fig. 4-5a. This diagram |Fig.

4-5 b) enables us to see clearly the change in velocity as the particle

moved from P to P'. This change, v' — v = Av, is the vector which must
be added to v to get v'. Notice that it points inward, approximately

toward the center of the circle.

Now the triangle OQQ' formed by v, v', and Av is similar to the

triangle CPP' (Fig. 4-5c) formed by the chord PP' and the radii CP and

CP'. This is so because both are isosceles triangles having the same
vertex angle,- the angle between v and v' is the same as the angle PCP'
because v is perpendiculat to CP and v' is perpendicular to CP'. We can

therefore write

Av
v

v At
approximately,

the chord PP' being taken equal to the arc length PP'. This relation be-

comes more nearly exact as At is diminished, since the chord and the

arc then approach each other. Notice also that Av approaches closer and

closer to a direction perpendicular to v and v' as At is diminished and

therefore approaches closer and closer to a direction pointing to the

exact center of the circle. It follows from this relation that

Av = yf
At r

' approximately,

and in the limit when At

fore obtain

this expression becomes exact. We there-

,. Av
lim T7
Af-o At

(4-9)

as the magnitude of the acceleration. The direction of a is instantane-

ously along a radius inward toward the center of the circle.

Figure 4-6 shows the instantaneous relation between v and a at vari-

ous points of the motion. The magnitude of v is constant, but its direc-

tion changes continuously. This gives rise to an acceleration a which is

also constant in magnitude (but not zero) but continuously changing in

direction. The velocity v is always tangent to the circle in the direction

of motion; the acceleration a is always directed radially inward. Be-

cause of this, a is called a radial, or centripetal, acceleration. Centripetal

means "seeking a center."

Both in free fall and in projectile motion a is constant in direction and

magnitude and we can use the equations developed for constant accel-

eration (see Table 4-1). We cannot use these equations for uniform cir-

i ill. ii motion because a varies in direction and is therefore not constant.

The units oi centripetal acceleration are the same as those of an

acceleration resulting from a change in the magnitude of a velocity.

figure 4 -ft

In uniform circulai motion the

acceleration a is always directed

toward the centej oi the circle and

hence is perpendiculai to v.
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'

Dimensionally, we have

v2

= /lengthy A h = kngth
r \ time / / time2

which are the dimensions of acceleration. The units therefore may be

ft/s2 and m/s2
;
among others.

The acceleration resulting from a change in direction of a velocity is

just as real and just as much an acceleration in every sense as that aris-

ing from a change in magnitude of a velocity. By definition, acceleration

is the time rate of change of velocity, and velocity, being a vector, can

change in direction as well as magnitude. If a physical quantity is a

vector, its directional aspects cannot be ignored, for their effects will

prove to be every bit as important and real as those produced by changes

in magnitude.

It is worth emphasizing at this point that there need not be any mo-
tion in the direction of an acceleration and that there is no fixed rela-

tion in general between the directions of a and v. In Fig. 4-7 we give

examples in which the angle between v and a varies from to 180°. Only
in one case, 6 = 0°, is the motion in the direction of a.

1

<
i

e = 180°

V

a
7

180° > d > 90°

aS \

= 90°

G
Uniform

circular

motion

90° > e > 0° = 0°

I

Ball thrown up Rise of a

projectile

Fall of a

projectile

Ball thrown

down

The moon revolves about the earth, making a complete revolution in 27.3 days.

Assume that the orbit is circular and has a radius of 239,000 miles. What is the

magnitude of the acceleration of the moon toward the earth?

We have r = 239,000 mi = 3.85 x 108 m. The time for one complete revolu-

tion, called the period, is T = 27.3 d = 2.36 x 106
s. The speed of the moon

(assumed constant) is therefore

v = 27n7T= 1020 m/s.

The centripetal acceleration is

v2 _ (1020 m/s)2

i
~

3.85 x 108 ma = 0.00273 m/s2
, or only 2.78 x 10 4

g.

figure 4-7

Showing the relation between v and

a for various motions.

EXAMPLE 4

Calculate the speed of an earth satellite, assuming that it is traveling at an alti-

tude h of 140 miles above the surface of the earth where g = 30 ft/s2
. The radius

R of the earth is 3960 mi.

Like any free object near the earth's surface the satellite has an acceleration

g toward the earth's center. It is this acceleration that causes it to follow the

circular path. Hence the centripetal acceleration is g, and from Eq. 4-9, a =
v2

/r, we have

g = v*/(R + h),

or

v = V[R + h)g = V(3960 mi + 140 mi)(5280 ft/mi)(30 ft/s2
)

= 2.55 x 104 ft/s = 17,400 mi/h.

EXAMPLE 5



2:

C

o

Let us now derive Eq. 4-9 using vector methods. Figure 4-8* shows a particle inuniform circular motion about the origin O of a reference frame. For this motion the polar coordinates r, are more useful than the rectangular coordinates
x, y because r remains constant throughout the motion and 6 increases in a

coZi
e

ev

n
Th

r7Y Wlth *?* */ behaV1°r °f X 3nd y durmS such motion is morecomplex. The two sets of coordinates are related by

r=Vx*
or by the reciprocal relations

+ y2 and e = tan 1 y/x

r cos and y = i sin 6.

(4-10a)

(4-10fo)

In rectangular coordinate systems we used the unit vectors i and j to describemotion in the x-y PW Here we find it more convenient to introduce two newunit vectors u, and u, These, like i and j, have unit length and are dimension
less; they designate direction only.

The unit vector u, at any point is in the direction of increasing r at that point-

j

is directed radially outward from the origin. The unit vector u. at any pomt
s in the direction of increasing 8 at that point; it is always tangent to a arclethrough the point in a counterclockwise direction. As Fig 4-8. shows u andu„ are at right angles to each other. The unit vectors u, and u» diffeTfrom the

rtheTrTd
i m th3t th£ dlreCtl°nS °f "' and U

»^ fr™ P-t o^o nin the plane; the unit vectors u, and ug are thus not constant vectors

V s< ^pAtf

(a)
(b)

In terms of u, and u„ the motion of a particle moving counterclockwise atuniform speed v in a circle about the origin in Fig. 4-8* can be described by thevector equation y

UflV. 14-11

Section nf „1 '

£Ctly
u

th3t hC direCtl°n ° f V ,whlch 1S the same *> thedirection o* u„) is tangent to the circle and that the magnitude of v 1S the con-stant quantity v (because the magnitude of u„ is unity)
To find the acceleration we combine Eqs. 4-3 and 4-11, yielding

dv

dt

duf,

dt (4-12)

Note that v m Eq. 4- 1
1

is a constant, but u„ is not since its direction changes as

ectoTs u "r"
5

-

T
°
eV3lT dU "'dL C°nSlder Flg

- «* Which sh<™ ^e u"vectors u^ and u„
2 corresponding to an elapsed time It {= u - t,) for the movingParticle. The vector Au„ r Ufl, - UflJ points r:ld]ally inward toward tn7ori^nu?the l-mng case as At _

. In hcr W()rds ^ tf^^^^^^ »
U, The angle between u„ and u„ m the figure is A. which is .he angle sweptout by a rad.al hne from the origin to the particle in tune Ar The m^tule o

::Zl ^^thatthevect u.du.inFig. ^ave^e

U, lllll ,|

figure 4-8
(a) A particle moving
counterclockwise in a circle of
radius r. (b) The unit vectors u fll and
ilia at times r, and t, respectively,
and the change Au» (= u92

- u Ml ).

dt



and, from Eq. 4-12,

dt

de
-u, -3- v.

dt
(4-13)

Now, dd/dt is the uniform angular rotation rate of the particle and is given by

dd _ 2tt radians _ 2tt _ v

dt time for one revolution l-rrr/v r

Putting this into Eq. 4-13 leads us finally to

a = —u, —
1

(4-14)

which tells us that the acceleration in uniform circular motion has a magnitude

v2/r (see Eq. 4-9) and points radially inward (note the factor— u,). The vector rela-

tion Eq. 4-14 thus tells us both the magnitude and the direction of the centri-

petal acceleration a. Note that, as expected, a has a constant magnitude but

changes continually in direction because u, changes continually in direction.

We now consider the more general case of circular motion in which the speed

v of the moving particle is not constant. We shall use vector methods in polar

coordinates.

As before, the velocity is given by Eq. 4-11, or

V = UtfV

except that, in this case, not only u H but also v varies with time. Recalling the

formula for the derivative of a product, we obtain for the acceleration

dv dv dun

dt dt dt
(4-15)

In Eq. 4-12 the first term in this equation was not present because, v being there

assumed to be constant, dv/dt was zero. The last term in Eq. 4-15 reduces, as

we saw in the last section, to — u,(v2
/r). We can now write Eq. 4-15 as

Utftfr ~~ U/'tf/f, (4-16)

in which a T = dv/dt and an = v2
/r. The first term, uoa r, is the vector component

of a that is tangent to the path of the particle and arises from a change in the

magnitude of the velocity in circular motion (see Fig. 4-9). This term and a T

are called the tangential acceleration. The second term —u,a« is the vector com-
ponent of a directed radially in toward the center of the circle and arises from a

change in the direction of the velocity in circular motion (see Fig. 4-9). This

term and a H are called the centripetal acceleration.

The magnitude of the instantaneous acceleration is

a = vV 2 + a« 2 (4-17)

If the speed is constant, then a T = dv/dt = and Eq. 4-16 reduces to Eq. 4-14.

4-5
TANGENTIAL
ACCELERATION IN
CIRCULAR MOTION

figure 4-9

(a) In nonuniform circular motion
the speed is variable, (b) The change

in velocity Av in going from P to P'

is made up of two parts: (c) Av«

caused by the change in direction of

v, and Av-r caused by the change in

magnitude of v. In the limit as

At —> 0, Av/f points toward the

center C of the circle and Avr is

tangent to the circular path.



When the speed v is not constant, a T is not zero and aR varies from point to

point. If the speed changes at a rate that is not constant, then a r will also vary

from point to point.

If the motion is not circular, the formulas for a T |= dv/dt) and for a R [= v2
/r)

can still be applied if instead of using for r the magnitude of the radius vector

from the origin, we substitute the radius of curvature of the path at the in-

stantaneous position of the particle. Then a T gives the component of accelera-

tion tangent to the curve at that position, and aR gives the component of ac-

celeration normal to the curve at that position. Figure 4-10 shows the track left

in a liquid-hydrogen-filled bubble chamber by an energetic electron that spirals

inward. The electron loses energy as it traverses the liquid in the chamber so

that its speed v is being reduced steadily. Thus there is at every point a tangen-

tial acceleration a T given by dv/dt. The centripetal acceleration aR at any point

is given by v2
/r, where r is the radius of curvature of the track at the point in

question; both v and r become smaller as the particle loses energy. The force

causing the electron to spiral is produced by a magnetic field present in the

bubble chamber and at right angles to the plane of Fig. 4-10 (see Chapter 33).

figure 4-10
A track left in a 10-in.

liquid-hydrogen-filled bubble

chamber by an energetic spiralling

electron. (Courtesy Lawrence

Radiation Laboratory.) This picture

is one of a number in a collection

prepared for easy stereoscopic

viewing and published, with

explanatory material, as Introduction

to the Detection of Nuclear

Particles in a Bubble Chamber, The
Ealing Press, Cambridge,

Massachusetts (1964). When viewed

stereoscopically the electron is seen

to be moving toward the reader as

it moves in along the spiral. Its

velocity vector at any point, thus,

does not lie in the plane of the

figure, but tilts up out of it; its

motion is thus three-dimensional,

rather than two-dimensional as we
assumed for other examples in this

chapter.

In earlier sections we considered the addition of velocities in a par-

ticular reference frame. Let us now consider the relation between the

velocity of an object as determined by one observer S (= reference frame

S) and the velocity of the same object as determined by another observer

S' reference frame V) who is moving with respect to the first.

c onsidei observer \ tixed to the earth, so that his reference frame is

4-6
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AND ACCELERATION



the earth. The other observer S' is moving on the earth — for example, a

passenger sitting on a moving train — so that his reference frame is the

train. They each follow the motion of the same object, say an automo-

bile on a road or a man walking through the train. Each observer will

record a displacement, a velocity, and an acceleration for this object

measured relative to his reference frame. How will these measurements

compare? In this section we consider only the case in which the second

frame is in motion with respect to the first with a constant velocity u.

In Fig. 4- 1 1 the reference frame S represented by the x- and y-axes can

be thought of as fixed to the earth. The shaded region indicates another

reference frame S' , represented by x'- and y'-axes, which moves along

the x-axis with a constant velocity u, as measured in the S-system
;
it

can be thought of as drawn on the floor of a railroad flatcar.

Initially, a particle (say a ball on the flatcar) is at a position called A
in the S-frame and called A' in the S' -frame. At a time t later the flat-

car and its S' reference frame have moved a distance ut to the right and

the particle has moved to B. The displacement of the particle from its

initial position in the S-frame is the vector r from A to B. The displace-

ment of the particle from its initial position in the S' -frame is the vector

r' from A' to B. These are different vectors because the reference point

A' of the moving frame has been displaced a distance ut along the

x-axis during the motion. From the figure we see that r is the vector

sum of r' and uf:

r = r'+ur. (4-18)

Differentiating Eq. 4-18 leads to

dt dt'
,

dt dt

But dt/dt = v, the instantaneous velocity of the particle measured in the

S-frame, and dt'/dt = v', the instantaneous velocity of the same particle

measured in the S' frame, so that

v = v'+u. (4-19)

Hence the velocity of the particle relative to the S-frame, v, is the

vector sum of the velocity of the particle relative to the S' -frame, v',

and the velocity u of the S' -frame relative to the S-frame.

figure 4-11

Two reference frames, S {= x, y) and

S' {= x'
,
y')

}
S' moves to the right,

relative to S, with speed u.

[a] The compass of an airplane indicates that it is heading due east. Ground
information indicates a wind blowing due north. Show on a diagram the velocity

of the plane with respect to the ground.

The object is the airplane. The earth is one reference frame (S) and the air is

the other reference frame [S') moving with respect to the first. Then

u is the velocity of the air with respect to the ground.

v' is the velocity of the plane with respect to the air.

v is the velocity of the plane with respect to the ground.

In this case u points north and v' points east. Then the relation v = v' + u de-

termines the velocity of the plane with respect to the ground, as shown in Fig.

4- 12a.

The angle a is the angle N of E of the plane's course with respect to the

ground and is given by

tan a = u/v'.

The airplane's speed with respect to the ground is given by

v = V(v')2 + u 2
.

EXAMPLE 6



For example, if the air-speed indicator shows that the plane is moving rela-

tive to the air at a speed of 200 mi/h, and if the speed of the wind with respect

to the ground is 40.0 mi/h, then

v = V(200)2 + (40.0) 2 mi/h

is the ground speed of the plane and

40.0

200

204 mi/h

tan 11° 20'

gives the course of the plane N of E.

\b) Now draw the vector diagram showing the direction the pilot must steer

the plane through the air for the plane to travel due east with respect to the

ground.

He would naturally head partly into the wind. His speed relative to the earth

will therefore be less than before. The vector diagram is shown in Fig. 4- 12b.

You should calculate 8 and v, using the previous data for u and v'.

figure 4-12
Example 6

(b)

We have seen that different velocities are assigned to a particle by

different observers when the observers are in relative motion. These

velocities always differ by the relative velocity of the two observers,

which here is a constant velocity. It follows that when the particle

velocity changes, the change will be the same for both observers. Hence
they each measure the same acceleration for the particle. The accelera-

tion of a particle is the same in all reference frames moving relative to

one another with constant velocity; that is, a = a'. This result follows in

a formal way if we differentiate Eq. 4-19. Thus dv/dt = dv'/dt + du/dt;

but du/dt = when u is constant, so that a — a'.

1. In projectile motion when air resistance is negligible, is it ever necessary

to consider three-dimensional motion rather than two-dimensional ?

2. In broad jumping does it matter how high you jump" What factors deter-

mine the span of the jump'

3. Why doesn't the electron in the beam from an electron gun fall as much
because of gravity as a water molecule in the stream from a hose!' Assume
horizontal motion initially in each case.

4. At what point in the path of a projectile does it have its minimum speed"

its maximum'

5. Suppose you could vary the angle of incline 6 of a plane surface that is fixed

at a hinge line to a horizontal table top. How should you choose 6 so that

the balls dropped vertically and rebounding elastically from the incline

have the maximum range?

6. What advantage is there, if any, in measuring angles in radians rather than

in degrees?

7. An aviator, pulling out of a dive, follows the arc of a circle. He was said to

have "experienced 3g's" in pulling out of the dive. Explain what this state-

ment means.

8. Describe qualitatively the acceleration acting on a bead which, sliding

along a frictionless wire, moves inward with constant speed along a spiral.

9. Could the acceleration of a projectile be represented in terms of a radial

and a tangential component at each point of the motion? If so, is there any

advantage to tins representation?

10. Over a short distance a circular arc is a good approximation to .1 parabola.

What then is the radius r ol the circular arc approximating the motion ol .1

projectile, of initial spied \,, and angle "„ near the top ol its path?

11. A hoy Bitting in a railroad cai moving at constant velocit) throws a ball

questions



straight up into the air. Will the ball fall behind him" In front of him? Into

his hand? What happens if the car accelerates forward or goes around a curve

while the ball is in the air?

12. A man on the observation platform of a train moving with constant velocity

drops a coin while leaning over the rail. Describe the path of the coin as

seen by [a] the man on the train, [b] a person standing on the ground near

the track, and (c) a person in a second train moving in the opposite direction

to the first train on a parallel track.

13. A bus with a vertical windshield moves along in a rainstorm at speed Vi,.

The raindrops fall vertically with a terminal speed vr . At what angle do the

raindrops strike the windshield?

14. Drops are falling vertically in a steady rain. In order to go through the rain

from one place to another in such a way as to encounter the least number
of raindrops, should you move with the greatest possible speed, the least

possible speed, or some intermediate speed?

15. What is wrong with this picture (Fig. 4-13)? The sailor is running with the

wind.

16. An elevator is descending at a constant speed. A passenger takes a coin

from his pocket and drops it to the floor. What accelerations would {a) the

passenger and [b] a person at rest with respect to the elevator shaft observe

for the falling coin?

at
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figure 4-13
Question 15

SECTION 4-1

1. Prove that for a vector a defined by

a = ia.r + )av + kaz

the scalar components are given by

a.r = i • a, a,, = j
• a, and a~ = k • a.

problems

SECTION 4-2

2. A particle moves so that its position as a function of time is

r(r) = i + 4£2
j + fk.

[a] Write expressions for its velocity and acceleration as functions of time.

[b] What is the shape of the particle's trajectory?

3. Show [a] that Eqs. 4-4b, b' can be expressed in vector form as

r = t + l(v„ + v)r,

and [b] Eqs. 4-4 c, c' as

r = to + \ t + iar2
.

Also, show (c) that Eqs. 4-4d, d' can be combined to give

v • v = v • v + 2a • (r - t ).

SECTION 4-3

4. Consider a projectile at the top of its trajectory, [a) What is its speed in

terms of v and 6,,- [b] What is its acceleration? (c) How is the direction of

its acceleration related to that of its velocity? (See Question 10.)

5. A ball rolls off the edge of a horizontal table top 4.0 ft high. If it strikes the

floor at a point 5.0 ft horizontally away from the edge of the table, what
was its speed at the instant it left the table? Answer: 10 ft/s.

6. A rifle with a muzzle velocity of 1500 ft/s shoots a bullet at a target 150 ft

away. How high above the target must the rifle be aimed so that the bullet

will hit the target?

7. [a] Show that the range of a projectile having an initial speed v and angle



of projection 6() is R = [v 2
/g) sin 26 . Then show that a projection angle of

45° gives the maximum range (Fig. 4-14). \b) Show that the maximum height

reached by the projectile is ymax = [v() sin o )

2
/2g. (c) Find the angle of pro-

jection at which the range and the maximum height of a projectile are

equal. Answer: (c) 76°.

8. A projectile is fired horizontally from a gun located 144 ft (44 m) above a

horizontal plain with a muzzle speed of 800 ft/s (240 m/s). [a] How long

does the projectile remain in the air" \b) At what horizontal distance does

it strike the ground- (c) What is the magnitude of the vertical component of

its velocity as it strikes the ground?

9. A ball is thrown from the ground into the air. At a height of 9. 1 m the

velocity is observed to be v = 7.6i + 6.1j in m/s (x-axis horizontal, y-axis

vertical), [a] To what maximum height will the ball rise-' (b) What will be

the total horizontal distance traveled by the ball? [c] What is the velocity

of the ball imagnitude and direction) the instant before it hits the ground?

Answer: [a) 11m. [b) 23 m. (c) 17 m/s, 63° below the horizontal.

10. Electrons, nuclei, atoms, and molecules, like all forms of matter, will fall

under the influence of gravity. Consider separately a beam of electrons, of

nuclei, of atoms, and of molecules traveling a horizontal distance of 1.0 m.
Let the average speed be for an electron 3.0 x 107 m/s, for a thermal neutron

2.2 x 103 m/s, for a neon atom 5.8 x 102 m/s, and for an oxygen molecule

4.6 x 102 m/s. Let the beams move through vacuum with initial horizontal

velocities and find by how much their paths deviate from a straight line

(vertical displacement in 1.0 m) due to gravity. How do these results com-
pare to that for a beam of golf balls (use reasonable data)? What is the con-

trolling factor here?

1 1. A dive bomber, diving at an angle of 53° with the vertical, releases a bomb
at an altitude of 730 m. The bomb hits the ground 5.0 s after being released.

{a) What is the speed of the bomber? [b] How far did the bomb travel hori-

zontally during its flight? (c) What were the horizontal and vertical com-
ponents of its velocity just before striking the ground?

Answer: {a) 200 m/s. [b] 810 m. (c) vh = 160 m/s, v, = 170 m/s.

12. A football is kicked off with an initial speed of 64 ft/s at a projection angle

of 45°. A receiver on the goal line 60 yd away in the direction of the kick

starts running to meet the ball at that instant. What must be his minimum
speed if he is to catch the ball before it hits the ground? (See, in this con-

nection, "Catching a Baseball" by Seville Chapman in American Journal

of Physics, October 1968.)

13. In a cathode-ray tube a beam of electrons is projected horizontally with a

speed of 1.0 x 109 cm/s into the region between a pair of horizontal plates

2.0 cm long. An electric field between the plates exerts a constant down-

ward acceleration on the electrons of magnitude 1.0 x 10 17 cm/s2
. Find [a]

the vertical displacement of the beam in passing through the plates and

[b) the velocity of the beam (direction and magnitude) as it emerges from

the plates.

Answer: {a) 2.0 mm. [b] v., = 1.0 x 10M cm/s, v„ = 0.2 x 109 cm/s down.

14. A batter hits a pitched ball at a height of 4.0 ft above the ground so that its

angle of projection is 45° and its initial speed is 1 10 ft/s. The ball is hit fair

down the left field line where a 24-ft high fence is located 320 ft from home
plate. Will the ball clear the fence?

15. Galileo, in his Two New Sciences, states that "for elevations (angles of

projection) which exceed or fall short of 45° by equal amounts, the ranges

are equal. ..." Prove this statement. See Fig. 4-14.

16. A ball rolls <>tt the top of a stairway with a horizontal velocity of magnitude

5.0 ft/s. The steps are K in. high and 8.0 in. wide. Which step will the ball

hit hist

17. [a] Show that if the acceleration due to gravity changes by an amount dg

the range of a projei tile Bee Problem 7) of given initial speed v„ and .m.uK-

figure 4
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of projection 0„ changes by dR where dR/R = —dglg. \b) If the acceleration

due to gravity changes by a small amount Ag (say by going from one place

to another), the range for a given projectile system will change as well. Let

the change in range by AR. It Ag, AR are small enough, we may write AR/R =

—Ag/g. In 1936, Jesse Owens established a world's running broad jump

record of 8.09 m at the Olympic Games at Berlin [g = 9.8128 m/s2
). By how

much would his record have differed if he had competed instead in 1956 at

Melbourne [g = 9.7999 m/s2
)? (In this connection see "Bad Physics in Ath-

letic Measurements," by P. Kirkpatrick, American journal of Physics,

February 1944.)

Answer: His record would have been longer by about 1 cm.

18. A juggler manages to keep five balls in motion, throwing each sequentially

up a distance of 3.0 m. [a] Determine the time interval between successive

throws, [b] Give the positions of the other balls at the instant when one

reaches his hand. (Neglect the time taken to transfer balls from one hand

to the other.)

19. A cannon is arranged to fire projectiles, with initial speed v , directly up the

face of a hill of elevation angle a, as shown in Fig. 4-15. At what angle from

the horizontal should the cannon be aimed to obtain the maximum possible

range R up the face of the hill? Answer: tt/4 + a/2.

20. The kicker on a football team can give the ball an initial speed of 25 m/s.

Within what angular range must he kick the ball if he is to just score a field

goal from a point 50 m in front of the goalposts whose horizontal bar is

3.44 m above the ground?

21. A radar observer on the ground is "watching" an approaching projectile. At
a certain instant he has the following information: the projectile has

reached maximum altitude and is moving horizontally with a speed v ;

the straight-line distance to the projectile is 1; the line of sight to the

projectile is an angle above the horizontal, [a] Find the distance D between

the observer and the point of impact of the projectile. D is to be expressed

in terms of the observed quantities v, I and and the known value of g.

Assume a flat earth; assume also that the observer lies in the plane of the

projectile's trajectory, [b] Does the projectile pass over his head or strike the

ground before reaching him?
Answer: [a) D = vV(27/g) sin — 1 cos 0. [b] The projectile will pass over the

observer's head if D is positive and will fall short if D is negative.

22. Projectiles are hurled at a horizontal distance R from the edge of a cliff of

height h in such a way as to land a horizontal distance x from the bottom of

the cliff. If you want x to be as small as possible, how would you adjust

0o and Vo, assuming that v,, can be varied from zero to some finite maximum
value and that 0„ can be varied continuously? Only one collision with the

ground is allowed (see Fig. 4T6).

SECTION 4-4

23. Certain neutron stars (extremely dense stars) are believed to be rotating at

about 1 rev/s. If such a star has a radius of 20 km, what is the acceleration

of an object on the equator of the star? Answer: 8 x 105 m/s2
.

24. A magnetic field will deflect a charged particle perpendicular to its direc-

tion of motion. An electron experiences a radial acceleration of 3.0 x 10 14

m/s2 in one such field. What is its speed if the radius of its curved path is

0.15 m?

25. In Bohr's model of the hydrogen atom an electron revolves around a proton
in a circular orbit of radius 5.28 x 10 n m with a speed of 2.18 x 106 m/s.

What is the acceleration of the electron in the hydrogen atom?
Answer: 9.00 x 1022 m/s2

.

26. A particle rests on the top of a hemisphere of radius R. Find the smallest

horizontal velocity that must be imparted to the particle if it is to leave the

hemisphere without sliding down it.

27. What is the acceleration of an object (a) on the equator and (b) at latitude

"a
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60°, due to rotation of the earth : \c) By what factor would the speed of the

earth's rotation have to increase for a body on the equator to require an

acceleration of g to keep it on the earth"

Answer: [a] 3.4 x 10 2 m/s2
. |fc>) 1.7 x 10~ 2 m/s2

. (c) 17.

28. A boy whirls a stone in a horizontal circle 6.0 ft (1.8 m) above the ground

by means of a string 4.0 ft (1.2 m) long. The string breaks, and the stone

flies off horizontally, striking the ground 30 ft (9.1 m) away. What was the

centripetal acceleration during circular motion?

29. A particle P travels with constant speed counterclockwise on a circle of

radius 3.0 m and completes 1.0 rev in 20 s (Fig. 4-17). The particle passes

through O at t = 0. Starting from the origin O. find [a] the magnitude and

direction of the position vectors 5.0 s, 7.5 s, and 10 s later; [b] the magni-

tude and direction of the displacement in the 5.0-s interval from the fifth

to the tenth second; |c) the average velocity vector in this interval; [d] the

instantaneous velocity vector at the beginning and at the end of this inter-

val; \e) the average acceleration vector in this interval; and [/] the instanta-

neous acceleration vector at the beginning and at the end of this interval.

(Measure directions counterclockwise from the x-axis in Fig. 4-17.)

Answer: [a) 4.2 m, 45°; 5.5 m, 68°; 6.0 m, 90°. [b) 4.2 m, 135°. (c) 0.85 m/s,

135°. (d) 0.94 m/s, 90°
;
0.94 m/s, 180°. (e) 0.27 m/s2

,
225°. (/) 0.30

m/s2
, 180°; 0.30 m/s2

,
270°.

30. \a) Write an expression for the position vector r for a particle describing

uniform circular motion, using rectangular coordinates and the unit vectors

i and j. [b] From [a) derive vector expressions for the velocity v and the

acceleration a. (c) Prove that the acceleration is directed toward the center

of the circular motion.

31. (a) Express the unit vectors u, and u» in terms of i, j, and the angle 6 in

Fig. 4-8. [b] Write an expression, using the unit vectors u e and u r , for the

position vector r for a particle describing uniform circular motion and from

it derive Eq. 4-1 1, v = u#v.

32. A particle in uniform circular motion about the origin O has a speed v. [a)

Show that the time It required for it to pass through an angular displace-

ment A0 is given by

lirr
At = A0/36O°,

v

where A6 is in degrees and r is the radius of the circle, (b) Refer to Fig. 4-18,

and by taking x and y components of the velocities at points 1 and 2 show
that as = and a^ = —0.9 v2

lr, for a pair of points symmetric about the

y-axis with A0 = 90°. (c) Show that if A0 = 30°, Tx = and Tu
= -0.99 v2

/r.

(d) Argue that ~a y
—

> — v2/r as A0 —> and that circular symmetry requires

this answer for each point on the circle.

SECTION 4-5

33. A particle moves in a plane according to

x = R sin <x)t + coRt,

y = R cos cot + R,

where w and R are constants. This curve, called a cycloid, is the path traced

out by a point on the rim of a wheel which rolls without slipping along the

x-axis. [a] Sketch the path, [b] Calculate the instantaneous velocity and
acceleration when the particle is at its maximum and minimum value of y.

Answer: [b) At minimum y: vx = v„ = aT = ;
a„ = +o2 R. At maximum y:

v., = 2toR; v„ = aT = 0; a„ = —co2 R.

SECTION 4-6

34. Snow is falling vertically at a constant speed of 8.0 m/s. [a] At what angle

from tin vertical and b] with what speed do the snowflakes appeal to be

falling .is viewed by the driver of a car traveling on .i straight road with a

speed ol 50 km/h'

figure 4-17
Problem 29

figure 4-18
Problem 32



35. A train travels due south at 88.2 ft/s (relative to ground) in a rain that is

blown toward the south by the wind. The path of each raindrop makes the

angle 21.6° with the vertical, as measured by an observer stationary on the

earth. An observer seated in the train, however, sees perfectly vertical

tracks of rain on the windowpane. Determine the speed of each raindrop

relative to the earth. Answer: 240 ft/s.

36. A helicopter is flying in a straight line over a level field at a constant speed

of 4.9 m/s and at a constant altitude of 4.9 m. A package is ejected horizon-

tally from the helicopter with an initial velocity of 12 m/s relative to the

helicopter, and in a direction opposite to the helicopter's motion, {a) Find

the initial velocity of the package relative to the ground, [b] What is the

horizontal distance between the helicopter and the package at the instant

the package strikes the ground? (c) What angle does the velocity vector of

the package make with the ground at the instant before impact"

37. Find the speeds of two objects if, when they move uniformly toward each

other, they get 4.0 m closer each second, and, when they move uniformly

in the same direction with the original speeds, they get 4.0 m closer each

10 seconds. Answer: 2.2 m/s, 1.8 m/s.

38. A man can row a boat 4.0 mi/h in still water, [a) If he is crossing a river

where the current is 2.0 mi/h, in what direction will his boat be headed if

he wants to reach a point directly opposite from his starting point" \b) If the

river is 4.0 mi wide, how long will it take him to cross the river? (c) How
long will it take him to row 2.0 mi down the river and then back to his

starting point? [d) How long will it take him to row 2.0 mi up the river and

then back to his starting point : (e) In what direction should he head the

boat if he wants to cross in the smallest possible time?

39. An airplane has a speed of 135 mi/h in still air. It is flying straight north so

that it is at all times directly above a north-south highway. A ground ob-

server tells the pilot by radio that a 70 mi/h wind is blowing, but neglects

to tell him the wind direction. The pilot observes that in spite of the wind
he can travel 135 miles along the highway in one hour. In other words, his

ground speed is the same as if there were no wind, [a] What is the direction

of the wind? [b] What is the heading of the plane, that is, the angle between

its axis and the highway?

Answer: [a] From 75° E of S. [b] 30° E of N. SubstitutingW for E gives a

second solution.

40. A pilot is supposed to fly due east from A to B and then back again to A
due west. The velocity of the plane in air is v' and the velocity of the air

with respect to the ground is u. The distance between A and B is 1 and the

plane's air speed v' is constant, [a] If u = (still air), show that the time for

the round trip is t = 21/ v'. [b) Suppose that the air velocity is due east (or

west). Show that the time for a round trip is then

t,»

tE
1 - u2

/(v')

(c) Suppose that the air velocity is due north (or south). Show that the time

for a round trip is then

t - U
is —

VI -u2/[v')2
'

[d] In parts \b) and (c) one must assume that u < v'. Why?
41. A person walks up a stalled escalator in 90 s. When standing on the same

escalator, now moving, he is carried up in 60 s. How much time would it

take him to walk up the moving escalator? Answer: 36 s.

42. A man wants to cross a river 500 m wide. His rowing speed (relative to the

water) is 3000 m/h. The river flows with a speed of 2000 m/h. If the man's
walking speed on shore is 5000 m/h, {a) find the path (combined rowing

and walking) he should take to get to the point directly opposite his starting

point in the shortest time, [b) How long does it take?



5
particle

dynamics—

I

In Chapters 3 and 4, we studied the motion of a particle, with emphasis 5-1
on motion along a straight line or in a plane. We did not ask what CLASSICAL MECHANICS
"caused" the motion; we simply described it in terms of the vectors r,

v, and a. Our discussion was thus largely geometrical. In this chapter

and the next we discuss the causes of motion, an aspect of mechanics

called dynamics. As before, bodies will be treated as though they were

single particles. Later in the book we shall treat groups of particles and

rigid bodies as well.

The motion of a given particle is determined by the nature and the

arrangement of the other bodies that form its environment. Table 5-1

shows some "particles" and possible environments for them.

In what follows, we limit ourselves to the very important special

case of gross objects moving at speeds that are small compared to c, the

speed of light; this is the realm of classical mechanics. Specifically, we
shall not inquire here into such questions as the motion of an electron

in a uranium atom or the collision of two protons whose speeds are,

say, 0.90c. The first inquiry would involve us with the quantum theory

and the second with the theory of relativity. We leave consideration of

these theories, of which classical mechanics is a special case (see Sec-

tion 6-4), to later.

The central problem of classical mechanics is this; (1) We are given

a particle whose characteristics (mass, charge, magnetic dipole moment,
etc.) we know. (2) We place this particle, with a known initial velocity,

in an environment of which we have a complete description. (3) Prob-

lem: what is the subsequent motion of the particle
1

This problem was solved, at least for a large variety of environments,

In Isaac Newton (1642-1727) when he put forward his laws of motion

72



and formulated his law of universal gravitation. The program for solving

this problem, in terms of our present understanding of classical me-

chanics,* is: (1) We introduce the concept of force F and define it in

terms of the acceleration a experienced by a particular standard body.

(2) We develop a procedure for assigning a mass m to a body so that we
may understand the fact that different particles of the same kind expe-

rience different accelerations in the same environment. (3) Finally, we
try to find ways of calculating the forces that act on particles from the

properties of the particle and of its environment; that is, we look for

force laws. Force, which is at root a technique for relating the environ-

ment to the motion of the particle, appears both in the laws of motion

(which tell us what acceleration a given body will experience under the

action of a given force) and in the force laws (which tell us how to cal-

culate the force that will act on a given body in a given environment).

The laws of motion and the force laws, taken together, constitute the

laws of mechanics, as the sketch suggests.

Particle

Acceleration

Force

Environment

Force laws \ Laws of motion

The program of mechanics cannot be tested piecemeal. We must view

it as a unit and we shall judge it to be successful if we can say "yes" to

these two questions. (1) Does the program yield results that agree with

experiment? (2) Are the force laws simple in form- It is the crowning
glory of Newtonian mechanics that we can indeed answer each of these

questions in the affirmative.

In this section we have used the terms force and mass rather unpre-

cisely, having identified force with the influence of the environment,

and mass with the resistance of a body to be accelerated when a force

acts on it, a property often called inertia. In later sections we shall re-

fine these primitive ideas about force and mass.

For centuries the problem of motion and its causes was a central theme 5*2
of natural philosophy, an early name for what we now call physics. It NEWTON'S FIRST LAW
was not until the time of Galileo and Newton, however, that dramatic

progress was made. Isaac Newton, born in England in the year of Gali-

*See "Presentation of Newtonian Mechanics" by Norman Austern, American Journal

of Physics, September 1961, "On the Classical Laws of Motion" by Leonard Eisenbud,

American Journal of Physics, March 1958, and "The Laws of Classical Motion: What's F!

What's m! What's al" by Robert Weinstock, American Journal of Physics. October 1961,

for expositions of the laws of classical mechanics as we now view them.



Table 5-1

System The Particle The Environment

-H> A block
The spring;

the rough surface

v* A golf ball The earth

A satellite The earth

An electron
A large uniformly

charged sphere

A bar magnet A second bar magnet

leo's death, is the principal architect of classical mechanics.* He carried

to full fruition the ideas of Galileo and others who preceded him. His

three laws of motion were first presented (in 1686) in his Philosophiae

Naturalis Principia Mathematica, usually called the Principia.

Before Galileo's time most philosophers thought that some influence

or "force" was needed to keep a body moving. They thought that a body

was in its "natural state" when it was at rest. For a body to move in a

straight line at constant speed, for example, they believed that some
external agent had to continually propel it; otherwise it would "natu-

rally" stop moving.

If we wanted to test these ideas experimentally, we would first have

to find a way to free a body from all influences of its environment or

from all forces. This is hard to do, but in certain cases we can make the

forces very small. If we study the motions as we make the forces smaller

and smaller, we shall have some idea of what the motion would be like

if the external forces were truly zero.

Let us place our test body, say a block, on a rigid horizontal plane. If

we let the block slide along this plane, we notice that it gradually slows

down and stops. This observation was used, in fact, to support the idea

that motion stopped when the external force, in this case the hand ini-

tially pushing the block, was removed. We can argue against this idea,

however, reasoning as follows: Let us repeat our experiment, now using

a smoother block and a smoother plane and providing a lubricant. We
notice that the velocity decreases more slowly than before. Let us use

still smoother blocks and surfaces and better lubricants. We find that

the block decreases in velocity at a slower and slower rate and travels

'Newton also invented the (fluxional) calculus, conceived the idea of universal gravita

tion and formulated its l.iu d the composition oi white light He was .1

skillful experimenter and a mathematician oi fust rank .is well .is what today would be

1 ailed theoretical physicist



farther each time before coming to rest.* We can now extrapolate and

say that if all friction could be eliminated, the body would continue

indefinitely in a straight line with constant speed. Some external force

is necessary to change the velocity of a body but no external force is

necessary to maintain the velocity of a body. Our hand, for example,

exerts a force on the block when it sets it in motion. The rough plane

exerts a force on it when it slows it down. Both of these forces produce

a change in the velocity, that is, they produce an acceleration.

This principle was adopted by Newton as the first of his three laws

of motion. Newton stated his first law in these words: "Every body

persists in its state of rest or of uniform motion in a straight line unless

it is compelled to change that state by forces impressed on it."

Newton's first law is really a statement about reference frames. For,

in general, the acceleration of a body depends on the reference frame

relative to which it is measured. The first law tells us that, if there are

no nearby objects (and by this we mean that there are no forces because

every force must be associated with an object in the environment), then

it is possible to find a family of reference frames in which a particle has

no acceleration. The fact that bodies stay at rest or retain their uniform

linear motion in the absence of applied forces is often described by as-

signing a property to matter called inertia. Newton's first law is often

called the law of inertia and the reference frames to which it applies are

called inertial frames. Such frames are assumed to be fixed with re-

spect to the distant stars.

In nearly all cases in this book we will apply the laws of classical mechanics
from the point of view of an observer in an inertial frame. It is possible to solve

problems in mechanics using a noninertial frame, such as a frame rotating with
respect to the fixed stars, but to do so we have to introduce forces that cannot be

associated with objects in the environment. We will discuss this in Chapters

6, 11, and 16. A reference frame attached to the earth can be considered to be

an inertial frame for most practical purposes. We shall see in Chapter 16 how
good an approximation this is.

Notice that there is no distinction in the first law between a body at

rest and one moving with a constant velocity. Both motions are "natu-

ral" in the absence of forces. That this is so becomes clear when a body
at rest in one inertial frame is viewed from a second inertial frame, that

is, a frame moving with constant velocity with respect to the first. An
observer in the first frame finds the body to be at rest; an observer in

the second frame finds the same body to be moving with uniform veloc-

ity. Both observers find the body to have no acceleration, that is, no
change in velocity, and both may conclude from the first law that no
force acts on the body.

Notice, too, that by implication there is no distinction in the first

law between the absence of all forces and the presence of forces whose
resultant is zero. For example, if the push of our hand on the book ex-

actly counteracts the force of friction on it, the book will move with

uniform velocity. Hence another way of stating the first law is: // no
net force acts on a body, its acceleration a is zero.

If there is an interaction between the body and objects present in the

* You may have experimented in the laboratory with a dry ice puck. This is a device which

can be made to move over a smooth horizontal surface, floating on a layer of CO_> gas. The
friction between the puck and the surface is very low indeed and it is hard to measure any

reduction in speed for path lengths of practical dimensions.



environment, the effect may be to change the "natural" state of the

body's motion. To investigate this we must now examine carefully the

concept of force.

Let us refine our concept of force by defining it operationally. In our

everyday language force is associated with a push or a pull, perhaps

exerted by our muscles. In physics, however, we need a more precise

definition. We define force here in terms of the acceleration that a

given standard body experiences when placed in a suitable environment.

As a standard body we find it convenient to use (or rather to imagine

that we use!) the standard kilogram (see Fig. 1-2). This body has been

selected as our standard of mass and has been assigned, by definition, a

mass m t) of exactly 1 kg. Later we will describe how masses are assigned

to other bodies.

As for an environment we place the standard body on a horizontal

table having negligible friction and we attach a spring to it. We hold the

other end of the spring in our hand, as in Fig. 5-la. Now we pull the

spring horizontally to the right so that by trial and error the standard

body experiences a measured uniform acceleration of 1.0 m/s2
. We then

declare, as a matter of definition, that the spring (which is the signifi-

cant body in the environment) is exerting a constant force whose mag-
nitude we will call "1.00 newton," or in SI notation: 1.00 N, on the

standard body. We note that, in imparting this force, the spring is kept

stretched an amount 11 beyond its normal unextended length, as Fig.

5- lb shows.

5-3
FORCE

(a)

(b)
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figure 5-1

(a) A "particle" P (the standard

kilogram) at rest on a horizontal

frictionless surface, (b) The body is

accelerated by pulling the spring to

the right.

We can repeat the experiment, either stretching the spring more or

using a stiffer spring, so that we measure an acceleration of 2.00 m/s2

for the standard body. We now declare that the spring is exerting a force

of 2.00 N on the standard body. In general, if we observe this particular

standard body to have an acceleration a in a particular environment, we
then say that the environment is exerting a force F on the standard

body, where F (in newtons) is numerically equal to a (in m/s2
).

Now let us see whether force, as we have defined it, is a vector quan-

tity. In Fig. 5-2b we assigned a magnitude to the force F, and it is a sim-

ple matter to assign a direction to it as well, namely, the direction of

the acceleration that the force produces. However, to be a vector it is

not enough for a quantity to have magnitude and direction; it must also

obey the laws of vector addition described in Chapter 2. We can learn

only from experiment whether forces, as we defined them, do indeed

obey these laws.

Let lis arrange to exert a 4.00-N force along the v-axis ami a i 00-N
force along the y-axis and let us appl) these Forces simultaneously to



the standard body placed, as before, on a horizontal, frictionless sur-

face. What will be the acceleration of the standard body- We would

find by experiment that it was 5.00 m/s2
, directed along a line that

makes an angle of 37° with the x-axis. In other words, we would say that

the standard body was experiencing a force of 5.00 N in this same di-

rection. This same result can be obtained by adding the 4.00-N and

3.00-N forces vectorially according to the parallelogram method. Ex-

periments of this kind show conclusively that forces are vectors; they

have magnitude; they have direction; they add according to the paral-

lelogram law.

The result of experiments of this general type is often stated as fol-

lows: When several forces act on a body, each produces its own accel-

eration independently. The resulting acceleration is the vector sum of

the several independent accelerations.

In Section 5-3 we considered only the accelerations given to one par- 5-4
ticular object, the standard kilogram. We were able thereby to define MASS; NEWTON'S
forces quantitatively. What effect would these forces have on other SECOND LAW
objects!

1

Because our standard body was chosen arbitrarily in the first

place, we know that for any given object the acceleration will be di-

rectly proportional to the force applied. The significant question re-

maining then is: What effect will the same force have on different ob-

jects! Everyday experience gives us a qualitative answer. The same
force will produce different accelerations on different bodies. A base-

ball will be accelerated more by a given force than will an automobile.

In order to obtain a quantitative answer to this question we need a

method to measure mass, the property of a body which determines its

resistance to a change in its motion.

Let us attach a spring to our standard body (the standard kilogram, to

which we have arbitrarily assigned a mass m t)
= one kg, exactly) and

arrange to give it an acceleration a» of, say 2.00 m/s2
, using the method

of Fig. 5- lb. Let us measure carefully the extension Al of the spring

associated with the force that the spring is exerting on the block.

Now we remove the standard kilogram and substitute an arbitrary

body, whose mass we label m,. We apply the same force (the one that

accelerated the standard kilogram 2.00 m/s2
) to the arbitrary body (by

stretching the spring by the same amount) and we measure an accelera-

tion a i of, say, 0.50 m/s2
.

We define the ratio of the masses of the two bodies to be the inverse

ratio of the accelerations given to these bodies by the same force, or

mjm„ = ajai (same force F acting).

In this example we have, numerically,

m, = fflolaja,) = 1.00 kg ((2.00 m/s2 )/(0.50 m/s2
)]

= 4.00 kg.

The second body, which has only one-fourth the acceleration of the

first body when the same force acts on it, has, by definition, four times
the mass of the first body. Hence mass may be regarded as a quantita-

tive measure of inertia.

If we repeat the preceding experiment with a different common force

acting, we find the ratio of the accelerations, a»'la x

'

, to be the same as

in the previous experiment, or

mi/m„ = aja, = a () '/a,'.



The ratio of the masses of two bodies is thus independent of the com-
mon force used.

Furthermore, experiment shows that we can consistently assign

masses to any body by this procedure. For example, let us compare a

second arbitrary body with the standard body, and thus determine its

mass, say m2 . We can now compare the two arbitrary bodies, m> and m,,

directly, obtaining accelerations a>" and a" when the same force is

applied. The mass ratio, defined as usual from

m-z/mi = a"\a{
,

(same force acting)

turns out to have the same value that we obtain by using the masses m 2

and nil previously determined by direct comparison with the standard.

We can show, in still another experiment of this type, that if objects

of mass m, and m 2 are fastened together, they behave mechanically as

a single object of mass (mi + m>). In other words, masses add like (and

are) scalar quantities.

We can now summarize all the experiments and definitions de-

scribed above in one equation, the fundamental equation of classical

mechanics,

F = ma. (5-1)

In this equation F is the (vector) sum of all the forces acting on the body,

m is the mass of the body, and a is its (vector) acceleration. Equation

5-1 may be taken as a statement of Newton's second law. If we write it

in the form a = F/m, we can easily see that the acceleration of the body

is directly proportional to the resultant force acting on it and parallel in

direction to this force and that the acceleration, for a given force, is in-

versely proportional to the mass of the body.

Notice that the first law of motion is contained in the second law as

a special case, for if F = 0, then a = 0. In other words, if the resultant

force on a body is zero, the acceleration of the body is zero. Therefore in

the absence of applied forces a body will move with constant velocity

or be at rest (zero velocity), which is what the first law of motion says.

Therefore of Newton's three laws of motion only two are independent,

the second and the third (Section 5-5). The division of translational

particle dynamics that includes only systems for which the resultant

force F is zero is called statics.

Equation 5-1 is a vector equation. We can write this single vector

equation as three scalar equations,

F, = ma,, I,, = ma„, and F2 = ma Zl (5-2)

relating the x, y, and z components of the resultant force (F.,, F,„ and

Fz ) to the x, y, and z components of acceleration [a.,-, a,„ and a : ) for the

mass m. It should be emphasized that F, is the sum of the x-compo-

nents of all the forces, F„ is the sum of the y-components of all the

forces, and F, is the sum of the z-components of all the forces acting on

m.

Forces acting on a body originate in other bodies that make up its en- 5-5
. Lronment, Any single force is only one aspect of a mutual interaction NEWTON'S THIRD LAW
between two bodies. We find by experiment that when one body exerts OF MOTION
a force on a second body, the second body always exerts a force on the

first. Furthermore, we find that these forces are equal in magnitude but



opposite in direction. A single isolated force is therefore an impossi-

bility.

If one of the two forces involved in the interaction between two
bodies is called an "action" force, the other is called the "reaction"

force. Either force may be considered the "action" and the other the

"reaction." Cause and effect is not implied here, but a mutual simulta-

neous interaction is implied.

This property of forces was first stated by Newton in his third law of

motion: "To every action there is always opposed an equal reaction;

or, the mutual actions of two bodies upon each other are always equal,

and directed to contrary parts."

In other words, if body A exerts a force on body B, body B exerts an

equal but oppositely directed force on body A
;
and furthermore the

forces lie along the line joining the bodies. Notice that the action and

reaction forces, which always occur in pairs, act on different bodies. If

they were to act on the same body, we could never have accelerated

motion because the resultant force on every body would always be zero.

Imagine a boy kicking open a door. The force exerted by the boy B
on the door D accelerates the door (it flies open); at the same time, the

door D exerts an equal but opposite force on the boy B, which decel-

erates the boy (his foot loses forward velocity). The boy will be painfully

aware of the "reaction" force to his "action," particularly if his foot is

bare.

The following examples illustrate the application of the third law

and clarify its meaning.

Consider a man pulling horizontally on a rope attached to a block on a horizon-

tal table as in Fig. 5-2. The man pulls on the rope with a force FMR . The rope

exerts a reaction force FRM on the man. According to Newton's third law, FMR =
—
Frm. Also, the rope exerts a force FK „ on the block, and the block exerts a re-

action force FBR on the rope. Again according to the third law, F RB = —FBR .

Suppose that the rope has a mass m R . Then, in order to start the block and

rope moving from rest, we must have an acceleration, say a. The only forces

acting on the rope are FMR and FBR, so that the resultant force on it is FMR + F BR ,

and this must be different from zero if the rope is to accelerate. In fact, from the

EXAMPLE 1

(a)

vl_£* I,,

TOr r MR

Frm

<b-

m R

Fmr

-t>

*BR TO R
r MR

figure 5-2

Example 1. A man pulls on a rope

attached to a block, fa) The forces

exerted on the rope by the block and

by the man are equal and opposite.

Thus the resultant horizontal force

on the rope is zero, as is shown in

the free-body diagram. The rope

does not accelerate, (b) The force

exerted on the rope by the man
exceeds that exerted by the block.

The net horizontal force has

magnitude FMR — FBR and points to

the right. Thus the rope is

accelerated to the right. The block

is also acted upon by a frictional

force not shown here.



second law we have

F\ir + F BR — m Ra

Since the forces and the acceleration are along the same line, we can drop the

vector notation and write the relation between the magnitudes of the vectors,

namely

Fmr - Fkr = m Ra.

We see therefore that in general FMR does not have the same magnitude as F BK

(Fig. 5-2b). These two forces act on the same body and are not action and re-

action pairs.

According to Newton's third law the magnitude of F MI! always equals the

magnitude of FRM , and the magnitude of F RB always equals the magnitude of

FBR . However, only if the acceleration a of the system is zero will we have the

pair of forces FMR and FRM equal in magnitude to the pa"ir of forces FRB and FBR

| Fig. 5-2a). In this special case only, we could imagine that the rope merely

transmits the force exerted by the man to the block without change. This same

result holds in principle if mR = 0. In practice, we never find a massless rope.

However, we can often neglect the mass of a rope, in which case the rope is

assumed to transmit a force unchanged. The force exerted at any point in the

rope is called the tension at that point. We may measure the tension at any

point in the rope by cutting a suitable length from it and inserting a spring

scale; the tension is the reading of the scale. The tension is the same at all

points in the rope only if the rope is unaccelerated or assumed to be massless.

Consider a spring attached to the ceiling and at the other end holding a block at

rest (Fig. 5-3a). Since no body is accelerating, all the forces on any body will add

vectorially to zero. For example, the forces on the suspended block are T, the

tension in the stretched spring, pulling vertically up on the mass, and W, the

pull of the earth acting vertically down on the body, called its weight. These are

drawn in Fig. 5-3t>, where we show only the block for clarity. There are no other

forces on the block.

In Newton's second law, F represents the sum of all the forces acting on a

body, so that for the block

F = T + W.

The block is at rest so that its acceleration is zero, or a = 0. Hence, from the

relation F = ma, we obtain T + W = 0, or

T = -W.

The forces act along the same line, so that their magnitudes are equal, or

T=W.

Therefore the tension in the spring is an exact measure of the weight of the

block. We shall use this result later in presenting a static procedure for measur-

ing forces.

It is instructive to examine the forces exerted on the spring; they are shown
in Fig. 5-3c. T' is the pull of the block on the spring and is the reaction force of

the action force T. T' therefore has the same magnitude as T, which is W. P is

the upward pull of the ceiling on the spring, and w is the weight of the spring,

that is, the pull of the earth on it. Since the spring is at rest and all forces act

along the same line, we have

EXAMPLE 2

or

P + T' + w = 0,

P = W + w.

titt'iire 5-3

Example 2. la) A block is suspended

by a spring, (b) A free- body

diagram showing all the vertical

forces exerted on the block, (c) A
similar diagram im the vertical

forces on the spring.

The ceiling therefore pulls up on the spring with ,i for< e whose magnitude is the

sum ot the weights <>t the block and spring.



From the third law of motion, the force exerted by the spring on the ceiling,

P', must be equal in magnitude to P, which is the reaction force to the action

force P'. P' therefore has a magnitude W + w.

In general, the spring exerts different forces on the bodies attached at its dif-

ferent ends, for P' # T. In the special case in which the weight of the spring is

negligible, w = and P' = W =T. Therefore a weightless spring (or cord) may be

considered to transmit a force from one end to the other without change.

It is instructive to classify all the forces in this problem according to action

and reaction pairs. The reaction to W, a force exerted by the earth on the block,

must be a force exerted by the block on the earth. Similarly, the reaction to w
is a force exerted by the spring on the earth. Because the earth is so massive, we
do not expect these forces to impart a noticeable acceleration to the earth.

Since the earth is not shown in our diagrams, these forces have not been shown.

The forces T and T' are action-reaction pairs, as are P and P'. Notice that al-

though T = —W in our problem, these forces are not an action-reaction pair be-

cause they act on the same body.

Unit force is defined as a force that causes a unit of acceleration when .»-(»

applied to a unit mass. In SI terms unit force is the force that will accel- SYSTEMS OF
erate a one-kg mass at one m/s2

;
we have seen that this unit is called the MECHANICAL UNITS

newton (abbreviation, N). In the cgs (centimeter, gram, second) system

unit force is the force that will accelerate a one-g mass at one cm/s2
;

this unit is called the dyne. Since 1 kg = 103 g and 1 m/s2 = 102 cm/s2
,

it follows that 1 N = 105 dynes.

In each of our systems of units we have chosen mass, length, and time

as our fundamental quantities. Standards were adopted for these funda-

mental quantities and units defined in terms of these standards. Force

appears as a derived quantity, determined from the relation F = ma.

In the BE (British engineering) system of units, however, force,

length, and time are chosen as the fundamental quantities and mass is

a derived quantity. In this system, mass is determined from the relation

m = F/a. The standard and unit of force in this system is the pound.

Actually, the pound of force was originally defined to be the pull of the

earth on a certain standard body at a certain place on the earth. We can

get this force in an operational way by hanging the standard body from

a spring at the particular point where the earth's pull on it is defined to

be one lb of force. If the body is at rest, the earth's pull on the body, its

weight W, is balanced by the tension in the spring. Therefore T = W =
one lb, in this instance. We can now use this spring (or any other one

thus calibrated) to exert a force of one lb on any other body; to do this

we simply attach the spring to another body and stretch it the same
amount as the pound force had stretched it. The standard body can be

compared to the kilogram and it is found to have the mass 0.45359237

kg. The acceleration due to gravity at the certain place on the earth is

found to be 32.1740 ft/s2 . The pound of force can therefore be defined

from F = ma as the force that accelerates a mass of 0.45359237 kg at

the rate of 32.1740 ft/s2 .

This procedure enables us to compare the pound-force with the new-
ton. Using the fact that 32.1740 ft/s2 equals 9.8066 m/s2

, we find that

1 lb = (0.45359237 kg)(32.1740 ft/s2
)

= (0.45359237 kg)(9.8066 m/s2
)

= 4.45 N.

The unit of mass in the British engineering system can now be de-

rived. It is defined as the mass of a body whose acceleration is 1 ft/s2



when the force on it is 1 lb; this mass is called the slug. Thus, in this

system

F[lb] =m [slugs] x a[ft/s2 ].

Legally the pound is a unit of mass but in engineering practice the pound is

treated as a unit of force or weight. This has given rise to the terms pound-mass

and pound-force. The pound-mass is a body of mass 0.45359237 kg; no standard

block of metal is preserved as the pound-mass, but, like the yard, it is defined in

terms of the SI standard. The pound-force is the force that gives a standard

pound an acceleration equal to the standard acceleration of gravity, 32. 1740 ft/s2 .

As we shall see later, the acceleration of gravity varies with distance from the

center of the earth, and this "standard acceleration" is, therefore, the value at a

particular distance from the center of the earth. (Any point at sea level and

45°N latitude is a good approximation.)

In this book only forces will be measured in pounds. Thus the cor-

responding unit of mass is the slug. The units of force, mass, and accel-

eration in the three systems are summarized in Table 5-2.

Table 5-2

Units in F = ma

Systems of Units Force Mass Acceleration

SI newton (N) kilogram (kg) m/s2

Cgs dyne gram (g) cm/s2

BE pound (lb) slug ft/s2

The dimensions of force are the same as those of mass times accel-

eration. In a system in which mass, length, and time are the funda-

mental qualities, the dimensions of force are, therefore, mass x length/

time2
, or MLT 2

. We shall arbitrarily adopt mass, length, and time as

our fundamental mechanical quantities.

The three laws of motion that we have described are only part of the

program of mechanics that we outlined in Section 5-1. It remains to

investigate the force laws, which are the procedures by which we cal-

culate the force acting on a given body in terms of the properties of the

body and its environment. Newton's second law

F = ma (5-3)

is essentially not a law of nature but a definition of force. We need to

identify various functions of the type:

F = a function of the properties of the particle

and of the environment (5-4)

so that we can, in effect, eliminate F between Eqs. 5-3 and 5-4, thus

obtaining an equation that will let us calculate the acceleration of a

particle in terms of the properties of the particle and its environment.

We sec here clearly that force is a concept that connects the accelera-

tion nt the particle on the one hand with the properties ol the particle

and its environment on the other. We indicated earlier that one critei ion

i"i de< taring the program of mechanics to he successful would he the

HT"7
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discovery that simple laws of the type of Eq. 5-4 do indeed exist. This

turns out to be the case, and this fact constitutes the essential reason

that we "believe" the laws of classical mechanics. If the force laws had

turned out to be very complicated, we would not be left with the feeling

that we had gained much insight into the workings of nature.

The number of possible environments for an accelerated particle is

so great that a detailed discussion of all the force laws is not feasible in

this chapter. We shall, however, indicate in Table 5-3 the force laws that

apply to the five particle-plus-environment situations of Table 5-1. At

appropriate places throughout the text we will discuss these and other

force laws in detail; several of the laws in Table 5-3 are approximations

or special cases.

Table 5-3

The force laws for the systems of table 5-1

System Force Law

1

.

A block propelled by [a) Spring force: F = —kx, where x is the extension of

a stretched spring the spring and k is a constant that describes the

over a rough hori- spring; F points to the right; see Chapter 15

zontal surface \b) Friction force: F= ping, where /u. is the coefficient

of friction and mg is the weight of the block; F

points to the left; see Chapter 6

2. A golf ball in flight F = mg ; F points down (see Section 5-8)

3. An artificial satellite F = GmM/r2
, where G is the gravitational con-

stant, M the mass of the earth, and r the orbit

radius; F points toward the center of the earth; see

Chapter 16. This is Newton's law of universal

gravitation

4. An electron near a F = [H4TTe„)eQlr2
, where e () is a constant, e is the

positively charged electron charge, Q is the charge on the sphere, and
sphere r is the distance from the electron to the center of

the sphere; F points to the right; see Chapter 26.

This is Coulomb's law of electrostatics

5. Two bar magnets F = \3ixJ2n)^2/ri , where fx„ is a constant, /x is the

magnetic dipole moment of each magnet, and r is

the center-to-center separation of the magnets;

we assume that r> I, where I is the length of each

magnet; F points to the right

The weight of a body is the gravitational force exerted on it by the earth. 5-8
Weight, being a force, is a vector quantity. The direction of this vector WEIGHT AND MASS
is the direction of the gravitational force, that is, toward the center of

the earth. The magnitude of the weight is expressed in force units, such

as pounds or newtons.

When a body of mass m is allowed to fall freely, its acceleration is

that of gravity g and the force acting on it is its weight W. Newton's
second law, F = ma, when applied to a freely falling body, gives us

W = mg. Both W and g are vectors directed toward the center of the

earth. We can therefore write

W = mg, (5-5)

where W and g are the magnitudes of the weight and acceleration

vectors. To keep an object from falling we have to exert on it an up-

ward force equal in magnitude to W, so as to make the net force zero. In

Fig. 5-3a the tension in the spring supplies this force.



We stated previously that g is found experimentally to have the same
value for all objects at the same place. From this it follows that the

ratio of the weights of two objects must be equal to the ratio of their

masses. Therefore a chemical balance, which actually is an instrument

for comparing two downward forces, can be used in practice to compare

masses. If a sample of salt in one pan of a balance is pulling down on that

pan with the same force as is a standard one gram-mass on the other pan,

we know* that the mass of salt is equal to one gram. We are likely to

say that the salt "weighs" one gram, although a gram is a unit of mass,

not weight. However, it is always important to distinguish carefully

between weight and mass.

We have seen that the weight of a body, the downward pull of the

earth on that body, is a vector quantity. The mass of a body is a scalar

quantity. The quantitative relation between weight and mass is given

by W = mg. Because g varies from point to point on the earth, W, the

weight of a body of mass m, is different in different localities. Thus, the

weight of a one kg-mass in a locality where g is 9.80 m/s2 is 9.80 N
;
in a

locality where g is 9.78 m/s2
, the same one kg-mass weighs 9.78 N. If

these weights were determined by measuring the amount of stretch

required in a spring to balance them, the difference in weight of the

same one kg-mass at the two different localities would be evident in

the slightly different stretch of the spring at these two localities. Hence,

unlike the mass of a body, which is an intrinsic property of the body,

the weight of a body depends on its location relative to the center of the

earth. Spring scales read differently, balances the same, at different

parts of the earth.

We shall generalize the concept of weight in Chapter 16 in which we
discuss universal gravitation. There we shall see that the weight of a

body is zero in regions of space where the gravitational effects are nil,

although the inertial effects, and hence the mass of the body, remain

unchanged from those on earth. In a space ship free from the influence

of gravity it is a simple matter to lift a large block of lead |W = 0), but

the astronaut would still stub his toe if he were to kick the block

[m * 0).

It takes the same force to accelerate a body in gravity-free space as it

does to accelerate it along a horizontal frictionless surface on earth, for

its mass is the same in each place. But it takes a greater force to hold the

body up against the pull of the earth on the earth's surface than it does

high up in space, for its weight is different in each place.

Often, instead of being given the mass, we are given the weight of a

body on which forces are exerted. The acceleration a produced by the

force F acting on a body whose weight has a magnitude W can be ob-

tained by combining Eq. 5-3 and Eq. 5-5. Thus from F = ma and W =
mg we obtain

m = Wig, so that F = (WVg)a. (5-6)

The quantity Wig plays the role of m in the equation F = ma and is,

in fact, the mass of a body whose weight has the magnitude W. For

example, a man whose weight is 160 lb at a point where g = 32.0 ft/s2

has a mass m = Wig = (160 lb)/|32.0 ft/s2 )
= 5.00 slugs. Notice that his

weight at another point where g = 32.2 ft/s2 is W = mg = (5.00 slugs)

(32.2 ft/s2
)
= 161 lb.

I Directions i<>r buoyancy, owin^ to the different volumes oi ah displaced by the salt

and the standard, must be made We dismss these in Chapter 17.



In Section 5-3 we defined force by measuring the acceleration imparted

to a standard body by pulling on it with a stretched spring. That may
be called a dynamic method for measuring force. Although convenient

for the purposes of definition, it is not a particularly practical procedure

for the measurement of forces. Another method for measuring forces is

based on measuring the change in shape or size of a body (a spring, say)

on which the force is applied when the body is unaccelerated. This may
be called the static method of measuring forces.

The idea of the static method is to use the fact that when a body,

under the action of several forces, has zero acceleration, the vector sum
of all the forces acting on the body must be zero. This is, of course, just

the content of the first law of motion. A single force acting on a body

would produce an acceleration; this acceleration can be made zero if we
apply another force to the body equal in magnitude but oppositely di-

rected. In practice we seek to keep the body at rest. If now we choose

some force as our unit force, we are in a position to measure forces. The
pull of the earth on a standard body at a particular point can be taken

as the unit force, for example.

The instrument most commonly used to measure forces in this way
is the spring balance. It consists of a coiled spring having a pointer at

one end that moves over a scale. A force exerted on the balance changes

the length of the spring. If a body weighing 1.00 N is hung from the

spring, the spring stretches until the pull of the spring on the body is

equal in magnitude but opposite in direction to its weight. A mark can

be made on the scale next to the pointer and labeled "1.00-N force."

Similarly, 2.00-N, 3.00-N, etc., weights may be hung from the spring

and corresponding marks can be made on the scale next to the pointer

in each case. In this way the spring is calibrated. We assume that the

force exerted on the spring is always the same when the pointer stands

at the same position. The calibrated balance can now be used to measure
any suitable unknown force, not merely the pull of the earth on some
body.

The third law is tacitly used in our static procedure because we as-

sume that the force exerted by the spring on the body is the same in

magnitude as the force exerted by the body on the spring. This latter

force is the force we wish to measure. The first law is used too, because

we assume F is zero when a is zero. It is worth noting again here that if

the acceleration were not zero, the body of weight W would not stretch

the spring to the same length as it did with a = 0. In fact, if the spring

and attached body of weight W were to fall freely under gravity so that

a = g, the spring would not stretch at all and its tension would be zero.

5-9
A STATIC PROCEDURE
FOR MEASURING
FORCES

It will be helpful to write down some procedures for solving problems

in classical mechanics and to illustrate them by several examples.

Newton's second law states that the vector sum of all the forces acting

on a body is equal to its mass times its acceleration. The first step in

problem solving is therefore: (1) Identify the body to whose motion the

problem refers. Lack of clarity on the point as to what has been or

should be picked as "the body" is a major source of mistakes. (2) Having
selected "the body," we next turn our attention to the objects in "the

environment" because these objects (inclined planes, springs, cords, the

earth, etc.) exert forces on the body. We must be clear as to the nature of

these forces. (3) The next step is to select a suitable (inertial) reference

frame. We should position the origin and orient the coordinate axes so

5-10
SOME APPLICATIONS
OF NEWTON'S LAWS
OF MOTION



as to simplify the task of our next step as much as possible. (4) We now
make a separate diagram of the body alone, showing the reference frame

and all of the forces acting on the body. This is called a free-body dia-

gram. (5) Finally we apply Newton's second law, in the form of Eq. 5-2,

to each component of force and acceleration.

The following examples illustrate the method of analysis used in

applying Newton's laws of motion. Each body is treated as if it were a

particle of definite mass, so that the forces acting on it may be assumed
to act at a point. Strings and pulleys are considered to have negligible

mass. Although some of the situations picked for analysis may seem
simple and artificial, they are the prototypes for many interesting real

situations; but, more important, the method of analysis — which is the

chief thing to understand— is applicable to all the modern and sophisti-

cated situations of classical mechanics, even sending a spaceship to

Mars.

Fig. 5-4a shows a weight W hung by strings. Consider the knot at the junc- EXAJWPLE 3
tion of the three strings to be "the body." The body remains at rest under the

action of the three forces shown in Fig. 5-4t>. Suppose we are given the magni-

tude of one of these forces. How can we find the magnitude of the other forces •"

figure 5-4

Example 3. (a) A weight is

suspended by strings, (b) A
free-body diagram showing all the

forces acting on the knot. The
strings are assumed to be

weightless.

F i, F/( , and F r are all the forces acting on the body. Since the body is unaccel-

erated (actually at rest), TA + FB + Fc = 0. Choosing the x- and y-axes as shown,

we can write this vector equation as three scalar equations:

/ i* + FBx = 0,

/ l« + FB„ + Fcy = l

using Eq. 5-2. The third scalar equation for the z-axis is simply

Fiz = Fbz = Fc, = 0.

That is, the vectors all lie in the x-y plane so that they have no z-components.

From the figure we see that

/ ,, / , cos 30° = -0.866i%

FAu = Fa sin30° = 0.500F,,,

and

Also,

FBx = F„ cos 45° = 0.707F,,,

FBu = Fb sin45° = 0.707F„.

Fcu = -Fc = -W,

because the string ( merely serves to transmit the force on one end to the junc-

tion .n its othei end. Substituting these results into oui original equations we
obtain



-0.866F. 4 + 0.707F,, = 0,

0.500F,, + 0.707F,, - W = 0.

If we are given the magnitude of any one of these three forces, we can solve

these equations for the other two. For example, if W = 100 N, we obtain Fa =
73.3 N and F„ = 89.6 N.

We wish to analyze the motion of a block on a smooth incline.

[a) Static case. Figure 5-5a shows a block of mass m kept at rest on a smooth

plane, inclined at an angle with the horizontal, by means of a string attached

to the vertical wall. The forces acting on the block are shown in Fig. 5-5b. F, is

the force exerted on the block by the string; mg is the force exerted on the block

by the earth, that is, its weight; and F 2 is the force exerted on the block by the

inclined surface. ¥>, called the normal force, is normal to the surface of contact

because there is no frictional force between the surfaces.* If there were a fric-

tional force, F 2 would have a component parallel to the incline. Because we wish

to analyze the motion of the block, we choose ALL the forces acting ON the

block. You will note that the block will exert forces on other bodies in its en-

vironment (the string, the earth, the surface of the incline) in accordance with

the action-reaction principle; these forces, however, are not needed to deter-

mine the motion of the block because they do not act on the block.

Suppose and m are given. How do we find F t and FL>? Since the block is un-

accelerated, we obtain

F, + F2 + mg = 0.

It is convenient to choose the x-axis of our reference frame to be along the in-

cline and the y-axis to be normal to the incline (Fig. 5-5i>). With this choice of

coordinates, only one force, mg, must be resolved into components in solving

the problem. The two scalar equations obtained by resolving mg along the x-

and y-axes are

EXAMPLE 4

Ft — mg sin = 0, and F> — mg cos = 0,

from which Fi and F2 can be obtained if and m are given.

\b) Dynamic case. Now suppose that we cut the string. Then the force Fi, the

pull of the string on the block, will be removed. The resultant force on the block

will no longer be zero, and the block will accelerate. What is its acceleration?

From Eq. 5-2 we have Fj- = ma., and F,, = ma,,. Using these relations we obtain

F> — mg cos = ma,i = 0,

and —mg sin = ma.,,

which yield a„ = 0, a.,- = —g sin 0.

The acceleration is directed down the incline with a magnitude of g sin 0.

figure 5-5

Example 4. (a) A block is held on a

smooth inclined plane by a string.

(b) A free-body diagram showing all

the forces acting on the block.

figure 5-6

Example 5. A block is being pulled

along a smooth table. The forces

acting on the block are shown.

Consider a block of massm pulled along a smooth horizontal surface by a hori-

zontal force P, as shown in Fig. 5-6. F v is the normal force exerted on the block

by the frictionless surface and W is the weight of the block.

{a) If the block has a mass of 2.0 kg, what is the normal force?

From the second law of motion with a,, = 0, we obtain

Fi, = ma,, or FA — W = 0.

Hence, F, = W = mg = (2.0 kg)(9.8 m/s2
)
= 20 N.

* The normal force is an example of a constraining force, one which limits the freedom

of movement a body might otherwise have. It is an elastic force arising from small de-

formations of the bodies in contact, which are never perfectly rigid as we often tacitly

assume.

EXAMPLE 5



\b) What force P is required to give the block a horizontal velocity of 4.0

m/s in 2.0 s starting from rest-
1

The acceleration a s follows from

vx — Vj-o 4.0 m/s —
flj = 2.0 m/s2

.

t 2.0 s

From the second law, Fx = max or P = max . The force P is then

P = max = (2.0 kg)(2.0 m/s2
)
= 4.0 N.

Figure 5-7a shows a block of mass mi on a smooth horizontal surface pulled by

a massless string which is attached to a block of mass m> hanging over a pulley.

We assume that the pulley has no mass and is frictionless and that it merely

serves to change the direction of the tension in the string at that point. The
magnitude of the tension is the same throughout a massless string isee Example

2). Find the acceleration of the system and the tension in the string.

Suppose we choose the block of mass mi as the body whose motion we in-

vestigate. The forces on this block, taken to be a particle, are shown in Fig.

5-7b. T, the tension in the string, pulls on the block to the right; mig is the

downward pull of the earth on the block and F v is the vertical force exerted on

the block by the smooth table. The block will accelerate in the x-direction only,

so that a\y = 0. We, therefore, can write

and

FN - mig = = mtfiy,

T = midu:

15-7)

From these equations we conclude that F.\ = mig. We do not know T, so we can-

not solve for a,.,.

To determine T we must consider the motion of the block m-i. The forces

acting on m 2 are shown in Fig. 5-7c. Because the string and block are accelerat-

ing, we cannot conclude that T equals m>g. In fact, if T were to equal m 2g, the

resultant force on m 2 would be zero, a condition holding only if the system is

not accelerated.

The equation of motion for the suspended block is

m>g — T= m-,a-.2y. 15-8)

The direction of the tension in the string changes at the pulley and, because the

string has a fixed length, it is clear that

a-.„ = a.

so that we can represent the acceleration of the system as simply a. We then

obtain from Eqs. 5-7 and 5-8

and

These yield

n22g — T = m>a,

T= m x a.

uitg = {m, + m 2 )a,

15-9)

(5-10)

or

and

m->
g,

T=

m, + m

m^m-i

ni\ -+ in
" 15-11)

which gives us the acceleration of the system a and the tension in the string 7".

Notice that the tension in the string is always less than 777.^. This is clear

from Eq. 5-11, which can be written

in,
T =

EXAMPLE 6

V m28

figure 5-7

Example 6. (a) Two masses are

connected by a string; mi lies on a

smooth table, m> hangs freely, (b) A
free-body diagram showing all the

forces acting on mi. (c) A similar

diagram for m>.

m, + m-j



Notice also that a is always less than g, the acceleration due to gravity. Only

when mi equals zero, which means that there is no block at all on the table, do

we obtain a = g (from Eq. 5-10). In this case T = (from Eq. 5-9).

We can interpret Eq. 5-10 in a simple way. The net unbalanced force on the

system of mass m,+m 2 is represented by m>g. Hence, from F = ma, we obtain

Eq. 5-10 directly.

To make the example specific, suppose mi =2.0 kg and m-> = 1.0 kg. Then

m 2

a =
m,

and

T-
m lm->

m.\ + m 2

m-i

= (*)

g = ig = 3.3 m/s2
,

.8) kg m/s2 = 6.5 N.

Consider two unequal masses connected by a string which passes over a fric-

tionless and massless pulley, as shown in Fig. 5-8<a. Let m 2 be greater than mi.

Find the tension in the string and the acceleration of the masses.

We consider an upward acceleration positive. If the acceleration of mi is a,

the acceleration of m> must be —a. The forces acting on mi and on m 2 are shown
in Fig. 5-8fc> in which T represents the tension in the string.

The equation of motion for m, is

T — m xg = m,a
and for m 2 is

T — m-ig = —m 2a.

Combining these equations, we obtain

a =
m 2 m,

m 2 m,
(5-12)

and

2miffl 2

mi + m 2

For example, if m 2 = 2.0 slugs and mi = 1.0 slug,

a = (32/3.0) ft/s2 = g/3,

T= (|)(32) slug ft/s2 = 43 lb.

Notice that the magnitude of T is always intermediate between the weight of

the mass mi (32 lb in our example) and the weight of the mass m> (64 lb in our

example). This is to be expected, since T must exceed m }g to give mi an upward
acceleration, and m^ must exceed T to give m 2 a downward acceleration. In the

special case when m, = m 2 , we obtain a = and T = m,g = m 2g, which is the

static result to be expected.

Figure 5-8c shows the forces acting on the massless pulley. If we treat the

pulley as a particle, all the forces can be taken to act through its center. P is the

EXAMPLE 7

AT AT

VTO2g

figure 5-8

Example 7. (a) Two unequal masses

are suspended by a string from a

pulley (Atwood's machine), (b)

Free-body diagrams for mi and m 2 .

(c) Free-body diagram for the

pulley, assumed massless.



upward pull of the support on the pulley and T is the downward pull of each

segment of the string on the pulley. Since the pulley has no translational mo-

tion,

P = T + T = IT.

If we were to drop our assumption of a massless pulley and assign a mass m
to it, we would then be required to include a downward force mg on the sup-

port. Also, as we shall see later, the rotational motion of the pulley results in a

different tension in each segment of the string. Friction in the bearings also

affects the rotational motion of the pulley and the tension in the strings.

Consider an elevator moving vertically with an acceleration a. We wish to find

the force exerted by a passenger on the floor of the elevator.

Acceleration will be taken positive upward and negative downward. Thus
positive acceleration in this case means that the elevator is either moving up-

ward with increasing speed or is moving downward with decreasing speed.

Negative acceleration means that the elevator is moving upward with de-

creasing speed or downward with increasing speed.

From Newton's third law the force exerted by the passenger on the floor will

always be equal in magnitude but opposite in direction to the force exerted by

the floor on the passenger. We can therefore calculate either the action force or

the reaction force. When the forces acting on the passenger are used, we solve

for the latter force. When the forces acting on the floor are used, we solve for

the former force.

The situation is shown in Fig. 5-9: The passenger's true weight is W and the

force exerted on him by the floor, called P, is his apparent weight in the accel-

erating elevator. The resultant force acting on him is P + W. Forces will be taken

as positive when directed upward. From the second law of motion we have

EXAMPLE 8

or

F = ma,

P-W = ma, 15-13)

where m is the mass of the passenger and a is his (and the elevator's) accelera-

tion.

Suppose, for example, that the passenger weighs 160 lb and the acceleration

is 2.0 ft/s2 upward. We have

_ W _ 160 lbm ~~
g
~ 32 ft/s2

= 5.0 slugs,

and from Eq. 5-13,

or

P - 160 lb = (5.0 slugs)|2.0 ft/s2
)

P = apparent weight = 170 lb.

If we were to measure this force directly by having the passenger stand on a

spring scale fixed to the elevator floor (or suspended from the ceiling), we
would find the scale reading to be 170 lb for a man whose weight is 160 lb. The
passenger feels himself pressing down on the floor with greater force (the floor

is pressing upward on him with greater force) than when he and the elevator are

at rest. Everyone experiences this feeling when an elevator starts upward from

rest.

If the acceleration were taken as 2.0 ft/s2 downward, then a = —2.0 ft/s- and

P = 150 lb for the passenger. The passenger who weighs 160 lb feels himself

pressing down on the floor with less force than when he and the elevator are at

rest

If the elevator cable were to break and the elevatoi u ere to t.ill freely with an

acceleration!; then P would equal M W/g)[—g) = 0. Then the passenger

andflooi would exert no forces on each other. The passengn 's apparent weight

.is indicated by the spring scale on the floor, would he zero. Such a situation is

A

Passenger

W
V

(o) (b)

figure 5-9

Example 8. (a) A passenger stands

on the floor of an elevatoi. lb) A
free-body diagram for the passenger.



popularly referred to as "weightlessness." The passenger's weight (the pull of

gravity on him) has not changed, of course, but the force he exerts on the floor

and the reaction force of the floor on him are zero.

1. What is your mass in slugs? Your weight in newtons?

2. Why do you fall forward when a moving train decelerates to a stop and fall

backward when a train accelerates from rest? What would happen if the

train rounded a curve at constant speed?

3. A block of mass m is supported by a cord C from the ceiling, and another

cord D is attached to the bottom of the block (Fig. 5-10). Explain this: If you

give a sudden jerk to D, it will break, but if you pull on D steadily, C will

break.

4. A horse is urged to pull a wagon. The horse refuses to try, citing Newton's

third law as his defense: " 'The pull of the horse on the wagon is equal but

opposite to the pull of the wagon on the horse.' If I can never exert a greater

force on the wagon than it exerts on me, how can I ever start the wagon
moving?" asks the horse. How would you reply?

5. Comment on whether the following pairs of forces are examples of action-

reaction: [a) the earth attracts a brick; the brick attracts the earth; [b] a

propellered airplane pulls air in toward the plane; the air pushes the plane

forward; (c) a horse pulls forward on a cart, accelerating it; the cart pulls

backward on the horse
;
[d] a horse pulls forward on a cart without moving

it; the cart pulls back on the horse
;

(e) a horse pulls forward on a cart with-

out moving it; the earth exerts an equal and opposite force on the cart.

6. Criticize the statement, often made, that the mass of a body is a measure of

the "quantity of matter" in it.

7. Using force, length, and time as fundamental quantities, what are the di-

mensions of mass?

8. Is the definition of mass that we have given limited to objects initially at

rest?

9. Comment on the following statements about mass and weight taken from

examination papers, [a] Mass and weight are the same physical quantities

expressed in different units; [b] mass is a property of one object alone

whereas weight results from the interaction of two objects; (c) the weight

of an object is proportional to its mass
;

[d] the mass of a body varies with

changes in its local weight.

10. A horizontal force acts on a mass which is free to move. Can it produce an

acceleration if the force is less than the weight of that mass?

11. Does the acceleration of a freely falling body depend upon the weight of

the body?

12. A bird alights on a stretched telegraph wire. Does this change the tension in

the wire? If so, by an amount less than, equal to, or greater than the weight

of the bird?

13. In Fig. 5-11, we show four forces which are about equal in magnitude. What
combination of three forces, acting together on the same body, might keep

that body in translational equilibrium?

14. Why do raindrops fall with constant speed during the later stages of their

descent?

15. In a tug of war, three men pull on a rope to the left at A and three men pull

to the right at B with forces of equal magnitude. Now a weight of 5.0 lb is

hung vertically from the center of the rope, (a) Can the men get the rope

AB to be horizontal? [b] If not, explain. If so, determine the magnitude of

the forces required at A and B to do this.

16. Both the following statements are true; explain them. Two teams having a

tug of war must always pull equally hard on one another. The team that

pushes harder against the ground wins.

questions
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17. A massless rope is strung over a frictionless pulley. A monkey holds onto

one end of the rope and a mirror, having the same weight as the monkey,
is attached to the other end of the rope at the monkey's level. Can the

monkey get away from his image seen in the mirror \a) by climbing up the

rope, (£>) by climbing down the rope, (c) by releasing the rope?

18. Two objects of equal mass rest on opposite pans of a trip scale. Does the

scale remain balanced when it is accelerated up or down in an elevator :

19. You stand on the large platform of a spring scale and note your weight. You
then take a step on this platform and notice that the scale reads less than

your weight at the beginning of the step and more than your weight at the

end of the step. Explain.

20. A weight is hung by a cord from the ceiling of an elevator. From the fol-

lowing conditions, choose the one in which the tension in the cord will be

greatest . . . least? {a) elevator at rest; [b] elevator rising with uniform speed;

(c) elevator descending with decreasing speed; \d) elevator descending with

increasing speed.

21. A woman stands on a spring scale in an elevator. In which case below will

the scale record the minimum reading . . . the maximum reading? [a) ele-

vator stationary; [b] elevator cable breaks, free fall; (c) elevator accelerating

upward; \d) elevator accelerating downward; (e) elevator moving at constant

velocity.

22. Under what circumstances would your weight be zero? Does your answer

depend on the choice of a reference system?

SECTION 5-4

1. Two blocks, mass m, and m>, are connected by a light spring on a horizontal

frictionless table. Find the ratio of their accelerations a x and a> after they

pulled apart and then released. Answer: aja* = m 2/mi.

SECTION 5-5

2. [a] Two 10-lb weights are attached to a spring scale as shown in Fig. 5- 12(a).

What is the reading of the scale? \b) A single 10-lb weight is attached to a

spring scale which itself is attached to a wall, as shown in Fig. 5T2(b). What
is the reading of the scale?

3. Two blocks are in contact on a frictionless table. A horizontal force is ap-

plied to one block, as shown in Fig. 5-13. [a] If m, = 2.0 kg, m 2 = 1.0 kg, and

F = 3.0 N, find the force of contact between the two blocks. \b) Show that if

the same force F is applied to m 2 rather than torn,, the force of contact be-

tween the blocks is 2.0 N, which is not the same value derived in [a]. Ex-

plain. Answer: [a] 1.0 N.

SECTION 5-8

4. A space traveler whose mass is 75 kg leaves the earth. Compute his weight

(a) on the earth, [b] on Mars, where g = 3.8 m/s2
, and (c) in interplanetary

space, [d] What is his mass at each of these locations?

SECTION 5-10

5. A car moving initially at a speed of 50 mi/h (80 km/h) and weighing 3000 lb

(13,000 N) is brought to a stop in a distance of 200 ft (61 m). Find {a) the

braking force, and (b) the time required to stop. Assuming the same brak-

ing force, find (c) the distance, and (d) the time required to stop if the car

was going 25 mi/h (40 km/h) initially.

Answer: [a] 1300 lb (5400 N). (b) 5.5 s (5.5 s). (c) 50 ft (15 m). \d) 1.1 s (2.7 s).

6. A body of mass m is acted on by two forces F, and Fa, as shown in Fig. 5-14.

It in 5.0 kg, Ft = 3.0 N, and F> = 4.0 N, find the vector acceleration of the

body.

7. An electron is projected horizontally at a speed of 1.2 x 107 m/s into an

problems

Spring scale

O
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<Z #

10 lb

figure 5-12(a)
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i

10 lb

figure .">- 12(b)

Problem 2[b)



electric field which exerts a constant vertical force of 4.5 x 10~ 16 N on it.

The mass of the electron is 9.1 x 10~ 31 kg. Determine the vertical distance

the electron is deflected during the time it has moved forward 3.0 cm hori-

zontally. Answer: 1.5 mm.
8. A body of mass 2.0 slugs is acted on by the downward force of gravity and

a horizontal force of 130 lb. Find {a) its acceleration and [b] its velocity as

functions of time, assuming it starts from rest.

9. An electron travels in a straight line from the cathode of a vacuum tube to

its anode, which is exactly 1.0 cm away. It starts with zero speed and

reaches the anode with a speed of 6.0 x 106 m/s. [a] Assume constant accel-

eration and compute the force on the electron. Take the electron's mass to

be 9.1 x 10" 31 kg. This force is electrical in origin, [b] Compare it with the

gravitational force on the electron, which we neglected when we assumed
straight line motion. Answer: [a] 1.6 x 10" 15 N. {b) 8.9 x 10 30 N.

10. A man of mass 80 kg (weight mg =176 lb) jumps down to a concrete patio

from a window ledge only 0.50 m (1.6 ft) above the ground. He neglects to

bend his knees on landing, so that his motion is arrested in a distance of

about 2.0 cm (0.79 in), {a) What is the average acceleration of the man from

the time his feet first touch the patio to the time he is brought fully to rest?

[b] With what average force does this jump jar his bone structure?

11. Let the only forces acting on two bodies be their mutual interactions. If

both bodies start from rest, show that the distances traveled by each are

inversely proportional to the respective masses of the bodies.

12. Determine the frictional force of the air on a body of mass 0.25 kg falling

with an acceleration of 9.2 m/s2
.

13. A charged sphere of mass 3.0 x 10 4 kg is suspended from a string. An elec-

tric force acts horizontally on the sphere so that the string makes an

angle of 37° with the vertical when at rest. Find [a) the magnitude of the

electric force and [b] the tension in the string.

Answer: {a) 2.2 x 10 3 N. [b) 3.7 x 10~ 3 N.

14. A block of mass M is pulled along a horizontal frictionless surface by a

rope of mass m, as shown in Fig. 5-15. A horizontal force P is applied to

one end of the rope, [a] Show that the rope must sag, even if only by an

imperceptible amount. Then, assuming that the sag is negligible, find [b]

the acceleration of rope and block, (c) the force that the rope exerts on the

block M, and [d) the tension in the rope at its midpoint.

figure 5-13
Problem 3
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16.

17.

Three blocks are connected, as shown in Fig. 5-16, on a horizontal fric-

tionless table and pulled to the right with a force T:i
= 60 N. If mi = 10 kg,

m> = 20 kg, and m :i
= 30 kg, find the tensions T, and T2 . Draw an analogy to

bodies being pulled in tandem, such as an engine pulling a train of coupled

cars. Answer: Ti = 10 N, T-> = 30 N.

A rocket and its payload have a total mass of 50,000 kg (weight mg =
110,250 lb). How large is the thrust of the rocket engine when [a] the

rocket is "hovering" over the launch pad, just after ignition, and [b) when
the rocket is accelerating upward at 20 m/s2 (66 ft/s2 )?

How could a 100-lb object be lowered from a roof using a cord with a break-

ing strength of 87 lb without breaking the cord?

Answer: Lower object with an acceleration s» 4.2 ft/s2 .
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L8. A block is released from rest at the top of a frictionless inclined plane 16 m
long. It reaches the bottom 4.0 s later. A second block is projected up the

plane from the bottom at the instant the first block is released in such a

way that it returns to the bottom simultaneously with the first block, [a)

Find the acceleration of each block on the incline, [b] What is the initial

velocity of the second block? (c) How far up the incline does it travel- \d)

What angle does the plane make with the horizontal?

19. A block of mass m, = 3.0 slugs on a smooth inclined plane of angle 30° is

connected by a cord over a small frictionless pulley to a second block of

mass m> = 2.0 slugs hanging vertically (Fig. 5-17). [a] What is the accelera-

tion of each body? [b\ What is the tension in the cord?

Answer: [a] 3.2 ft/s2 . \b) 58 lb.

A block is projected up a frictionless inclined plane with a speed v . The
angle of incline is d. [a] How far up the plane does it go? [b] How long does

it take to get there? (c) What is its speed when it gets back to the bottom?

Find numerical answers for 6 = 30° and v = 8.0 ft/s.

An elevator weighing 6000 lb is pulled upward by a cable with an accelera-

tion of 4.0 ft/s2
. [a] What is the tension in the cable? \b) What is the tension

when the elevator is accelerating downward at 4.0 ft/s2 , but is still moving
upward? Answer: [a) 6800 lb. [b) 5300 lb.

22. A lamp hangs vertically from a cord in a descending elevator. The elevator

has a deceleration of 8.0 ft/s2 [2.4 m/s2
) before coming to a stop, [a] If the

tension in the cord is 20 lb (89 N), what is the mass of the lamp? \b) What is

the tension in the cord when the elevator ascends with an acceleration of

8.0 ft/s2 (2.4 m/s2
)?

23. An 80-kg man is parachuting and experiencing a downward acceleration of

2.5 m/s2
. The mass of the parachute is 5.0 kg. [a] What is the value of the

upward force exerted on the parachute by the air? [b] What is the value of

the downward force exerted by the man on the parachute!
1

Answer: [a] 620 N. \b) 580 N.

24. A research balloon of total mass M is descending vertically with downward
acceleration a. How much ballast must be thrown from the car to give the

balloon an upward acceleration a?

25. An elevator consists of the elevator cage [A), the counterweight [B], the

driving mechanism (CI, and the cable and pulleys as shown in Fig. 5-18. The
mass of the cage is 1 100 kg and the mass of the counterweight is 1000 kg.

Neglect friction and the mass of the cable and pulleys. The elevator accel-

erates upward at 2.0 m/s2 and the counterweight accelerates downward at

the same rate, [a] What is the value of the tension 7\? [b] TL>? (c) What force

is exerted on the cable by the driving mechanism?
Answer: [a) 1 .3 x 104 N. [b] 0.78 x 10" N. (c) 5.2 x 103 N, toward the counter-

weight.

26. A 100-kg man lowers himself to the ground from a height of 10 m by means
of a rope passed over a frictionless pulley and attached to a 70-kg sandbag.

[a] With what speed does the man hit the ground? \b) Is there anything he

could do to reduce the speed with which he hits the ground'

27. Someone exerts a force F directly up on the axle of the pulley shown in Fig.

5-19. Consider the pulley and string to be massless and the bearing friction

less. Two bodies, m, of mass 1.0 kg and m* of mass 2.0 kg, are attached, as

shown, to the opposite ends of the string which passes over the pulley.

The body m. is in contact with the horizontal floor, [a] Draw a free body

diagram for the pulley and for each of the masses. \b\ What is the largest

value the force F may have so that m< will remain at rest on the floor? (c)

What is the tension in the string if the upward force F is 100 N? [d] With

the tension determined 111 part c), what is the acceleration ol I23i?

Answer: \b\ 39 N. |c) 50 N. [d\ 40 m/s2
, upward.

28. a 10-kg monkey is climbing a massless rope attached to a 15 kgmassovei
a (frictionless" tree limb a\ I xplain quantitatively liou the monkey can

figure 5-17

Problem 19
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29.

30.

31.

climb up the rope so that he can raise the 15-kg mass off the ground. If,

after the mass has been raised off the ground, the monkey stops climbing

and holds on to the rope, what will now be (b) his acceleration and (c) the

tension in the rope?

A plumb bob hanging from the ceiling of a railroad car acts as an accelerom-

eter. [a] Derive the general expression relating the horizontal acceleration

a of the car to the angle made by the bob with the vertical, [b] Find a

when = 20°. |c) Find when a = 5.0 ft/s2
.

Answer: [a] a = g tan 0. [b) 12 ft/s2 . (c) 8.9°.

A uniform flexible chain of length I, with weight per unit length A, passes

over a small, frictionless, massless pulley. It is released from a rest position

with a length of chain x hanging from one side and a length 1 — x from the

other side. Find the acceleration a as a function of x.

Two particles, each of mass m, are connected by a light string of length 21,

as shown in Fig. 5-20. A continuous force F is applied at the midpoint of the

string (x = 0) at right angles to the initial position of the string. Show that

the acceleration of m in the direction at right angles to F is given by

F x

2m V/2 _ X2

in which x is the perpendicular distance of one of the particles from the

line of action of F. Discuss the situation when x — 1.

32. A chain consisting of five links, each of mass 0.10 kg, is lifted vertically

with a constant acceleration of 2.5 m/s2
, as shown in Fig. 5-21. Find [a] the

forces acting between adjacent links, [b] the force F exerted on the top link

by the agent lifting the chain, and (c) the net force acting on each link.

33. Terminal velocity. The resistance of the air to the motion of bodies in free

fall depends on many factors, such as the size of the body and its shape, the

density and temperature of the air, and the velocity of the body through the

air. A useful assumption, only approximately true, is that the resisting force

in is proportional to the velocity and oppositely directed; that is, in = — kv,

where k is a constant whose value in any particular case is determined by

factors other than velocity.

Consider free fall of an object from rest through the air.

[a] Show that Newton's second law gives

, dy d2y
or mg -A- = m—

•

mg — kv = ma

[b) Show that the body ceases to accelerate when it reaches a velocity

vr = mg/k, called the terminal velocity.

[c) Prove, by substituting it in the equation of motion of part [a), that the

velocity varies with time as

v = vr[l - e -'"")

and plot v versus f.

[d) Sketch qualitatively curves of y versus t and a versus t for this mo-
tion, noting that the initial acceleration is g and the final acceleration is

zero.

34. A right triangular wedge of mass M and angle 0, supporting a cubical block

of mass m on its side, rests on a horizontal table, as shown in Fig. 5-22. [a)

What horizontal acceleration a must M have relative to the table to keep m
stationary relative to the wedge, assuming frictionless contacts? [b] What
horizontal force F must be applied to the system to achieve this result,

assuming a frictionless table top? (c) Suppose no force is supplied to M and

both surfaces are frictionless. Describe the resulting motion.

35. A block, mass m, slides down a frictionless incline making an angle with

an elevator floor. Find its acceleration relative to the incline in the follow-

ing cases, [a] Elevator descends at constant speed v. [b] Elevator ascends at

constant speed v. [c] Elevator descends with acceleration a. \d) Elevator
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f descends with deceleration a. \e) Elevator cable breaks. [/) In part |c) above,
what is the force exerted on the block by the incline?

Answer: [a) g sin 6 down the incline. \b) g sin 8 down the incline, (c) [g - a)

sin 6 down the incline, [d] [g + a) sin 6 down the incline. \e) Zero.

§ [f)m[g-a) cos 9.

I
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6
particle

dynamics—II
In Chapter 5 we considered particle dynamics for bodies subject to a

force that was constant in both magnitude and direction. The forces that

we dealt with were exerted by the earth or by taut cords, that is, they

were either gravitational or elastic. In this chapter we consider another

kind of force, that resulting from friction.

We shall also discuss the dynamics of uniform circular motion, in

which the force, although constant in magnitude, changes in direction

with time. In Chapter 10 we shall consider problems in which the force,

although constant in direction, changes in magnitude with time, as

when one body exerts a transient force on another during a collision.

Finally, in Chapter 15, we shall consider problems in which the force

changes in both magnitude and direction with time, such as the force

exerted by a spring on an oscillating mass suspended from it.

6-1
INTRODUCTION

If we project a block of mass m with initial velocity v along a long

horizontal table, it eventually comes to rest. This means that, while it

is moving, it experiences an average acceleration a that points in the

direction opposite to its motion. If (in an inertial frame) we see that a

body is being accelerated, we always associate a force, defined from
Newton's second law, with the motion. In this case we declare that the

table exerts a force of friction, whose average value is ma, on the sliding

block.

Actually, whenever the surface of one body slides over that of an-

*See "The Friction of Solids" by E. H. Freitag, in Contemporary Physics, Vol. 2, 1961,

p. 198, for a good general reference; see also the article "Friction" in Britannica 3.

6-2
FRICTIONAL FORCES

97



other, each body exerts a frictional force on the other. The frictional

force on each body is in a direction opposite to its motion relative to

the other body. Frictional forces automatically oppose the motion and

never aid it. Even when there is no relative motion, frictional forces

may exist between surfaces.

Although we have ignored its effects up to now, friction is very im-

portant in our daily lives. Left to act alone it brings every rotating shaft

to a halt. In an automobile, about 209c of the engine power is used to

counteract frictional forces. Friction causes wear and seizing of moving
parts and many engineering man-hours are devoted to reducing it. On
the other hand, without friction we could not walk; we could not hold

a pencil and if we could it would not write; wheeled transport as we
know it would not be possible.

We want to know how to express frictional forces in terms of the

properties of the body and its environment; that is, we want to know
the force law for frictional forces. In what follows we consider the

sliding (not rolling) of one dry (unlubricated) surface over another. As
we shall see later, friction, viewed at the microscopic level, is a very

complicated phenomenon* and the force laws for dry, sliding friction

are empirical in character and approximate in their predictions. They
do not have the elegant simplicity and accuracy that we find for the

gravitational force law (Chapter 16) or for the electrostatic force law

[Chapter 26). It is remarkable, however, considering the enormous
diversity of surfaces one encounters, that many aspects of frictional be-

havior can be understood qualitatively on the basis of a few simple

mechanisms.

Consider a block at rest on a horizontal table as in Fig. 6-1. Attach a

spring to it to measure the force required to set the block in motion. We
find that the block will not move even though we apply a small force.

We say that our applied force is balanced by an opposite frictional force

exerted on the block by the table, acting along the surface of contact.

As we increase the applied force we find some definite force at which
the block just begins to move. Once motion has started, this same force

produces accelerated motion. By reducing the force once motion has

started, we find that it is possible to keep the block in uniform motion
without acceleration; this force may be small, but it is never zero.

The frictional forces acting between surfaces at rest with respect to

each other are called forces of static friction. The maximum force of

static friction will be the same as the smallest force necessary to start

motion. Once motion is started, the frictional forces acting between
the surfaces usually decrease so that a smaller force is necessary to

maintain uniform motion. The forces acting between surfaces in rela-

tive motion are called forces of kinetic friction.

The maximum force of static friction between any pair of dry un-

lubricated surfaces follows these two empirical laws. (1) It is approxi-

mately independent of the area of contact, over wide limits and (2) it is

proportional to the normal force. The normal force, sometimes called

the loading force, is the one which either body exerts on the other at

right angles to their mutual interface. It arises from the elastic deforma-

tion of the bodies in contact, such bodies never really being entirely

rigid. For a block resting on a horizontal table or sliding along it, the

normal force is equal in magnitude to the weight of the block. Because

tor example, "Stick and Slip" by Ernest Rabinowicz, in Sdentifii American M.i\

1956.
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figure 6-1

A block being put into motion as

applied force F overcomes frictional

forces. In the first four drawings the

applied force is gradually increased

from zero to magnitude mN. No
motion occurs until this point

because the frictional force always

just balances the applied force. The
instant F becomes greater than

(itN, the block goes into motion as

is shown in the fifth drawing. In

general, ^N < fi xN; this leaves an

unbalanced force to the left and the

block accelerates In the last

drawing Fhas been reduced to

equal /ui.N. The net force is /em
and the block continues with

constant veloc it)



the block has no vertical acceleration, the table must be exerting a force

on the block that is directed upward and is equal in magnitude to the

downward pull of the earth on the block, that is, equal to the block's

weight.

The ratio of the magnitude of the maximum force of static friction to

the magnitude of the normal force is called the coefficient of static

friction for the surfaces involved. If fs represents the magnitude of the

force of static friction, we can write

/. * fisN, (6-1]

where /jls is the coefficient of static friction and N is the magnitude of

the normal force. The equality sign holds only when fs has its maximum
value.

The force of kinetic friction fu between dry, unlubricated surfaces

follows the same two laws as those of static friction.
( 1 ) It is approxi-

mately independent of the area of contact over wide limits and (2) it is

proportional to the normal force. The force of kinetic friction is also

reasonably independent of the relative speed with which the surfaces

move over each other.

The two laws of friction above were first discovered experimentally by Leonardo

da Vinci (1452-1519). Leonardo's statement of the two laws was remarkable,

coming as it did about two centuries before the concept of force was developed

by Newton. Leonardo's formulation was: (1) "Friction made by the same weight

will be of equal resistance at the beginning of the movement though the con-

tact may be of different breadths or lengths" and (2) "Friction produces double

the amount of effort if the weight be doubled." The French scientist, Charles A.

Coulomb, (1736-1806) did many experiments on friction and pointed out the

difference between static and kinetic friction.

The ratio of the magnitude of the force of kinetic friction to the mag-

nitude of this normal force is called the coefficient of kinetic friction.

If fk represents the magnitude of the force of kinetic friction,

fk = fikN, 16-2)

where fXk is the coefficient of kinetic friction.

Both fxs and fxk are dimensionless constants, each being the ratio of

(the magnitudes of) two forces. Usually, for a given pair of surfaces

ixx > /xa. The actual values of fx^ and /u,a depend on the nature of both the

surfaces in contact. Both (is and (iu can exceed unity, although com-

monly they are less than one. Notice that Eqs. 6-1 and 6-2 are relations

between the magnitudes only of the normal and frictional forces. These

forces are always directed perpendicularly to one another.

On the atomic scale even the most finely polished surface is far from plane.

Figure 6-2, for example, shows an actual profile, highly magnified, of a steel

surface that would be considered to be highly polished. One can readily believe

that when two bodies are placed in contact, the actual microscopic area of con-

tact is much less than apparent macroscopic area of contact; in a particular case

these areas can be easily in the ratio of 1 to 104
.

The actual (microscopic) area of contact is proportional to the normal force,

because the contact points deform plastically under the great stresses that de-

velop at these points. Many contact points actually become "cold-welded" to-

gether. This phenomenon, surface adhesion, occurs because at the contact

points the molecules on opposite sides of the surface are so close together that

they exert strong intermolecular forces on each other.

When one body (a metal, say) is pulled across another, the frictional re-

sistance is associated with the rupturing of these thousands of tiny welds,

•^^^v~ '*' A' - '*• IV- k •

figure 6-2

A highly magnified view of a

section of a finely polished steel

surface. The section was cut at an

angle so that vertical distances are

exaggerated by a factor of ten with

respect to horizontal distances. The
surface irregularities are several

thousand atomic diameters high.

From Friction and Lubrication of

Solids, by F. P. Bowden and

D. Tabor, Clarendon Press, 1950.



which continually reform as new chance contacts are made (see Fig. 6-3). Radio-

active tracer experiments have shown that, in the rupturing process, small

fragments of one metallic surface may be sheared off and adhere to the other

surface. If the relative speed of the two surfaces is great enough, there may be

local melting at certain contact areas even though the surface as a whole may
feel only moderately warm.

figure 6-3

Sliding friction, (a) The upper body

is sliding to the right over the

lower body in this enlarged

diagram, (b) A further enlarged

view showing two spots where

surface adhesion has occurred. Force

is required to break these welds

apart and maintain the motion.

lb) (a)

The coefficient of friction depends on many variables, such as the nature of

the materials, surface finish, surface films, temperature, and extent of con-

tamination. For example, if two carefully cleaned metal surfaces are placed in a

highly evacuated chamber so that surface oxide films do not form, the coeffi-

cient of friction rises to enormous values and the surfaces actually become
firmly "welded" together. The admission of a small amount of air to the cham-

ber so that oxide films may form on the opposing surfaces reduces the coeffi-

cient of friction to its "normal" value.

With these complications it is not surprising that there is no exact theory of

dry friction and that the laws of friction are empirical. The surface adhesion

theory of friction for metals leads to a ready understanding of the two laws of

friction mentioned above however. -,11) The microscopic contact area, which

determines the frictional force fk, is proportional to the normal force N and thus

/a is proportional to N, as Eq. 6-2 shows. |2) The fact that the frictional force is

independent of the apparent area of contact means, for example, that the force

required to drag a metal "brick" along a metal table is the same no matter which

face of the brick is in contact with the table. We can understand this only if the

microscopic area of contact is the same for all positions of the brick, and this

is indeed the case. With the largest face down, there are a relatively large num-
ber of relatively small area contacts supporting the load; with the smallest face

down there are fewer contacts (because the apparent contact area is smaller),

but the area of individual contact is larger by just the same factor because of the

higher pressure exerted by the up-ended brick on this smaller number of con-

tacts supporting the same load.

The frictional force that opposes one body rolling over another is much less

than that for a sliding motion and this, indeed, is the advantage of the wheel

over the sledge. This reduced friction is due in large part to the fact that, in

rolling, the microscopic contact welds are "peeled" apart rather than "sheared"

apart as in sliding friction. This will reduce the frictional force by a large factor.

Frictional resistance in dry, sliding, friction can be considerably reduced by

lubrication. A mural in a grotto in Egypt dating back to 1900 b.c. shows a large

stone statue being pulled on a sledge while a man in front of the sledge pours

lubricating oil in its path. A still more effective technique is to introduce a layer

of gas between the sliding surfaces; the dry ice puck and the gas-supported beaj

ing arc two examples. Friction can be reduced still further by suspending a

rotating object in an evacuated space by means of magnetic forces. |. W. Beams,

for example, has spun a 30-lb rotor of this type .it 1000 rev/s
;
when the drive

was cut off, the rotoi lost speed .it the rate of only 1 rev/s in a day.*

Ultrahigh-Speed Rotation [i a Beams in Scientifit American. April 1961.



Examples of the application of the empirical force law for friction

follow. The coefficients of friction given are assumed to be constant.

Actually fxk can be regarded as a good average value that is not greatly

different from the value at any particular speed in the range.

A block is at rest on an inclined plane making an angle with the horizontal,

as in Fig. 6-4a. As the angle of incline is raised, it is found that slipping just

begins at an angle of inclination 9S . What is the coefficient of static friction be-

tween block and incline!
1

EXAMPLE 1

figure 6-4

Example 1. (a) A block at rest on a

rough inclined plane, (b) A free-body

force diagram for the block.
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The forces acting on the block, considered to be a particle, are shown in

Fig. 6-4b. W is the weight of the block, N the normal force exerted on the block

by the inclined surface, and f., the tangential force of friction exerted by the in-

clined surface on the block. Notice that the resultant force exerted by the in-

clined surface on the block, N + fs , is no longer perpendicular to the surface of

contact, as was true for smooth surfaces (f s = 0). The block is at rest, so that

N + f, + W = 0.

Resolving our forces into x- and y-components, along the plane and the normal

to the plane, respectively, we obtain

N - W cos e = 0,

ft
- W sin = 0.

(6-3)

However, fs ^ /aJV. It we increase the angle of incline slowly until slipping just

begins, then for that angle, 6 = ft and we can use fs = fxsN. Substituting this into

Eqs. 6-3, we obtain

and

so that

N = W cos ft

fisN = W sin ft,

fis = tan ft.

Hence measurement of the angle of inclination at which slipping just starts

provides a simple experimental method for determining the coefficient of static

friction between two surfaces.

You can use similar arguments to show that the angle of inclination 6k re-

quired to maintain a constant speed for the block as it slides down the plane,

once it has been started by tapping, is given by

(tit = tan ft,,

where ft, < ft. With the aid of a ruler you can now determine fis and /i* for a

coin sliding down your textbook.

Consider an automobile moving along a straight horizontal road with a speed

v . If the coefficient of static friction between the tires and the road is /xs , what
is the shortest distance in which the automobile can be stopped?

The forces acting on the automobile, considered to be a particle, are shown

EXAMPLE 2



in Fig. 6-5. The car is assumed to be moving in the positive x-direction. If we
assume that fs is a constant force, we have uniformly decelerated motion.

From the relation (see Eq. 3T6)

v2 = v»2 + lax,

with the final speed v = 0, we obtain

x = -v„2/2fl,

where the minus sign means that a points in the negative x-direction.

To determine a. apply the second law of motion to the x-component of the

motion:

-fs = ma = [W/g)a

From the y components we obtain

N - W =

or a = -g{fJW).

or N=W,

so that ^ = fs/N = fsIW

and a

Then the distance of stopping is

-[Xsg.

-vjlla = v„2
/2£m>-. (6-4)

The greater the initial speed, the longer the distance required to come to a

stop; in fact, this distance varies as the square of the initial velocity. Also, the

greater the coefficient of static friction between the surfaces, the less the dis-

tance required to come to a stop.

We have used the coefficient of static friction in this problem, rather than

the coefficient of sliding friction, because we assume there is no sliding be-

tween the tires and the road. We have neglected rolling friction. Furthermore,

we have assumed that the maximum force of static friction
( fs = /nJV) operates

because the problem seeks the shortest distance for stopping. With a smaller

static frictional force the distance for stopping would obviously be greater. The
correct braking technique required here is to keep the car just on the verge of

skidding. If the surface is smooth and the brakes are fully applied, sliding may
occur. In this case fxf. replaces /jlx , and the distance required to stop is seen to in-

crease from Eq. 6-4.

The assumption that the car is a particle is valid if the wheels are locked

(skidding). When the wheels rotate, internal forces land torques) in the brake

drums must be considered to understand work and energy ideas (see Questions

3, 4, and 5 of Chapter 8), though the result (Eq. 6-4) is correct. The rotation of

the wheels is explicitly considered in Chapter 13.

As a specific example, if v„ = 60 mi/h = 88 ft/s = 97 km/h, and fx, = 0.60 (a

typical value), we obtain

x =
Vo< (88 ft/s) 2

2ixxg 2(0.60)132 ft/s2
= 200 ft = 61 m.

Notice that the mass of the car does not appear in Eq. 6-4. How can you ex-

plain the practice of "weighing down" a car in order to increase safety in driving

on icy roads' (Hint: See Prob. 6-2.)

How do the forces of friction modify the results of the examples of Section

5-10?

y
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figure 6-5

Example 2. The forces on a

decelerating automobile.

In Section 4-4 we pointed out that if a body is moving at uniform speed

v in a circle of radius r, it experiences a centripetal acceleration a whose
magnitude is v2

/r. The direction of a is always radially inward toward
the center of rotation. Thus a is a variable vector because, even though

its magnitude remains constant, its direction changes continuously as

the motion progresses.

6-3
THE DYNAMICS OF
UNIFORM CIRCULAR
MOTION



Recall that there need not be any motion in the direction of an accel-

eration. In general, there is no fixed relation between the directions of

the acceleration a and the velocity v of a particle, as Fig. 4-7 shows. As

it happens, for a particle in uniform circular motion the acceleration a

and velocity v are always at right angles to each other.

Every accelerated body must have a force F acting on it, defined by

Newton's second law (F = ma). Thus (assuming that we are in an iner-

tial frame), if we see a body undergoing uniform circular motion, we
can be certain that a net force F, given in magnitude by

F = ma = mv2/r

must be acting on the body; the body is not in equilibrium. The direc-

tion of F at any instant must be the direction of a at that instant,

namely, radially inward. We must always be able to account for this

force by pointing to a particular object in the environment that is ex-

erting the force on the circulating, accelerating body.

If the body in uniform circular motion is a disc on the end of a string

moving in a circle on a frictionless horizontal table as in Fig. 6-6, the

force F on the disc is provided by the tension T in the string. This force

T is the net force acting on the disc. It accelerates the disc by constantly

changing the direction of its velocity so that the disc moves in a circle.

T is always directed toward the pin at the center and its magnitude is

mv'2/R. If the string were to be cut where it joins the disc, there would
be no net force exerted on the disc. The disc would then move with con-

stant speed in a straight line along the direction of the tangent to the

circle at the point at which the string was cut. Hence, to keep the disc

moving in a circle, a force must be supplied to it pulling it inward to-

ward the center.

Forces responsible for uniform circular motion are called centripetal

forces because they are directed "toward the center" of the circular

motion. To label a force as "centripetal," however, simply means that

it always points radially inward; the name tells us nothing about the

nature of the force or about the body that is exerting it. Thus, for the

revolving disc of Fig. 6-6, the centripetal force is an elastic force pro-

vided by the string; for the moon revolving around the earth the centri-

petal force is the gravitational pull of the earth on the moon
;
for an

electron circulating about an atomic nucleus the centripetal force is

electrostatic. A centripetal force is not a new kind of force but simply

a way of describing the behavior with time of forces that are attributable

to specific bodies in the environment. Thus a force can be centripetal

and elastic, centripetal and gravitational, or centripetal and electro-

static, among other possibilities.

Let us consider some examples of forces that act centripetally.

figure 6-6

A disk m moves with constant

speed in a circular path on a

horizontal frictionless surface. The
only horizontal force acting on m is

the centripetal force T with which
the string pulls on the body.

figure 6-7
Example 3. (a) A mass m suspended

from a string of length L swings so

as to describe a circle. The string

describes a right circular cone of

semiangle 6. (bj A free-body force

diagram for m.

The Conical Pendulum. Figure 6-7a shows a small body of mass m revolving in

a horizontal circle with constant speed v at the end of a string of length L. As
the body swings around, the string sweeps over the surface of a cone. This de-

vice is called a conical pendulum. Find the time required for one complete
revolution of the body.

If the string makes an angle d with the vertical, the radius of the circular

path is R = L sin 0. The forces acting on the body of mass m axe. W, its weight,

and T, the pull of the string, as shown in Fig. 6-7b. It is clear that T + W ^ 0.

Hence, the resultant force acting on the body is nonzero, which is as it should

be because a force is required to keep the body moving in a circle with constant

speed.

EXAMPLE 3



We can resolve T at any instant into a radial and a vertical component

Tr = T sin and T, = T cos 0.

Since the body has no vertical acceleration,

T, - W = 0.

But

so that

Tz = T cos and W = mg,

T cos = mg.

The radial acceleration is v2/R. This acceleration is supplied by Tr , the radial

component of T, which is the centripetal force acting on m. Hence

Tr = T sin = mv2IR.

Dividing this equation by the preceding one, we obtain

tan = v2/Rg, or v2 = Rg tan 0,

which gives the constant speed of the bob. If we let r represent the time for one
complete revolution of the body, then

2ttR ,
,-

v = = VRg tan

or

2ttR _ IttR

v VRg tan
2tt VR/lg tan 0).

But R = L sin 0, so that

t = 2tt V(L cos 0)/g.

This equation gives the relation between r, L, and 0. Notice that r, called the

period of motion, does not depend on m.

If I = 1.0 m and = 30°, what is the period of the motion- We have

-^n m)(0.866|

9.8 m/s2
= 1.9 s.

The Rotor. In many amusement parks* we find a device called the rotor. The
rotor is a hollow cylindrical room which can be set rotating about the central

vertical axis of the cylinder. A person enters the rotor, closes the door, and
stands up against the wall. The rotor gradually increases its rotational speed

from rest until, at a predetermined speed, the floor below the person is opened
downward, revealing a deep pit. The person does not fall but remains "pinned

up" against the wall of the rotor. Find the coefficient of friction necessary to

prevent falling.

The forces acting on the person are shown in Fig. 6-8. W is the person's

weight, is is the force of static friction between person and rotor wall, and P is

the centripetal force exerted by the wall on the person necessary to keep him
moving in a circle. Let the radius of the rotor be R and the final speed of the

passenger be v. Since the person does not move vertically, but experiences a

radial acceleration v2IR at any instant, we have

EXAMPLE 4

and
f,-W =

P{= ma) = [W/g)[v2/R).

If fMs is the coefficient of static friction between person and wall necessary to

figure 6-8

* See "Physics and the Amusement Park" by John L. Roeder in The Physics Teacher. Example 4. The forces on a person

September 1975. in a "rotor of radius R.



prevent slipping, then f,
= ixsP and

f,
= W = (i,P

or

Ms =
W_g.R

This equation gives the minimum coefficient of friction necessary to prevent

slipping for a rotor of radius R when a particle on its wall has a speed v. Notice

that the result does not depend on the person's weight.

As a practical matter the coefficient of friction between the textile material

of clothing and a typical rotor wall (canvas) is about 0.40. For a typical rotor the

radius is 2.0 m, so that v must be about 7.0 m/s or 25 km/h or more.

Let the block in Fig. 6-9a represent an automobile or railway car moving at

constant speed v on a level road-bed around a curve having a radius of curvature

R. In addition to two vertical forces, namely, the force of gravityW and a normal

force N, a horizontal centripetal force P acts on the car. In the case of the auto-

mobile this centripetal force is supplied by a sidewise frictional force exerted

by the road on the tires
;
in the case of the railway car the centripetal force is

supplied by the rails exerting a sidewise force on the inner rims of the car's

wheels. Neither of these sidewise forces can be safely relied upon to be large

enough at all times and both cause unnecessary wear. Hence, the roadbed is

banked on curves, as shown in Fig. 6-9 b. In this case, the normal force N has

not only a vertical component, as before, but also a horizontal component which

supplies the centripetal force necessary for uniform circular motion; no addi-

tional sidewise forces are needed, therefore, with a properly banked roadbed.

The correct angle 8 of banking can be obtained as follows. There is no vertical

acceleration, so that

N cos 6 = W.

The centripetal force is N sin 6, so that N sin 6 = mv2/R. Dividing the latter

equation by the former and setting W = mg, we obtain

tan = v2/Rg

Notice that the proper angle of banking depends upon the speed of the car and

EXAMPLE 5

(a)

figure 6-9

Examples.

(a) a level roadbed.

(b) a banked roadbed.

<b)
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the curvature of the road. For a given curvature, the road is banked at an angle
corresponding to an expected average speed. Often curves are marked by signs
giving the proper speed for which the road was banked.

Check the banking formula for the limiting cases v =
;
R -> »

;
v large; and

R small. Also note the similarity between Fig. 6-7 of Example 3 and Fig. 6-9/?
of this example.

All forces in nature can be classified under four headings, each with a
different relative strength: (1) gravitational forces, which are relatively
very weak, (2) electromagnetic forces, which are of intermediate
strength, (3) nuclear forces which bind neutrons and protons in the
nucleus and are the strongest of all, and (4) the weak interaction force,
which is involved in the y3-decay of nuclei and in the interactions of
many elementary particles (see Appendix F).

These forces are "real" in the sense that we can associate them with
specific objects in the environment. Such forces as the tension in a rope,
the force of friction, the force that we exert on a wall by pushing on it!

or the force exerted by a compressed spring are electromagnetic forces-
all are macroscopic manifestations of the (electromagnetic) attractions
and repulsions between atoms.

In our treatment of classical mechanics so far we have assumed that our mea-
surements and observations were made from an inertial frame. This, we recall,
is a reference frame that is either at rest or is moving at constant velocity with
respect to the average positions of the fixed stars,- it is the set of reference
frames defined by Newton's first law, namely, that set of frames in which a
body will not be accelerated (a = 0) if there are no identifiable force-producing
bodies in its environment (F = 0). The choice of a reference frame is always ours
to make, so that if we choose to select only inertial frames, we do not restrict
in any way our ability to apply classical mechanics to natural phenomena.

Nevertheless we can, if we find it convenient, apply classical mechanics
from the point of view of an observer in a noninertial frame. Such a frame might
be one that is attached to a falling body or one that is rotating (and therefore
accelerating) with respect to the fixed stars. We sometimes choose a noninertial
reference frame when we consider, for example, the separation of liquids of
different density in a spinning centrifuge, the global circulation of the winds on
the rotating earth, or the experiences of an astronaut in an orbiting satellite.
We can apply classical mechanics in noninertial frames if we introduce non-

Newtonian forces called inertial forces. Unlike the forces that we have exam-
ined so far, we cannot associate inertial forces with any particular body in the
environment of the particle on which they act and we cannot classify them into
any of the categories listed in the first paragraph of this section. Moreover if
we view the particle from an inertial frame, the inertial forces disappear. These
forces are, then, simply a technique that permits us to apply classical mechanics
in the normal way to events if we insist on viewing the events from a non-
inertial reference frame.

Consider a rotating merry-go-round on which a marble is lodged against a
raised nm at the outer edge. An observer on the merry-go-round is in a non-
inertial frame. As he kneels down and examines the marble he sees that, with
respect to him, it is not moving; if he pulls it away a bit from the rim toward
the center of rotation, he observes that it moves back again, as if under the
influence of a force directed radially outward. He would declare the marble to
be in equilibrium under the action of this outward force (an inertia] force
called, in this case, a centrifugal force) and the radially inward force exerted In
the rim.

An observei on the ground (an inertia! frame] watching the marble would
ribe it differently. He would declare the marble to be in uniform circulai
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motion, accelerated radially inward with a = v2/R. The inward force F exerted

by the rim on the marble accounts for this acceleration from Newton's second

law, or F = ma = mv2/R. The marble is definitely not in equilibrium from the

point of view of this observer or of an observer in any inertial frame. Only if

the rim were not exerting this inward force would the marble move with uni-

form speed in a straight line and be in equilibrium. This observer would find no

trace of a force directed radially outward on the marble (the inertial force) and,

indeed, there is no room for such a force in his analysis of the motion.

It is clear from this simple example that the radially outward inertial force

|or centrifugal force) noted by the observer on the rotating merry-go-round must

have a magnitude mv2/R. Thus the magnitude of the inertial force depends on

the speed of the particle as seen from another reference frame, namely, the

ground; the speed of the particle in its own (rotating) reference frame is zero.

This example illustrates why inertial forces are non-Newtonian, namely,

Newton's third law of motion does not apply to them. That is, there is no re-

action force to the inertial (action) force. In the rotating frame, if the rim were

nor present we would have an inertial (centrifugal) force acting on the marble

without any reaction force of the marble on another body. When the rim is

present we have two forces acting on the same body, the centripetal force due

to the rim and the inertial (centrifugal) force each acting on the marble. The
marble is viewed as being in equilibrium under the influence of two forces

acting on it but, as we have seen, we can have one force without the other. In

an inertial frame, on the other hand, the (action) force of the rim is the only force

on the marble and the marble exerts a (reaction) force on the rim, equal in mag-

nitude but oppositely directed. If one wished to use the terms centripetal and

centrifugal here, he would have an action-reaction pair acting on different

bodies, consistent with Newton's third law. But in the accelerated frame, the

forces called by these names act on the same body and are not an action-reaction

pair.

In more general terms we might say that the expression F = ma used in an

inertial frame is changed to F — ma = in a noninertial frame and that the inter-

pretation given to the term —ma in the latter case is that it is an (inertial) force

existing only in the accelerated frame which permits one to regard the object

acted upon as always being in equilibrium. In this sense it is sometimes sim-

pler to use a noninertial frame to describe motion, such as circular motion, the

object being regarded as at rest in such a frame.

In mechanical problems, then, we have two choices: (1) select an inertial

frame as a reference frame and consider only "real" forces, that is, forces that

we can associate with definite bodies in the environment or (2) select a non-

inertial frame as a reference frame and consider not only the "real" forces but

suitably defined inertial forces. Although we usually choose the first alterna-

tive, we sometimes choose the second; both are completely equivalent and the

choice is a matter of convenience. We shall discuss noninertial frames and
inertial forces further in Chapters 11 and 16.

In these first chapters we have laid the groundwork of classical mechanics. We
have presented the laws of motion and have given several examples of the force

laws. In later chapters we shall discuss other kinds of forces and shall continue

to develop the structure of the theory. Here we want to point out where classi-

cal mechanics stands in the framework of modern physics.

Physics is not a static body of doctrine but a developing science. Historically

there have been long periods of deep concern with a certain class of problem,

culminating, often rather suddenly and in unexpected ways, in a "break-

through" in the form of a new, more comprehensive theory." This occurred

about 1690 (Newtonian mechanics), about 1870 (Maxwell's theory of electro-

magnetism), 1905 (Einstein's theory of relativity), and about 1925 (quantum
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* See "The Structure of Scientific Revolutions" by Thomas Kuhn, The University of

Chicago Press, 1970.



mechanics). Some physicists believe that our present concern for problems in
the area of elementary particles (see Appendix F) will lead us eventually to an-
other major "breakthrough.

As physics has evolved, many things have changed, such as the problems to
be solved and the tools we use to investigate them. But through it all the gen-
eral method of inquiry or process of solution remains basically the same Thus
earlier theories of physics are found to have limited ranges of validity and to be
special cases of more comprehensive theories, which in turn are found to have
limitations, and so on. However, independent of any particular area or problem
in physics, we always demand that theory meet the test of experiment we
search for quantities that are invariant, we are guided by a belief in the sim-
plicity and symmetry of nature, and we seek and use analogies and models
Major unifying concepts arise which are valid in all domains of physics such
as the conservation laws. All this is important to understand for its own sake
independent of mastery of any particular special topic, and is exemplified
throughout the book. If, in addition to mastering classical mechanics the stu-
dent comes to understand this process, he will find it much easier to understand
and master such theories as relativity theory and quantum theory, wherein the
same method of inquiry applies but whose areas of application, unlike those of
classical mechanics, are not a familiar part of his daily life experience

Classical mechanics, like all theories in physics, is based on observations of
things that happen in nature. It will help to point out how limited are our nor-
mal experiences of natural phenomena. This is particularly true during our
formative years which is the period when we develop our intuitive notions
(often false!) of what is "common sense" in natural events and what is not

For example, the highest speed that can be used to transmit signals from one
point to another is the speed of light (c = 186,000 mi/s = 3.00 x 108 m/s) and
this seems to set an upper limit to the speeds of material objects However
gross obiects, even the fastest of them, such as jet planes or earth satellites'
have speeds v that are very much less than c. For an earth satellite moving at
17,000 mi/h, vie is only 0.00025. Classical mechanics was built up over several
centuries on a body of observations of relatively slow-moving objects such as
planets, balls rolling down inclined planes, and falling bodies. Our experience
with moving objects has indeed been limited, until the last few decades to a
tiny fraction of the range of possible speeds.

During these last decades it has become possible to make measurements on
small particles, of potentially high speed, such as electrons, protons and other
fundamental particles. A proton accelerated in the 30-billion electron volt
accelerator at the Brookhaven National Laboratories has, for example vie =
0.98. Are we to expect that the laws of classical mechanics, which work so
beautifully when vie < 1, will also describe correctly the collisions, decays and
interactions of these elementary particles moving at such high speeds? This is
the grossest kind of extrapolation and indeed we find by experiment that it
simply does not work; classical mechanics gives answers that do not agree with
experiment if the speeds of the objects involved are appreciable compared to
the speed of light. This does not make us think less of classical mechanics
which serves so well in the region of low speed, precisely the very important
region of our daily experiences. We are led, however, to view classical me-
chanics as a special case of a more general theory which would hold for all
speeds up to the speed of light.

Einstein, in 1905, first proposed this more general theory, the special theory
latwity* We shall discuss it again later but will state here its fundamental

postulate. This is that the speed of light c is the same for all observers in inertial
frarm ttei what the motion of the light source may be. In other words
if a light source is moving directly toward you at a speed v. vou would measure
the same value for c. it you observed a light pulse passing you, nomattei what
the value of i you would also obtain speed < tor the light pulse it tin- source
were rushing away from you at speed i it this basic assumption seems to vio-
late "common .-.< must realize that our intuitive feelings an- based on

mmary of special relativity Bee Supplemental) topic V.



"common sense at low speeds." We have no direct experience in our daily

activities about what really happens in nature at high speeds. Furthermore, all

of Einstein's predictions (1) agree with experiment and (2) reduce to the predic-

tions of classical mechanics at low speeds.

We list here just one of the predictions of the theory of relativity that is at

variance with classical mechanics. If two observers watch an object moving

parallel to the common x — x'-axis in Fig. 4-11, they will find, from Eq. 4-19,

v = v'+u, (6-5)

where v' is the speed as measured by observer S', v is that measured by observer

S, and u is the relative speed of separation of the two reference frames. Note that

there is nothing in Eq. 6-5 to prevent v from exceeding c if v' and u are large

enough.

The theory of relativity predicts that Eq. 6-5 is a special case of a more gen-

eral formula, namely,

v= .
, ,

• (6-6
1 + v u/c2

Note that for v' <t c and u < c Eq. 6-6 does indeed reduce to Eq. 6-5. Also, if

v' < c and u < c, then v cannot exceed c. If v' = u = 0.8 c, for example, Eq. 6-6

yields v = 0.975 c
;
Eq. 6-5, on the other hand, yields v = 1.6 c, which is con-

trary to experience.

For gross objects, Eqs. 6-5 and 6-6 give the same results within experimental

error, so that we naturally use the simpler, Eq. 6-5. If two satellites moving in

opposite directions have speeds v' = u = 17,000 mi/h, the denominator in Eq.

6-6 has the value 1.0000000007, so that the speed v of one satellite as seen from

the other differs very slightly from the value v' + u predicted by Eq. 6-5. It would

take speeds almost 3000 times as great as above, nearly 50 million mi/h, gen-

erally achievable only in the subatomic domain, to obtain a difference as great

as one-half of one percent in the two formulas.

We point out a second way in which our daily experiences are limited,

namely, that all the objects that we normally deal with have masses that greatly

exceed, for example, the electron mass (m = 9.11 x 10 31 kg). This turns out to

have an interesting consequence, closely related to the very concept of "par-

ticle" on which classical mechanics is based. We have not hesitated to assign a

mass m, a position x, and a velocity Vj- to a particle, assumed to be moving along

the x-axis.* If we are asked within what accuracy Ax and A v., we could measure

the position x and the velocity vx respectively, we would be inclined to say that,

although there might be limits in practice there are none in principle and,

with sufficient attention to methods of measurement, we can specify x and vx

as closely as we wish. Experiment seems to confirm this view for large objects

like golf balls.

When we deal with objects of very small mass, however, such as electrons,

we learn that the very procedures of measurement introduce fundamental un-

certainties and that, in fact, the more precise our knowledge of x becomes the

less precise is our knowledge of vx and conversely. We can express this in terms

of the famous Heisenberg uncertainty relation, which we write as

Ax = —\- (6-7)m Avx

in which h (Planck's constant) is a fundamental constant of nature and has the

value h = 6.63 x 10 34 kg m2
/s. Equation 6-7 shows clearly that if Avx is very

small (which means that we know v> very precisely), then Ax must be rela-

tively large (which means that we do not know x very precisely). Thus it does

not seem possible to measure both the position and the velocity of a particle to

any given precision at the same time. If we cannot do this, then our whole con-

cept of a particle as a mass point following a trajectory, which is a basic concept

of classical mechanics, is open to question.

* We assume v., < c so that considerations of relativity do not enter this new discussion.



Just as for relativity theory, these considerations of quantum mechanics

simply do not make any difference for the gross objects of our daily experience.

Consider a ball bearing with a speed of 103 m/s and a mass of 1.0 g 1= 10~3 kg).

Let us assume that we know the speed to be accurate to 0.

1

7c , which means that

Avj = 0.001 x 103 = 1 m/s. The uncertainty in the position of the ball bearing is

now given by Eq. 6-7 as

^ 6.63xlQ-»kgm'/s _AA - 110- 3 kg)|lm/s) - 7X1U m

This is such a small distance (being 10~ 15 times smaller than an atomic nucleus!)

that we could not possibly detect any limitation on the measurement of x set

by Eq. 6-7.

Consider, however, not a ball bearing but an electron \m = 9.11 x 10 -31 kg)

whose speed is measured to be 2 x 106 m/s, which is about the speed of an elec-

tron in a hydrogen atom. If we assume that we know this speed to be accurate

to, say, 1%, then &vx = 0.01 x 2 x 106 m/s = 2 x 104 m/s. The uncertainty in

position predicted by Eq. 6-7 is then

6.63 x 10~34 kg m2/s „ ,„Ay ~ 2 : = 3 y 1 n -8 m
(9.11 x 10 31 kg)|2x 10-" m/s)

Since the radius of a hydrogen atom is about 5 x 10" m we see that the uncer-

tainty with which we can locate the electron in the hydrogen atom, assuming

that we have measured its speed as accurately as we claim, is 600 times the

radius of the atom! The concept of "particle" does not mean much under these

circumstances. This simply means that we cannot use classical mechanics to

describe the motions of electrons in atoms; we need quantum mechanics.

The situation is very much like that of relativity theory. Ideas that we find

acceptable in a certain region of experience (ball bearings) fall down when we
apply them to a region outside our direct normal experience (electrons in

atoms). Once again the solution is the same: Classical mechanics turns out to

be an important special case of a more general theory. In this case the general

theory is that of quantum mechanics developed about 1925 to 1926 by Heisen-

berg, Schrodinger, Born, and others. Once again, quantum mechanics does not

detract from the merit of classical mechanics, which continues to give results

that agree admirably with experiment for particles of relatively large mass.

The situation most remote from our daily experience deals with particles

that have both small mass and high speed. Here we must use a still more gen-

eral theory, relativistic quantum mechanics, which combines both relativity

theory and quantum mechanics; such a theory was first developed by Dirac in

1927.

In the rest of our treatment of mechanics we return to the familiar special

case of our daily experience, that of relatively massive and relatively slow-

moving objects (classical mechanics). From time to time we will point out

parenthetically how the predictions of classical mechanics must be modified

when we depart from this region of experience.

1. There is a limit beyond which further polishing of a surface increases

rather than decreases frictional resistance. Can you explain this"

2. Is it unreasonable to expect a coefficient of friction to exceed unity?

3. How could a person who is at rest on completely frictionless ice covering a

pond reach shore? Could he do this by walking, rolling, swinging his arms,

or kicking his feet? How could a person be placed in such a position in the

hist pl.i

4. Explain how the range oi you] cai 's headlights limits the safe dm ing speed

.it night.

5. Your car skids across the center line on an icv highway. Should you turn

the 1
1
"lit wheels in the direci ion of skid or in the opposite direction a) when

questions



you want to avoid a collision with an oncoming car, (£>) when no other car

is near but you want to regain control of the steering 7

6. If you want to stop the car in the shortest distance on an icy road, should

you {a) push hard on the brakes to lock the wheels, [b] push just hard enough

to prevent slipping, or (c) "pump" the brakes?

7. Discuss how the choice of angle for maximum range of a projectile would

be affected by the resistance of the air to motion of the projectile through it.

8. Why are the train roadbeds and highways banked on curves?

9. How does the earth's rotation affect the apparent weight of a body at the

equator?

10. Explain why a plumb bob will not hang exactly in the direction of the

earth's gravitational attraction at most latitudes.

11. Suppose you need to measure whether a table top in a train is truly hori-

zontal. If you use a spirit level, can you determine this when the train is

moving down or up a grade? When the train is moving along a curve? (Hint:

there are two horizontal components.)

12. In the conical pendulum of Example 3, what happens to the period t and the

speed v when = 90°? Why is this angle not achievable physically? Discuss

the case for 6 = 0°.

13. A coin is put on a photograph turntable. The motor is started, but before

the final speed of rotation is reached, the coin flies off. Explain.

14. Suppose that a body that is acted upon by exactly two forces is accelerated.

Does it then follow that [a] the body cannot move with constant speed?

(b) the velocity can never be zero? (c) the sum of the two forces cannot be

zero? [d] the two forces must act in the same line?

15. A car is riding on a country road that resembles a roller coaster track. If the

car travels with uniform speed, compare the force it exerts on a horizontal

section of the road to the force it exerts on the road at the top of a hill and

at the bottom of a hill. Explain.

16. A passenger in the front seat of a car finds himself sliding toward the door

as the driver makes a sudden left turn. Describe the forces on the passenger

and on the car at this instant if {a) the motion is viewed from a reference

frame attached to the earth and \b) if attached to the car.

17. Astronauts in the orbiting Skylab spacecraft want to keep a daily record of

their weight. Can you think how they might do it, considering that they are

'weightless'?

18. What conclusion might a physicist draw if, while standing in an elevator,

he observes that unequal masses hung over a pulley remain balanced, that

is, there is no tendency for the pulley to turn?

19. Explain how the question "What is the linear velocity of a point on the

equator?" requires an assumption about the reference frame used. Show
how the answer changes as you change reference frames.

20. What is the distinction between inertial reference frames and those differ-

ing only by a translation or rotation of the axes?

SECTION 6-2

1. A hockey puck weighing 0.25 lb (1.1 N) slides on the ice for 50 ft (15 m)
before it stops, [a] It its initial speed was 20 ft/s (6.1 m/s), what is the force

of friction between puck and ice? [b] What is the coefficient of kinetic fric-

tion? Answer: [a] 0.031 lb (0.14 N). [b] 0.12 (0.13).

2. Suppose that only the rear wheels of an automobile can accelerate it, and
that half the total weight of the automobile is supported by those wheels.

[a] What is the maximum acceleration attainable if the coefficient of static

friction between tires and road is /as ? [b] Take p., = 0.35 and get a numerical

value for this acceleration.

problems



3. Frictional heat generated by the moving ski is the chief factor promoting

sliding in skiing. The ski sticks at the start, but once in motion will melt

the snow beneath it. Waxing the ski makes it water repellent and reduces

friction with the film of water. A magazine reports that a new type of

plastic ski is even more water repellent and that on a gentle 700-ft slope in

the Alps, a skier reduced his time from 61 to 42 s with new skis, [a] Deter-

mine the average accelerations for each pair of skis, [b] Assuming a 3°-slope

compute the coefficient of kinetic friction for each case.

Answer: [a] 0.38 ft/s2
;
0.79 ft/s2

. \b) 0.041; 0.028.

4. A fireman weighing 160 lb (710 N) slides down a vertical pole with an aver-

age acceleration of 10 ft/s2 (3 m/s2
). What is the average vertical force he

exerts on the pole?

5. A man drags a 150-lb crate across a floor by pulling on a rope inclined 15°

above the horizontal, [a] If the coefficient of static friction is 0.50, what
tension in the rope is required to start the crate moving? \b) If /u* = 0.35,

what is the initial acceleration of the crate?

Answer: \a) 68 lb. [b] 4.2 ft/s2 .

6. A cube of weight W rests on a rough inclined plane which makes an angle

with the horizontal. \a) What is the minimum force necessary to start the

cube moving down the plane? [b] What is the minimum force necessary to

start the cube moving up the plane? (c) What is the minimum horizontal

(transverse to the slope) force necessary to start the cube moving down the

plane?

7. The handle of a floor mop of mass m makes an angle 6 with the vertical di-

rection. Let fik be the coefficient of kinetic friction between mop and floor,

and /i,s be the coefficient of static friction between mop and floor. Neglect

the mass of the handle, [a] Find the magnitude of the force F directed along

the handle required to slide the mop with uniform velocity across the floor.

[b) Show that if 6 is smaller than a certain angle 9 , the mop cannot be made
to slide across the floor no matter how great a force is directed along the

handle, (c) What is the angle O ?

Answer: {a) /u.A-mg/(sin 6 — fik cos 0). (c) 6 = tan -1
fi„.

8. A piece of ice slides down a 45°-incline in twice the time it takes to slide

down a frictionless 45°-incline. What is the coefficient of kinetic friction

between the ice and the incline?

9. A block slides down an inclined plane of slope angle <p with constant veloc-

ity. It is then projected up the same plane with an initial speed v . [a] How
far up the incline will it move before coming to rest? [b] Will it slide down
again? Answer: {a) v 2/4g sin <p. \b) No.

1/J. A student wants to determine the coefficients of static friction and kinetic

friction between a box and a plank. He places the box on the plank and grad-

ually raises the plank. When the angle of inclination with the horizontal

reaches 30°, the box starts to slip and slides 4.0 m down the plank in 4.0 s.

What are the coefficients of friction?

1 1

.

A horizontal force F of 12 lb pushes a block weighing 5.0 lb against a vertical

wall (Fig. 6-10). The coefficient of static friction between the wall and the

block is 0.60 and the coefficient of kinetic friction is 0.40. Assume the

block is not moving initially, [a] Will the block start moving? \b) What is

the force exerted on the block by the wall?

Answer: \a) No. \b\ A 12-lb force to the left and a 5.0-lb force up.

12. A 10-lb block of steel is at rest on a horizontal table. The coefficient of

static friction between block and table is 0.50. [a] What is the magnitude of

the horizontal force that will just start the block moving' [b] What is the

magnitude of a force acting upward 60° from the horizontal that will just

start the block moving? (c) If the force acts down at 60' from the horizontal,

how large can m be w ithoui causing the block to move

Bloc! B in Fig 6 M weighs 160 lb (710 N). The coefficient of static friction

figure 6-10

Problem 1

1

figure

Problem



between block and table is 0.25. Find the maximum weight of block A for

which the system will be in equilibrium. Answer: 40 lb (180 N).

14. Two masses, m, = 1.65 kg and m 2 = 3.30 kg, attached by a massless rod

parallel to the incline on which both slide, as shown in Fig. 6-12, travel

down along the plane with mi trailing m 2 . The angle of incline is 8 = 30°.

The coefficient of kinetic friction between mi and the incline is /xi = 0.226;

between m 2 and the incline the corresponding coefficient is (jl2 = 0.113.

Compute [a] the tension in the rod linking mi and m 2 and [b] the common
acceleration of the two masses, (c) Would the answers to [a] and (£>) be

changed if m 2 trails mi?

15. A 4.0-kg block is put on top of a 5.0-kg block. In order to cause the top block

to slip on the bottom one, held fixed, a horizontal force of 12 N must be

applied to the top block. The assembly of blocks is now placed on a hori-

zontal, frictionless table (Fig. 6-13). Find [a] the maximum horizontal force

F which can be applied to the lower block so that the blocks will move to-

gether, and [b] the resulting acceleration of the blocks.

Answer: [a) 27 N. [b) 3.0 m/s2
.

16. A railroad flatcar is loaded with crates having a coefficient of static friction

0.25 with the floor. If the train is moving at 30 mi/h (48 km/h), in how short

a distance can the train be stopped without letting the crates slide'

17. A 40-kg slab rests on a frictionless floor. A 10-kg block rests on top of the

slab (Fig. 6-14). The static coefficient of friction between the block and the

slab is 0.60 while the kinetic coefficient is 0.40. The 10-kg block is acted

upon by a horizontal force of 100 N. What are the resulting accelerations of

[a] the block, and (b) the slab- Answer: [a] 6.1 m/s2
. [b] 0.98 m/s2

.

W. In Fig. 6-15, A is a 10-lb (44-N) block and B is a 5.0-lb (22-N) block, (a)

Determine the minimum weight (block C) which must be placed on A to

keep it from sliding, if fi, between A and the table is 0.20. [b] The block C
is suddenly lifted off A. What is the acceleration of block A, if /i* between

A and the table is 0.20?

dfy. An 8.0-lb block and a 16-lb block connected together by a string slide down
a 30° inclined plane. The coefficient of kinetic friction between the 8.0-lb

block and the plane is 0.10; between the 16-lb block and the plane it is

0.20. Find [a] the acceleration of the blocks and [b] the tension in the string,

assuming that the 8.0-lb block leads, (c) Describe the motion if the blocks

are reversed.

Answer: [a] 11 ft/s2 . [b] 0.46 lb. (c) Blocks move independently, unless they

subsequently collide.

20. Body B weighs 100 lb and body A weighs 32 lb (Fig. 6-16). Given ijls
= 0.56

and fik = 0.25, [a] find the acceleration of the system if B is initially at rest

and [b] find the acceleration if B is moving initially.

21. A block of mass m slides in an inclined right-angled trough as in Fig. 6-17.

If the coefficient of kinetic friction between the block and the material

composing the trough is \ikl find the acceleration of the block.

Answer: g(sin 6 — VYfik cos 6).

SECTION 6-3

22. In the Bohr model of the hydrogen atom, the electron revolves in a circular

orbit around the nucleus. If the radius is 5.3 x 10 n meters and the electron

makes 6.6 x 10 15 rev/s, find [a] the acceleration (magnitude and direction)

of the electron and [b] the centripetal force acting on the electron. (This

force is due to the attraction between the positively charged nucleus and
the negatively charged electron.) The mass of the electron is 9.1 x 10 -31 kg.

figure 6-12
Problem 14

«

"a
So

O
to
t-<

tn

figure 6-13

Problem 15

No
friction

100 N

figure 6-14
Problem 17

110 kg

•|40kg
___

figure 6-15
Problem 18

figure 6-16
Problem 20

figure 6-17
Problem 21



26.

27.

28^

23. A mass m on a frictionless table is attached to a hanging mass M by a cord

through a hole in the table (Fig. 6-18). Find the condition (v and r) with

which m must spin for M to stay at rest. Answer: v2/r = Mglm.

24. Show that the periods of two conical pendula of different lengths which are

hung from a ceiling and rotate with their bobs an equal distance below the

ceiling are equal.

25. A small coin is placed on a flat, horizontal turntable. The turntable is ob-

served to make three revolutions in 3.14 s. (a) What is the speed of the coin

when it rides without slipping at a distance 5.0 cm from the center of the

turntable" [b) What is the acceleration (magnitude and direction) of the coin

in part \a)- (c) What is the frictional force acting on the coin in part \a) if the

coin has a mass of 2.0 g? [d] What is the coefficient of static friction between

the coin and the turntable if the coin is observed to slide off the turntable

when it is more than 10 cm from the center of the turntable?

Answer: \a) 30 cm/s. (b) 180 cm/s2
, radially inward, (c) 3.6 x 10" 3 N. |d)

0.37.

A block of mass m at the end of a string is whirled around in a vertical circle

of radius R. Find the critical speed below which the string would become

slack at the highest point?

A circular curve of highway is designed for traffic moving at 40 mi/h. [a] It

the radius of the curve is 400 ft, what is the correct angle of banking of the

road? [b] It the curve is not banked, what is the minimum coefficient of

friction between tires and road that would keep traffic from skidding at this

speed? Answer: [a) 16°. [b) 0.27.

A driver's manual states that a driver traveling at 30 mi/h (48 km/h) and

desiring to stop as quickly as possible travels 33 ft (10 m) before his foot

reaches the brake. He travels an additional 68 ft (21 m) before coming to

rest. \a) What coefficient of friction is assumed in these calculations? [b]

What is the minimum radius for turning a corner at 30 mi/h (48 km/h) with-

out skidding :

29. A 5000-lb airplane loops at a speed of 200 mi/h. Find [a] the radius of the

largest circular loop possible, (fo) the net force on the plane at the bottom of

this loop, and (c) the lift on the plane at the bottom of this loop.

Answer: \a) 2700 ft. [b\ 5000 lb. (c) 10,000 lb.

30. A 150-lb student on a steadily rotating Ferris wheel has an apparent weight

of 125 lb at his highest point, [a] What is his apparent weight at the lowest

point? [b] What would be his apparent weight at the highest point if the

speed of the Ferris wheel were doubled?

31. Assume that the standard kilogram would weigh exactly 9.80 N at sea level

on the earth's equator if the earth did not rotate. Then take into account the

fact that the earth does rotate so that this mass moves in a circle of radius

6.40 x 10B m (earth's radius) at a constant speed of 465 m/s. [a] Determine

the centripetal force needed to keep the standard moving in its circular path.

\b) Determine the force exerted by the standard kilogram on a spring bal-

ance from which it is suspended at the equator (its weight).

Answer: [a] 0.0338 N. \b) 9.77 N.

32. An old streetcar rounds a corner on unbanked tracks, [a] If the radius of the

tracks is 30 ft and the car's speed is 10 mi/h, what angle with the vertical

will be made by the loosely hanging hand straps? \b) Is there a force acting

on these straps? If so, is it a centripetal or centrifugal force? Do your answers

depend on what reference frame you choose?

33. A particle of mass M = 0.305 kg moves counterclockwise in a horizontal

circle of radius r= 2.63 m with uniform speed v= 0.754 m/s as in Fig 6- 19

Determine at the instant l) = 322° (measured counterclockwise from the

positive x-direction] the following quantities >i ] the x-component of the

velocity, \b] the y-component of the acceleration; [c| the total tour on the

particle; |<7) the component of the total force on the particle m the direction

of us velocity.

Answer: [a] 0.464 m/s. |/>) 0.133 m/s2 . (c) 6.59 x in - N. \d) Zero

1
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34. A 1.0-kg ball is attached to a rigid vertical rod by means of two massless

strings each 1.0 m long. The strings are attached to the rod at points 1.0 m
apart. The system is rotating about the axis of the rod, both strings being

taut and forming an equilateral triangle with the rod, as shown in Fig. 6-20.

The tension in the upper string is 25 N. [a) Draw the free-body diagram for

the ball, (b) What is the tension in the lower string? (c) What is the net force

on the ball at the instant shown in the figure? [d] What is the speed of the

ball?

35. An airplane is flying in a horizontal circle at a speed of 300 mi/h (480 km/h).

If the wings of the plane are tilted 45° to the vertical, what is the radius of

the circle the plane is flying? Answer: 1.1 mi (1.8 km).

36. Because of the rotation of the earth, a plumb bob may not hang exactly along

the direction of the earth's gravitational pull (its weight) but deviate slightly

from that direction. Calculate the deviation [a] at 40° latitude, [b] at the

poles, and (c) at the equator.

37. Imagine that the disc of Fig. 6-6 is attached to a spring rather than a string.

The unstretched length of the spring is 1 and the tension in the spring in-

creases in direct proportion to its elongation, the tension per unit elonga-

tion being k. If the disc revolves with a frequency v (revolutions per unit

time), show that [a] the radius R of the uniform circular motion is kl,J[k —
4Tr2mv2

) and [b] the tension T in the spring is 4n2mkl flv2/[k — 4n2mv2
).

38. A very small cube of mass m is placed on the inside of a funnel (Fig. 6-21)

rotating about a vertical axis at a constant rate of v rev/s. The wall of the

funnel makes an angle with the horizontal. If the coefficient of static fric-

tion between the cube and the funnel is fx and the center of the cube is a

distance r from the axis of rotation, what are [a] the largest and [b] the

smallest values of v for which the cube will not move with respect to the

funnel?

figure 6-20
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7

work
and energy

A fundamental problem of particle dynamics is to find how a particle 7"1
will move when we know the forces that act on it. By "how a particle INTRODUCTION
will move" we mean how its position varies with time. If the motion is

one-dimensional, the problem is to find x as a function of time, x(t). In

the previous two chapters we solved this problem for the special case of

a constant force. The method used is this. We find the resultant force F

acting on the particle from the appropriate force law. We then substitute

F and the particle mass m into Newton's second law of motion. This

gives us the acceleration a of the particle; or

a = F/m.

If the force F and the mass m are constant, the acceleration a must be

constant. Let us choose the x-axis to be along the direction of this con-

stant acceleration. We can then find the speed of the particle from Eq.

3-12,

v = v + at,

and the position of the particle from Eq. 3-15 (with x = 0), or

x = v t + \at2
}

note that, for simplicity and convenience, we have dropped the sub-

script x in these equations. The last equation gives us directly what we
usually want to know, namely x\t), the position of the particle as a func-

tion of time.

The problem is more difficult, however, when the force acting on a

particle is not constant. In such a case we still obtain the acceleration

of the particle, as before, from Newton's second law of motion. How-

llf



ever, in order to get the speed or position of the particle, we can no

longer use the formulas previously developed for constant acceleration

because the acceleration now is not constant. To solve such problems,

we use the mathematical process of integration, which we consider in

this chapter.

We confine our attention to forces that vary with the position of the

particle in its environment. This type of force is common in physics.

Some examples are the gravitational forces between bodies, such as the

sun and earth or earth and moon, and the force exerted by a stretched

spring on a body to which it is attached. The procedure used to deter-

mine the motion of a particle subject to such a force leads us to the con-

cepts of work and kinetic energy and to the development of the work-

energy theorem, which is the central feature of this chapter. In Chapter

8 we consider a broader view of energy, embodied in the law of conserva-

tion of energy, a concept which has played a major role in the develop-

ment of physics.

Consider a particle acted on by a force. In the simplest case the force F

is constant and the motion takes place in a straight line in the direction

of the force. In such a situation we define the work done by the force on

the particle as the product of the magnitude of the force F and the dis-

tance d through which the particle moves. We write this as

W = Fd.

However, the constant force acting on a particle may not act in the

direction in which the particle moves. In this case we define the work
done by the force on the particle as the product of the component of the

force along the line of motion by the distance d the body moves along

that line. In Fig. 7-1 a constant force F makes an angle 4> with the x-axis

and acts on a particle whose displacement along the x-axis is d. If W
represents the work done by F during this displacement, then according

to our definition

7"2
WORK DONE BY A
CONSTANT FORCE

W={F cos <j>)d. (7-1)

y

mm: (" wmwfwwmmm. ymm.

d JFcos 4>

figure 7-1

A force F makes the block undergo

a displacement d. The component
of F that does the work has

magnitude F cos </>
;
the work done

is Fd cos (/> |= F • d).

Of course, other forces must act on a particle that moves in this way
(its weight and the frictional force exerted by the plane, to name two).

A particle acted on by only a single force may have a displacement in a

direction other than that of this single force, as in projectile motion.

But it cannot move in a straight line unless the line has the same direc-

tion as that of the single force applied to it. Equation 7-1 refers only to

the work done on the particle by the particular force F. The work done
on the particle by the other forces must be calculated separately. The
total work done on the particle is the sum of the works done by the sepa-

rate forces.



When is zero, the work done by F is simply Fd, in agreement with

our previous equation. Thus, when a horizontal force draws a body hori-

zontally, or when a vertical force lifts a body vertically, the work done

by the force is the product of the magnitude of the force by the distance

moved. When <$> is 90°, the force has no component in the direction of

motion. That force then does no work on the body. For instance, the

vertical force holding a body a fixed distance off the ground does no
work on the body, even if the body is moved horizontally over the

ground. Also, the centripetal force acting on a body in motion does no
work on that body because the force is always at right angles to the

direction in which the body is moving. Of course, a force does no work
on a body that does not move, for its displacement is then zero. In Fig.

7-2 we illustrate common examples in which a force applied to a body

does no work on that body.

figure 7-2

Work is not always done by a force that is applied to a body, (a) The block

is moving to the right at constant speed v over a frictionless surface. Work
is not done by either the weight W or the normal force N. (b) The ball

moves in a circle under the influence of a centripetal force T. There is a

centripetal acceleration a but no work is done by T. In both (a) and (b) the

forces being considered [W, N, and T) are at right angles to the displacement

so that W = F • d = Fd cos
(f>
= Fd cos 90° = 0. (c) A cylinder hangs from a

cord. No work is done either by T, the tension in the cord, or by W the

weight of the cylinder, (d) A cylinder rests in a groove,- no work is done by

W, Ni or N 2 . In both (c) and (d) the work done by the individual forces is

zero because the displacement is zero.

Notice that we can write Eq. 7-1 either as [F cos (f))d or F[d cos <j>).

This suggests that the work can be calculated in two different ways:

Either we multiply the magnitude of the displacement by the compo-
nent of the force in the direction of the displacement or we multiply

the magnitude of the force by the component of the displacement in the

direction of the force. These two methods always give the same result.

Work is a scalar, although the two quantities involved in its defini-

tion, force and displacement, are vectors. In Section 2-4 we defined the

scalar product of two vectors as the scalar quantity that we find when
we multiply the magnitude of one vector by the component of a second

vector along the direction of the first. We promised in that section that

we would soon run across physical quantities that behave like scalar

products. Equation 7-1 shows that work is such a quantity. In the ter-

minology ot vector algebra we can write this equation as

W = F d, (7-2)

where the dot indicates a scalar or dot) product. Equation 7-2 for F and

d corresponds to Eq. 2- 1 1 for a and b.

Work can be eithei positive or negative. If the particle on which a



force acts has a component of motion opposite to the direction of the

force, the work done by that force is negative. This corresponds to an

obtuse angle between the force and displacement vectors. For example,

when a person lowers an object to the floor, the work done on the object

by the upward force of his hand holding the object is negative. In this

case <f>
is 180°, for F points up and d points down.

Work as we have defined it (Eq. 7-2) proves to be a very useful con-

cept in physics. Our special definition of the word "work" does not cor-

respond to the colloquial usage of the term. This may be confusing. A
person holding a heavy weight at rest in the air may say that he is doing

hard work— and he may work hard in the physiological sense — but from

the point of view of physics we say that he is not doing any work. We
say this because the applied force causes no displacement. The word

work is used only in the strict sense of Eq. 7-2. In many scientific fields

words are borrowed from our everyday language and are used to name a

very specific concept. The words "basic" and "cell," for example, mean
quite different things in chemistry and biology than in everyday lan-

guage.

The unit of work is the work done by a unit force in moving a body a

unit distance in the direction of the force. In SI units the unit of work
is 1 newton-meter, called 1 joule (abbreviation J). In the British engi-

neering system the unit of work is the foot-pound. In cgs systems the

unit of work is 1 dyne-centimeter, called 1 erg. Using the relations be-

tween the newton, the dyne, and the pound, and the meter, the cen-

timeter, and foot, we obtain 1 joule = 10 7 ergs = 0.7376 ft • lb.

A block of mass 10.0 kg is to be raised from the bottom to the top of an incline

5.00 m long and 3.00 m off the ground at the top. Assuming frictionless surfaces,

how much work must be done by a force parallel to the incline pushing the

block up at constant speed at a place where g = 9.80 m/s2
.

The situation is shown in Fig. 7-3a. The forces acting on the block are shown
in Fig. 7-3b. We must first find P, the magnitude of the force pushing the block

up the incline. Because the motion is not accelerated, the resultant force parallel

to the plane must be zero. Thus

P — mg sin = 0,

or

P = mg sin e = 110.0 kg)(9.80 m/s2
)(f) = 58.8 N.

Then the work done by P, from Eq. 7-1 with (/> = 0°, is

W = P • d = Pd cos 0° = Pd = (58.8 N)(5.00 m) = 294 J.

If a man were to raise the block vertically without using the incline, the work
he would do would be the vertical force mg times the vertical distance or

EXAMPLE 1

figure 7-3

Example 1. fa) A force P displaces a

block a distance d up an inclined

plane which makes an angle with

the horizontal, (b) A free-body force

diagram for the block.
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198.0 N)(3.00 m) = 294
],

the same as before. The only difference is that with the incline he could apply
a smaller force [P = 58.8 N) to raise the block than is required without the in-

cline [mg = 98.0 N)
;
on the other hand, he had to push the block a greater dis-

tance (5.00 m) up the incline than he had to raise the block directly (3.00 m).

A boy pulls a 10-lb sled 30 ft along a horizontal surface at a constant speed.
What work does he do on the sled if the coefficient of kinetic friction is 0.20
and his pull makes an angle of 45° with the horizontal:

A A )

\7w

The situation is shown in Fig. 7-Aa and the forces acting on the sled are
shown in Fig. 7-46. P is the boy's pull, w the sled's weight, i the frictional force,

and N the normal force exerted by the surface on the sled. The work done by
the boy on the sled is

W = P • d = Pd cos
<f>.

To evaluate this we first must determine P, whose value has not been given. To
obtain P we refer to the force diagram.

The sled is unaccelerated, so that from the second law of motion we obtain

and
P cos (/>

-
f = 0,

P sin <j) + N - w = 0.

We know that / and N are related by

These three equations contain three unknown quantities, P, f, and N. To find
P we eliminate f and N from these equations and solve the remaining equation
for P. You should verify that

P = ijli;w/{cos (/> + fjik sin <j>).

With fik = 0.20, w = 10 lb, and </> = 45° we obtain

P = (0.20)(10 lb)/(0.707 + 0.141) = 2.4 lb.

Then with d =30 ft, the work done by the boy on the sled is

W = Pd cos = (2.4 lb)|30 ft)(0.707) = 51 ft • lb.

The vertical component of the boy's pull P docs no work on the sled. Notice,
however, that it reduces the normal force between the sled and the surface
[N = w - P sin <£) and thereby reduces the magnitude oi the force oi friction

[f=/MkN).

Would the boy do nunc work less work, or the same amount of work on the
sled if he pulled horizontally instead <>\ .it 45 from the horizontal? I )o any ol

the othei fori es acting on the sled do work on it :

EXAMPLE 2

figure 7-4

Example 2. (a) A boy displaces a

sled an amount d by pulling with a

force P on a rope that makes an
angle 4> with the horizontal, fb) A
free-body diagram for the sled.



Let us now consider the work done by a force that is not constant. We
consider first a force that varies in magnitude only. Let the force be

given as a function of position F[x) and assume that the force acts in the

x-direction. Suppose a body is moved along the x-direction by this force.

What is the work done by this variable force in moving the body from

Xi to x2 ?

In Fig. 7-5 we plot F versus x. Let us divide the total displacement

into a large number of small equal intervals Ax (Fig. 7-5a). Consider the

small displacement Ax from Xi to Xi + Ax. During this small displace-

ment the force F has a nearly constant value and the work it does, AW,
is approximately

AW = F Ax, (7-3)

where F is the value of the force at Xi. Likewise, during the small dis-

placement from Xi + Ax to Xi + 2Ax, the force F has a nearly constant

value and the work it does is approximately AW = F Ax, where F is the

value of the force at Xi + Ax. The total work done by F in displacing the

body from Xi to x2 , W12, is approximately the sum of a large number of

terms like that of Eq. 7-3, in which F has a different value for each term.

Hence

W 12 = 2 F Ax, (7-4)

where the Greek letter sigma (2) stands for sum over all intervals from

Xi to x2 .

To make a better approximation we can divide the total displacement

from Xi to x2 into a larger number of equal intervals, as in Fig. 7-5b, so

that Ax is smaller and the value of F at the beginning of each interval is

more typical of its values within the interval. It is clear that we can

obtain better and better approximations by taking Ax smaller and
smaller so as to have a larger and larger number of intervals. We can

obtain an exact result for the work done by F if we let Ax go to zero and

the number of intervals go to infinity. Hence the exact result is

J2

W 12 = lim y F Ax. (7-5)
Ax->0

The relation

*2 f.r2

lim V F Ax = F dx,
Ax-Of- J Xl

as you may have learned in your calculus course, defines the integral

of F with respect to x from Xi to x->. Numerically, this quantity is exactly

equal to the area between the force curve and the x-axis between the

limits Xi and x2 (Fig. 7-5c). Hence, graphically an integral can be inter-

preted as an area. The symbol / is a distorted S (for sum) and symbolizes

the integration process. We can write the total work done by F in dis-

placing a body from X! to x2 as

W,
fx2

= F[x) dx. (7-6)

As an example, consider a spring attached to a wall. Let the (hori-

zontal) axis of the spring be chosen as an x-axis, and let the origin, x = 0,

coincide with the endpoint of the spring in its normal, unstretched

state. We assume that the positive x-direction points away from the

7»*t

WORK DONE BY A
VARIABLE FORCE-
ONE-DIMENSIONAL
CASE

F(x)

figure 7-5

Computing \' 2

F[x) dx amounts to
J.r,

finding the area under the curve

F[x) between the limits Xi and x2 .

This can be done approximately as

in the top drawing (a) by dividing

the area into a few strips, each of

width Ax. The areas of the

rectangles are then summed to give

a rough value of the area. In the

middle drawing (b) the strips are

narrower and the value for the area

becomes more exact as the errors at

the tops of the rectangles become
smaller. In the bottom drawing (c)

the strips are only infinitesimal in

width. The measurement of area is

exact, since the errors at the tops of

the rectangles go to zero as the

strip width dx goes to zero.



wall. In what follows we imagine that we stretch the spring so slowly

that it is essentially in equilibrium at all times |a = 0).

If we stretch the spring so that its endpoint moves to a position x, the

spring will exert a force on the agent doing the stretching given to a

good approximation by

kx, 17-7)

where k is a constant called the force constant of the spring. Equation
7-7 is the force law for springs. The direction of the force is always oppo-

site to the displacement of the endpoint from the origin. When the

spring is stretched, x > and F is negative; when the spring is com-
pressed, x < and F is positive. The force exerted by the spring is a

restoring force in that it always points toward the origin. Real springs

will obey Eq. 7-7, known as Hooke's law, if we do not stretch them be-

yond a limited range. We can think of k as the magnitude of the force

per unit elongation. Thus very stiff springs have large values of k.

To stretch a spring we must exert a force F' on it equal but opposite

to the force F exerted by the spring on us. The applied force* is therefore

F' = kx and the work done by the applied force in stretching the spring

so that its endpoint moves from Xi to x2 ist

W 12 = \
F'[x) dx =

\
[kx] dx = }kx2

2 - ikxj 2
.

If we let Xi = and x2 = x, we obtain

W -\: \kx) dx = }kx2
. 17-8)

This is the work done in stretching a spring so that its endpoint moves
from its unstretched position to x. Note that the work to compress a

spring by x is the same as that to stretch it by x because the displace-

ment x is squared in Eq. 7-8; either sign for x gives a positive value for W.

We can also evaluate this integral by computing the area under the

force-displacement curve and the x-axis from x = to x = x. This is

drawn as the white area in Fig. 7-6. The area is a triangle of base x and
altitude kx. The white area is therefore

&x)(kx) = |Ax2
.

F'

j^-if
'kx^

f**2
V

r
0< X

figure 7-6

The force exerted in stretching a

spring is F = kx. The area under

the force curve is the work done in

stretching the spring a distance x

and can be found by integrating or

by using the formula for the area of

a triangle.

in agreement with Eq. 7-8.

The force F acting on a particle may vary in direction as well as in magnitude,

and the particle may move along a curved path. To compute the work in this

general case we divide the path into a large number of small displacements Ar,

each pointing along the path in the direction of motion. Figure 7-7 shows two
ted displacements for a particular situation; it also shows the value of F

and the angle <!> between F and Ar at each location. We can find the amount of

If the applied force were different from F = kx, we would have a net unbalanced force

acting on the spring and its motion would be accelerated. To compute the work done we
would have to specify exactly what the applied force is at each point. No matter what the

force turm ic, the work done would always be the same foi the same displacement

X, to .v., providing the spring has the same speed Initially and finally However, it is much
i
to use the simple force I in i all ulating the work done Such an applied fort i

leads to unaccelerated motion It is Ln ordei to be able to use tins simple force that we
specified unaccelerated motion in the lnsi plai e

t The student iust becoming familial with calculus should consull the list o^ integrals

in Appendix I.

7-4
WORK DONE BY A
VARIABLE FORCE-
TWO-DIMENSIONAL
CASE



work done on the particle during a displacement Ar from

dW = F • Ar = F cos <t> Ar (7-9)

The work done by the variable force F on the particle as the particle moves, say,

from a to b in Fig. 7-7 is found very closely by adding up (summing) the ele-

ments of work done over each of the line segments that make it up. As the line

segments Ar become smaller they may be replaced by differentials dt and the

sum over the line segments may be replaced by an intergral, as in Eq. 7-6. The
work is then found from

W„
J n J a

F cos (f> dr. [7-10a)

We cannot evaluate this integral until we are able to say how F and <j> in Eq.

7- 10a vary from point to point along the path; both are functions of the x- and

y-coordinates of the particle in Fig. 7-7.

We can obtain another equivalent expression for Eq. 7- 10a by expressing F

and dt in terms of their components. Thus F = iFx + \FV and dt = i dx + j dy, so

that F • dt = Fx dx + Fu dy. In this evaluation recall (see Problem 21, Chapter 2)

that i • i = j
•

j
= 1 and i •

j
=

j
• i = 0. Substituting this result into Eq. 7- 10a, we

obtain

W llh =l" (Fx dx + Fu dy) [7-10b)
J a

Integrals such as those in Eqs. 7- 10a and 7- 10b are called line integrals.

/ a

figure 7-7

How F and
<f>
might change along a

path. As Ar —> we may replace it

by the differential dt, which always

points in the direction of the

velocity of the moving object, since

v = dr/dt, and hence is tangent to

the path at all points.

As an example of a variable force consider a particle of mass m suspended from

a weightless cord of length 1. This is called a simple pendulum. Let us displace

the particle along a circular path of radius 1 from $ = to <}> = </> by applying a

force that is always horizontal. We can apply such a force by pulling horizon-

tally on the particle with an attached string, for example. The particle will then

have been displaced a vertical distance h. Figure 7-8a shows the situation and

Fig. 7-8 b shows the forces acting on the particle in the arbitrary position (j>. The
applied force is F, T is the tension in the cord, and mg the weight of the particle.

Again we assume that there is no acceleration (the reason is the same as be-

fore), so that in practice the motion must be very slow. The force F is always

horizontal, but the displacement dt is along the arc. The direction of dt depends

on the value of <£ and is tangent to the circle at each point. F will vary in magni-

tude in such a way as to balance the horizontal component of the tension.

Notice that the angle between F and dt is equal to the angular displacement </> in

this case.

The work done as the mass m moves from <£ = to 4> = </>n under the action of

the force F is

EXAMPLE 3

or

W

W

F • dt = I F cos
<f)

dr
J<*=o J <i=o

rj"=(/-/i)tan it> .y=h

[Fx dx + Fy dy).
Jx = 0.y=0

[7-10a)

[7-10b)

Let us evaluate Eq. 7- 10b.

Note that, from Newton's first law (see Fig. 7-8b)

Fx = T sin (/> and mg = T cos </>.

Eliminating T between these relations gives us

Fx = mg tan <\>.

We also note in Fig. 7-8b that Fy = 0. Substituting these values for Fx and Fy into

Eq. 7- 10b yields

<j> Direction

of dr
\

figure 7-8

Example 3. (a) A simple pendulum.

A mass point m is suspended on a

string of length 1. Its maximum
displacement is 4> . (b) A free-body

force diagram for the mass subjected

to an applied horizontal force.



fx={l-h)

w =
Jx=o.y=0

Now from Fig. 7-Sa we see that

x = K-/]> tan <b„,y=h

mg tan d> dx.

tan <b = dyldx or tan <f> dx = dy.

Making this substitution and noting that the integral depends only on the vari-

able y, we obtain finally

W = I [mg] dy = mg dy = mgh.
Jy=0 Jo

You should now try to compute the work done in displacing the particle

along the arc with constant speed by applying a force that is always directed

along the arc. Here it will be simpler to work with Eq. 7- 10a, using the tan-

tential force and taking dr =ld<}). The result will be the same as before, W = mgh.

Notice that both these results are the same as the work that would be done in

raising a mass m vertically through a height h.

What work has been done on the particle by the tension T in the string?

In our previous examples of work done by forces, we dealt with unac-

celerated objects. In such cases the resultant force acting on the object

is zero. Let us suppose now that the resultant force acting on an object

is not zero, so that the object is accelerated. The conditions are the same
in all respects to those that exist when a single unbalanced force acts

on the object.

The simplest situation to consider is that of a constant resultant

force F. Such a force, acting on a particle of mass m, will produce a con-

stant acceleration a. Let us choose the x-axis to be in the common direc-

tion of F and a. What is the work done by this force on the particle in

causing a displacement x? We have (for constant acceleration) the rela-

tions

and

x =

V — v

t

V 4 v„

which are Eqs. 3-12 and 3- 14 respectively [in which we have dropped the

subscript x, for convenience, and chosen x = in the last equation).

Here v() is the particle's speed at t = and v its speed at the time t. Then
the work done is

W = Fx = max

-f=»X
v + vQ

t =imv2 fanvo2 . 17-11)

We call one-half the product of the mass of a body and the square of

its speed the kinetic energy of the body. If we represent kinetic energy

by the symbol K, then

K= Jmv2
. (7-12)

We may then state Eq. 7-11 in this way: The work done by the resultant

fori c in ting on a particle is equal to the change in the kinetic eneig)

ui the particle

Although we have proved this result for a constant force only, it

7-5
KINETIC ENERGY AND
THE WORK-ENERGY
THEOREM



holds whether the resultant force is constant or variable. Let the re-

sultant force vary in magnitude (but not in direction), for example. Take

the displacement to be in the direction of the force. Let this direction

be the x-axis. The work done by the resultant force in displacing the

particle from x to x is

W
J

F • dx =
J

* F dx.

But from Newton's second law we have F = ma, and we can write the

acceleration a as

dv dv dx dv dv
a =

Hence

dt dx dt dx dx

W=
\

X

F dx=
\
mv^dx = i mv dv = }mv2 - imv<? . (7-13)

A more general case is that in which the force varies both in direc-

tion and magnitude and the motion is along a curved path, as in Fig. 7-7.

(See Problem 8.) Once again we find that the work done on a particle

by the resultant force is equal to the change in the kinetic energy of the

particle.

The work done on a particle by the resultant force is always equal to

the change in the kinetic energy of the particle:

W (of the resultant force) = K-K = AK. (7-14)

Equation 7-14 is shown as the work-energy theorem tor a particle.

Notice that when the speed of the particle is constant, there is no
change in kinetic energy and the work done by the resultant force is

zero. With uniform circular motion, for example, the speed of the par-

ticle is constant and the centripetal force does no work on the particle.

A force at right angles to the direction of motion merely changes the

direction of the velocity and not its magnitude. Only when the resultant

force has a component along the direction of motion does it change the

speed of the particle or its kinetic energy. Work is done on a particle by
that component of the resultant force along the line of motion. This

agrees with our definition of work in terms of a scalar product, for in

F • dt only the component of F along dt contributes to the product.

If the kinetic energy of a particle decreases, the work done on it by

the resultant force is negative. The displacement and the component of

the resultant force along the line of motion are oppositely directed. The
work done on the particle by the force is the negative of the work done
by the particle on whatever produced the force. This is a consequence
of Newton's third law of motion. Hence Eq. 7-14 can be interpreted to

say that the kinetic energy of a particle decreases by an amount just

equal to the amount of work which the particle does. A body is said to

have energy stored in it because of its motion; as it does work it slows

down and loses some of this energy. Therefore, the kinetic energy of a

body in motion is equal to the work it can do in being brought to rest.

This result holds whether the applied forces are constant or variable.

The units of kinetic energy and of work are the same. Kinetic energy,

like work, is a scalar quantity. The kinetic energy of a group of particles

is simply the (scalar) sum of the kinetic energies of the individual par-

ticles in the group.



A neutron, one of the constituents of a nucleus, is found to pass two points 6.0 EXAMPLE 4
m apart in a time interval of 1.8 x 10~4

s. Assuming its speed was constant, find

its kinetic energy. The mass of a neutron is 1.7 x 10~ 27 kg.

We find the speed from

6.0 m
1.8 x 10 4

s
3.3 x 104 m/s.

The kinetic energy is

K = }mv2 = (i)(1.7 x 10 27 kg|(3.3 x 104 m/s) 2 =9.3 x 10 19
}.

For purposes of nuclear physics the joule is a very large energy unit. A unit more
commonly used is the election volt |eV), which is equal to 1.60 x 10 -19

J. The
kinetic energy of the neutron in our example can then be expressed as

/C = (9.3 x 10- 19

At.
1 eV

60 x 10" 19
J

5.8 eV.

Assume the force of gravity to be constant for small distances above the surface

of the earth. A body is dropped from rest at a height h above the earth's surface.

What will its kinetic energy be just before it strikes the ground?

The gain in kinetic energy is equal to the work done by the resultant force,

which here is the force of gravity. This force is constant and directed along the

line of motion, so that the work done by gravity is

W = F • d = mgh.

Initially the body has a speed v = and finally a speed v. The gain in kinetic

energy of the body is

jmv2 {mvn2 = \mv- — 0.

Equating these two equivalent terms we obtain

K = }mv2 = mgh

as the kinetic energy of the body just before it strikes the ground.

The speed of the body is then

v = Vlgh.

You should show that in falling from a height h, to a height h-: a body will

increase its kinetic energy from |mvi 2 to imv2
2

, where

mg[h, -hi).rm v.. .mv

In this example we are dealing with a constant force and a constant acceleration.

The methods developed in previous chapters should be useful here too. Can you

show how the results obtained by energy considerations could be obtained di-

rectly from the laws of motion for uniformly accelerated bodies-

EXAMPLE 5

A block weighing 8.0 lb (= 35.6 N) slides on a horizontal frictionless table with

a speed of 4.0 ft/s (= 1.22 m/s). It is brought to rest in compressing a spring in its

path. By how much is the spring compressed if its force constant is 0.25 lb/ft

(= 1.35 N/m)?

The kinetic energy of the block is

K = -Jmv2 = Mw/g)v*.

I his kinetic energy is equal to the work W that the block can do before it is

brought to resi Hie work done m compressing the springs distance x beyond
its unstretched length is

W !>kx-,

EXAMPLE ft



so that

!£x2 = !(w/g)v2

or

w
x = \—r v =

8.0

\g* \ (32)(0.25
4.0 ft = 4.0 ft |= 1.22 m)

The work-energy theorem does not represent a new, independent law of

classical mechanics. We have simply defined work and kinetic energy

and derived the relation between them directly from Newton's second

law. The work-energy theorem is useful, however, for solving problems

in which the work done by the resultant force is easily computed and

in which we are interested in finding the particle's speed at certain posi-

tions. Of greater significance, perhaps, is the fact that the work-energy

theorem is the starting point for a sweeping generalization in physics.

It has been emphasized that the work-energy theorem is valid when W
is interpreted as the work done by the resultant force acting on the

particle. However, it is helpful in many problems to compute separately

the work done by certain types of force and give special names to the

work done by each type. This leads to the concepts of different types of

energy and the principle of the conservation of energy, which is the sub-

ject of the next chapter.

o

m
n

7-6
SIGNIFICANCE OF THE
WORK-ENERGY
THEOREM

Let us now consider the time involved in doing work. The same amount 7"7
of work is done in raising a given body through a given height whether POWER
it takes one second or one year to do so. However, the rate at which
work is done is often more interesting to us than the total work per-

formed.

We define power as the time rate at which work is done. The average

power delivered by an agent is the total work done by the agent divided

by the total time interval, or

P = Wit.

The instantaneous power delivered by an agent is

P = dW/dt. (7-15)

If the power is constant in time, then P — P and

W = Pt.

In the International System of units, the unit of power is 1 joule/sec,

which is called 1 watt (abbreviation W). This unit of power is named
in honor of James Watt who made major improvements to the steam
engines of his day that pointed the way toward today's more efficient

engines. In the British engineering system, the unit of power is 1 ft • lb/

sec. Because this unit is quite small for practical purposes, a larger unit,

called the horsepower (abbreviation hp), has been adopted. Actually

Watt himself suggested as a unit of power the power delivered by a

horse as an engine. One horsepower was chosen to equal 550 ft • lb/sec.

One horsepower is equal to about 746 watts or about three-fourths of a

kilowatt. A horse would not last very long at that rate.

Work can also be expressed in units of power x time. This is the

origin of the term kilowatt-hour, for example. One kilowatt-hour is the

work done in 1 hour by an agent working at a constant rate of 1 kW.



An automobile uses 100 hp and moves at a uniform speed of 60 mi/h 1= 88 ft/s)'. EXAMPLE T
What is the forward thrust exerted by the engine on the car?

_ W Fd
P = — = = F • v.

t t

The forward thrust F is in the direction of motion given by v, so that

P = Fv,

and F= f= (|M W550ft-lb/SecX

v \88 ft/sA 1 hp /

Why doesn't the car accelerate?

1. Can you think of other words like "work" whose colloquial meanings are

often different from their scientific meanings'

2. Suppose that three constant forces act on a particle as it moves from one

position to another. Is the work done on the particle by the resultant of

these three forces equal to the sum of the work done by each of the three

forces acting separately?

3. The inclined plane (see Example 1) is a simple machine which enables us

to do work with the application of a smaller force than is otherwise neces-

sary. The same statement applies to a wedge, a lever, a screw, a gear wheel,

and a pulley. Do such machines save us work ?

4. In a tug of war one team is slowly giving way to the other. What work is

being done and by whom?

5. The work done by frictional forces is always negative. Can you explain this?

6. A man exerts a constant force on a fixed wall and does no mechanical work
on it. Why does he feel tired doing this?

7. You lift a bowling ball from the floor and put it on a table. Two forces act

on the ball: its weight —mg, and your upward force +mg. These two forces

cancel each other so that it would seem that no work is done. On' the other

hand you know that you have done some work. What is wrong?

8. You cut a spring in half. What is the relationship of the spring constant k

for the original spring to that for either of the half-springs!
1

9. Springs A and R are identical except that A is stiffer than B, that is, k A > k B .

On which spring is more work expended if [a] they are stretched by the same
amount, \b) they are stretched by the same force :

10. Does kinetic energy depend on the direction of the motion involved? Can
it be negative?

11. The work done by the resultant force is always equal to the change in

kinetic energy. Can it happen that the work done by one of the component
forces alone will be greater than the change in kinetic energy? If so, give

examples.

12. You throw a ball vertically in the air and catch it. What does the work-

energy theorem say qualitatively about the free flight during this round trip?

Answer the question first neglecting air resistance and second, taking it

into account.

13. When two children play catch on a train, does the kinetic energy of the ball

depend on the speed of the train? Does the reference frame chosen affect

your answci It so, would you call kinetic energy a scalar quantity? (See

Problem 21.)

14. Does the work done by the resultant force acting on a particle depend on

the inertia] reference frame of the observer? Does the change in kinetic

energy so depend

15. A man rowing a boal upstream is ai resl with respeci to the shore [a) Is he

questions



doing any work" (fa) If he stops rowing and moves down with the stream, is
JJ

any work being done on him? *

16. Does the power needed to raise a box onto a platform depend on how fast it -a
>3

is raised" q
17. You lift some books from a library shelf to a higher shelf in time t. Does *

the work that you do depend on [a] the mass of the books, (fa) the weight of

the books, (c) the height of the upper shelf above the floor, [d] the time t,

and [e] whether you lift the books sideways or directly upward? ^
18. We hear a lot about the "energy crisis." Would it be more accurate to speak £

of a "power crisis"? ^

SECTION 7-2

1. A man pushes a 60-lb (270-N) block 30 ft (9.1 m) along a level floor at con-

stant speed with a force directed 45° below the horizontal. If the coefficient

of kinetic friction is 0.20, how much work does the man do on the block?

Answer: 450 ft • lb (610 J).

2. A block of mass m = 3.57 kg is drawn at constant speed a distance d =4.06

m along a horizontal floor by a rope exerting a constant force of magnitude

F= 7.68 N making an angle 6= 15.0° above the horizontal. Compute [a) the

total work done on the block, (fa) the work done by the rope on the block,

(c) the work done by friction on the block, and [d] the coefficient of kinetic

friction between block and floor.

3. A 100-lb block of ice slides down an incline 5.0 ft long and 3.0 ft high. A
man pushes up on the ice parallel to the incline so that it slides down at

constant speed. The coefficient of friction between the ice and the incline

is 0.10. Find {a) the force exerted by the man, (fa) the work done by the man
on the block, (c) the work done by gravity on the block, [d] the work done

by the surface of the incline on the block, (e) the work done by the resultant

force on the block, and (/) the change in kinetic energy of the block.

Answer: [a] 52 lb. (fa) -260 ft • lb. (c) 300 ft • lb. \d) -40 ft • lb. (e) Zero.

(/) Zero.

4. A crate weighing 500 lb (2200 N) is suspended from a rope 40 ft (12 m) long.

The crate is then pushed aside 4.0 ft (1.2 m) from the vertical and held there.

[a] What force directed along the arc is needed to keep the crate in this posi-

tion? (fa) Is work being done in holding it there? (c) Was work done in moving
it aside? If so, how much? [d] Does the tension in the rope perform any work
on the crate?

5. A cord is used to lower vertically a block of mass M a distance d at a con-

stant downward acceleration of g/4. Find the work done by the cord on the

block. Answer: —3Mgd/4.

SECTION 7-3

6. [a] Estimate the work done by the force shown on the graph (Fig. 7-9) in dis-

placing a particle from x = 1 m to x = 3 m. Refine your method to see how

problems

figure 7-9

Problem 6



close you can come to the exact answer of 6 J. [b] The curve is given analyti-

cally by F = a/x2 where a = 9 N • m2
. Show how to get the work done by the

rules of integration.

7. A single force acts on a body in rectilinear motion. A plot of velocity versus

time for the body is shown in Fig. 7-10. Find the sign (positive or negative]

of the work done by the force on the body in each of the intervals AB, BC,

CD, and DE.

Answer: AB, BC, CD, DE.

+ - +

SECTION 7-4

8. When the force F varies both in direction and magnitude and the motion is

along a curved path, the work done by F is obtained from dW — F • dt, the

subsequent integration being taken along the curved path. Notice that both

F and d>, the angle between F and dt, may vary from point to point (see Fig.

7-7). Show that for two- or three-dimensional motion

W imv2 — imvo2
,

where v is the final speed and v () the initial speed.

SECTION 7-5

9. From what height would an automobile have to fall to gain the kinetic

energy equivalent to what it would have when going 60 mi/h |97 km/h)?

Answer: 120 ft (37 m).

10. A running man has half the kinetic energy of a boy half his mass. The man
speeds up by 1.0 m/s and then has the same kinetic energy as the boy. What

were the original speeds of [a] man and [b] boy?

11. If a 2.9 x 105 kg (weight mg = 6.4 x 105 lb) Saturn V rocket with an Apollo

spacecraft attached must achieve an escape velocity of 11.2 km/s [25,000

mi/h) near the surface of the earth, how much energy must the fuel con-

tain" Would the system actually need as much, or would it need more"

Why? Answer: 1.8 x 10 13
J (1.3 x 10 13

ft lb).

12. A proton starting from rest is accelerated in a cyclotron to a final speed of

3.0 x 107 m/s (about one-tenth the speed of light). How much work, in

electron volts, is done on the proton by the electrical force of the cyclotron

that accelerates it- 1 eV = 1.6 x 10 ,9
J.

13. A 30-g bullet initially traveling 500 m/s penetrates 12 cm into a wooden

block. What average force does it exert on the block?

Answer: 3.1 x 104 N.

14. An outfielder throws a baseball with an initial speed of 60 ft/s. An infielder

catches the ball at the same level when its speed is reduced to 40 ft/s. What

work was done in overcoming the resistance of the air? The weight of a

baseball is 9.0 oz.

15. A proton (nucleus of the hydrogen atom) is being accelerated in a linear

accelerator. In each stage of such an accelerator the proton is accelerated

along a straight line at 3.6 x lO 1 "' m/s2
. If a proton enters such a stage moving

initially with a speed of 2.4 x 107 m/s, and the stage is 3.5 cm long, compute

[a] its speed at the end of the stage and [b] the gain in kinetic energy result-

ing from the acceleration. Take the mass of the proton to be 1.67 x 10 27 kg

and express the energy in electron volts
;

1 eV = 1.6 x 10 lfl
|.

wei [a] 2.9 x 107 m/s. [b] 1.3 x 10,; eV.

16. Show from considerations of work and kinetic energy that, assuming the

driver jams on the brakes, the stopping distance for a car of mass m moving

with speed v along a level road is V*l2(ikg, whin fit
is the coefficient ol

kinetic friction between tires and road. (See Example 2. Chapter 6 and

Questions 3, 4 5 of Chapter 8.)

17. A 5.0-kg block moves in a straight line on a horizontal frit tionless surface

under the influence ol a force thai varies with position .is shown in Fig

7 || a) 1 low much work is done by the fort e .is the block moves from the

figure 7-10

Problem 7



figure 7-11

Problem 17
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origin to x = 8.0 m? [b] If the particle's speed passing through the origin

was 4.0 m/s, with what speed does it pass the point x = 8.0 m?
Answer: [a] 25 J. [b] 5.1 m/s.

A helicopter is used to lift a 160-lb (710-N) astronaut 50 ft (15 m) vertically

from the ocean by means of a cable. The acceleration of the astronaut is

g/10. (a) How much work is done by the helicopter on the astronaut: (b)

How much work is done by the gravitational force on the astronaut? (c)

With what speed does the astronaut reach the helicopter-
1

figure 7-12

Problem 19

19. The block of mass M shown in Fig. 7-12 initially has a velocity v to the

right and its position is such that the spring exerts no force on it, that is, the

spring is not stretched or compressed. The block moves to the right a dis-

tance 1 before stopping in the dotted position shown. The spring constant

is k and the coefficient of kinetic friction between block and table is /xk . As
the block moves the distance 1, [a) what is the work done on it by the fric-

tion force? [b] What is the work done on it by the spring force? (c) Are there

other forces acting on the block, and, if so, what work do they do? [d] What
is the total work done on the block? [e] Use the work-energy theorem to find

the value of 1 in terms of M, vu , fxk , g. and k.

Answer: [a] —fikMgl. [b] —kl2
/2. (c) Gravity and the vertical thrust of the

table, which do no work, (d) -[/xkMgl 4- kl 2
/2).

\e) (V^-2M2
g
2 + v<?kM - fJLkMg)/k.

2&. [a] A mass of 0.675 kg on a frictionless table is attached to a string which
passes through a hole in the table at the center of the horizontal circle in

which the mass moves with constant speed. If the radius of the circle is

0.500 m and the speed is 10.0 m/s, compute the tension in the string, [b] It is

found that drawing an additional 0.200 m of the string down through the

hole, thereby reducing the radius of the circle to 0.300 m, has the effect of

multiplying the original tension in the string by 4.63. Compute the total

work done by the string on the revolving mass during the reduction of the

radius.

21. Work and Kinetic Energy in Moving Reference Frames. Consider two ob-

servers, one whose frame is attached to the ground and another whose frame

is attached, say, to a train moving with uniform velocity u with respect to

the ground. Each observes that a particle, initially at rest with respect to

the train, is accelerated by a constant force applied to it for time t in the

forward direction.

[a). Show that for each observer the work done by the force is equal to the



gain in kinetic energy of the particle, but that one observer measures these

quantities to be ^md1 ?1 , whereas the other observer measures them to be

±ma 2
t
2 +maut. Here a is the common acceleration of the particle of mass m.

(£>). Explain the differences in work done by the same force in terms of

the different distances through which the observers measure the force to

act during the time r. Explain the different final kinetic energies measured

by each observer in terms of the work the particle could do in being brought

to rest relative to each observer's frame.

SECTION 7-7

22. If a 128-lb (570 N) woman runs up a flight of stairs having a rise of 14 ft

(4.3 m) in 3.5 s, what average power must she supply-
1

2& 1200 m3 of water passes each second over a waterfall 100 m high. Assuming
that three-fourths of the kinetic energy gained by the water in falling is con-

verted to electrical energy by a hydroelectric generator, what is the power
output of the generator? Answer: 8.8 x 105 kW.

24. The loaded cab of an elevator has a mass m of 3.0 x 103 kg and moves 200 m
up the shaft in 20 s. At what average rate does the cable do work on the cab?

25. A horse pulls a cart horizontally with a force of 40 lb at an angle of 30° above

the horizontal and moves along at a speed of 6.0 mi/h. [a] How much work
does the horse do in 10 minutest' \b) What is the power output of the horse?

Answer: [a] 1.8 x 105
ft • lb. \b) 0.55 hp.

26. What power is developed by a grinding machine whose wheel has a radius

of 8.0 in. and runs at 2.5 rev/s when the tool to be sharpened is held against

the wheel with a force of 40 lb? The coefficient of friction between the tool

and the wheel is 0.32.

27. A satellite rocket weighing 100,000 lb acquires a speed of 4000 mi/h in

1.0 min after launching. [a] What is its kinetic energy at the end of the first

minute? [b] What is the average power expended during this time, neglect-

ing frictional and gravitational forces?

Answer: [a) 5.4 x 10 10
ft • lb. [b] 1.6 x 106 hp.

2y A net force of 5.0 N acts on a 15 kg-body initially at rest. Compute [a] the

work done by the force in the first, second, and third second and [b] the in-

stantaneous power exerted by the force at the end of the third second.

29. A force acts on a 3.0-kg particle in such a way that the position of the par-

ticle as a function of time is given by x = 3r — 4r2 + r
3

, where x is in meters

and t is in seconds. [a] Find the work done by the force during the first 4.0

s. [b] At what instantaneous rate is the force doing work on the particle at

the instant t = 1.0 s? Answer: \a) 530 J. [b] 12 W.

30. The force required to tow a boat at constant velocity is proportional to the

speed. If it takes 10 hp (7500 W) to tow a certain boat at a speed of 2.5 mi/h

(4.0 km/h), how much power does it take to tow it at a speed of 7.5 mi/h

(12 km/hi-

31. A body of mass m accelerates uniformly from rest to a speed vy in time tf .

{a) Show that the work done on the body as a function of time t. in terms of

v, and tf, is

[b] As a function of time t, what is the instantaneous power delivered to the

body? (c) What is the instantaneous power .it the end of 5.0 s delivered to a

3200 lb body which accelerates to 60 mi/h in Id s?

Answer: [b] mvft/tj2 . [c] 70 hp.

32. A truck can move up a road having a grade ol 1 tt use ever) 50 It with .1

speed of 15 mi/h. The resisting Fori e is equal to 1/25 the weight ol the truck.

I will the same truck move down the lull with the same horse

power?



33. A 1.5 x 106 W railroad locomotive accelerates a train from a speed of 10

m/s to 25 m/s at full power in 6.0 minutes, [a] Neglecting friction, calculate w
the mass of the train, [b) Find the speed of the train as a function of time

during the interval, (c) Find the force accelerating the train as a function of s>

time during the interval, (d) Find the distance moved by the train during the §
interval. 5

Answer: [a] 2.1 x 10B kg. [b) V100+ 1.4 f m/s.

(c) (1.5 x 10«)/Vl00 + 1.4 t N. \d) 6.9 km.

-5



8
the

conservation

of energy
In Chapter 7 we derived the work-energy theorem from Newton's sec- j£.|

ond law of motion. This theorem says that the work W done by the re- INTRODUCTION
sultant force F acting on a particle as it moves from one point to another

is equal to the change \K in the kinetic energy of the particle, or

W = AK. (8-1)

Often several forces act on a particle, the resultant force F being their

vector sum, that is, F = Fi + F2 + • • • F,„ in which we assume that n

forces act. The work done by the resultant force F is the algebraic sum
of the work done by these individual forces, or W — W, + W 2 + • W„.

Thus we can write the work-energy theorem (Eq. 8-1) as

W, 4- W 2 + • + W„ = AK. (8-2)

In this chapter we shall consider systems in which a particle is acted

upon by various kinds of forces and we shall compute Wi, W->, and so

on, for these forces; this will lead us to define different kinds of energy

such as potential energy and heat energy. The process culminates in the

formulation of one of the great principles of science, the conservation of

energy principle.

Let us first distinguish between two types of forces, conservative and J{-2
nonconservative. We shall consider an example of each type and we CONSERVATIVE FORCES
dis< uss each example from several different, but related, points of view

Imagine a spring fastened at one end to a rigid wall as in Fig. 8-1. Let

us slide a block of mass m with velocity v directly toward the spring;

we assume that the horizontal plane is frictionless and that the spring

i:t l



is ideal, that is, that it obeys Hooke's law (Eq. 7-7)

F = -kx,

H>

(8-3) .
=

where F is the force exerted by the spring when its free end is displaced

through a distance x
;
we assume further that the mass of the spring is

so small compared with that of the block that we can neglect the

kinetic energy of the spring. Thus, in the system (mass + spring), all

the kinetic energy is concentrated in the mass.

After the block touches the spring, the speed and hence the kinetic

energy of the block decrease until finally the block is brought to rest by

the action of the spring force, as in Fig. 8-li>. The block now reverses

its motion as the compressed spring expands. It gains speed and kinetic

energy and, when it comes once again to its position of initial contact

with the spring, we find that it has the same speed and kinetic energy

as it had originally; only the direction of motion has changed. The block

loses kinetic energy during one part of its motion but gains it all back

during the other part of its motion as it returns to its starting point

(Fig. 8-lc).

We have interpreted the kinetic energy of a body as its ability to do

work by virtue of its motion. It is clear that at the completion of a round

trip the ability of the block in Fig. 8-1 to do work remains the same,- it

has been conserved. The elastic force exerted by an ideal spring, and

other forces that act in this same way, are called conservative. The
force of gravity is also conservative; if we throw a ball vertically up-

ward, it will (if we assume air resistance to be negligible) return to our

hand with the same kinetic energy that it had when it left our hand.

If, however, a particle on which one or more forces act returns to its

initial position with either more or less kinetic energy than it had ini-

tially, then in a round trip its ability to do work has been changed. In

this case the ability to do work has not been conserved and at least one

of the forces acting is labeled nonconservative.

To illustrate a nonconservative force let us assume that the surfaces

of the block and the plane in Fig. 8-1 are not frictionless but rather that

a force of friction f is exerted by the plane on the block. The frictional

force opposes the motion of the block no matter which way the block

is moving and we find that the block returns to its starting point with

less kinetic energy than it had initially. Since we showed in our first

experiment that the spring force was conservative, we must attribute

this new result to the action of the friction force.* We say that this

force, and other forces that act in this same way, are nonconservative.

The induction force in a betatron (Section 35-6) is also a nonconserva-

tive force. Instead of dissipating kinetic energy, however, it generates it,

so that an electron moving in the circular betatron orbit will return to

its initial position with more kinetic energy than it had there origi-

nally. In a round trip the electron gains kinetic energy, as it must do if

the betatron is to be effective.

We can define conservative force from another point of view, that of

the work done by the force on the particle. In our first example above,

the work done by the elastic spring force on the block while the spring

was being compressed was negative, because the force exerted on the

block by the spring (to the left in Fig. S-la) was directed opposite to the

rnrararaR)! (a)

(b)

(c)

figure 8-1

(a) A block of mass m is projected

with speed v against a spring, (b)

The block is brought to rest by the

action of the spring force, (c) The
block has regained its initial speed

v as it returns to its starting point.
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* Actually two other forces act on the block in Fig. 8-1, its weight W and the normal

force N exerted by the plane. Because these act at right angles to the motion, they cannot

change the kinetic energy of the block and hence do not enter into this discussion.



displacement of the block (to the right in Fig. 8-la). While the spring

was being extended the work that the spring force did on the block was
positive (force and displacement in the same direction). In our first

example the net work done on the block by the spring force during a

complete cycle, or round trip, is zero.

In our second example we considered the effect of the frictional

force. The work done on the block by this force was negative for each

portion of the cycle because the frictional force always opposed the

motion. Hence the work done by friction in a round trip cannot be zero.

In general, then: A force is conservative if the work done by the force

on a particle that moves through any round trip is zero. A force is non-

conservative if the work done by the force on a particle that moves
through any round trip is not zero.

The work-energy theorem shows that this second way of defining

conservative and nonconservative forces is fully equivalent to our first

definition. If there is no change in the kinetic energy of a particle mov-
ing through any round trip then A/C = and, from Eq. 8-1, W = and the

resultant force acting must be conservative. Similarly, if ±K ^ 0, then

from Eq. 8-1, W ^ and at least one of the forces acting must be non-

conservative.

We can look into this matter in a little more detail. When friction is present in

the system of Fig. 8-1, four forces act on the block, the resultant force being

F = Fs + W + N + f

in which the forces are the spring force Fs , the weight of the block W, the normal

force exerted on the block by the plane N, and the frictional force f. We can

write Eq. 8-2, the work-energy theorem, as

Ws + Ww + W.v + Wf= AK,

where the terms on the left are the work done on the block by the four forces

above. We have seen that for a round trip Ws = 0. Similarly, Ww = W.v = be-

cause the corresponding forces are at right angles to the displacement of the

block. Thus the change in kinetic energy is due entirely to Wf, the work done

by the frictional force.

We can consider the difference between conservative and noncon-

servative forces in still a third way. Suppose a particle goes from a to b

along path 1 and back from b to a along path 2 as in Fig. 8-2a. Several J—~^.b Jr -

forces may act on the particle during this round trip
;
we consider each \Sforce separately. If the force being considered is conservative, the work

done on the particle by that particular force for the round trip is zero, or
(a) (b)

Wab.i + Wba,t = 0, figure 8-2

which we can write as

Wab,i =-Wba ,i .

That is, the work in going from a to b along path 1 is the negative of the

work in going from b to a along path 2. However, if we cause the particle

to go from a to b along path 2, as shown in Fig. 8-2/^, we merely reverse

the direction of the previous motion along 2, so that

W„„. 2 = -W,„,,,

Hence
W,„,, = Wat*

which tells us that the work done on the particle by a conservative force

in going from a to b is the same fo] either path.

Paths I and 2 can be any paths at all as long .is they go from a to b,



and a and b can be chosen to be any two points at all. We always find

the same result if the force is conservative. Hence, we have another

equivalent definition of conservative and nonconservative forces: A
force is conservative if the work done by it on a particle that moves
between two points depends only on these points and not on the path

followed. A force is nonconservative if the work done by that force on

a particle that moves between two points depends on the path taken

between those points.

To illustrate this third (equivalent) definition of conservative forces,

let us consider a second kind of conservative force, that due to gravity.

Suppose that we take a stone of mass m in our hand and raise it to a

height h above the ground, going from a to b by several different paths

as in Fig. 8-3. We already know that in a round trip the total work done

by a conservative force is zero and that the gravitational force is con-

servative. The work done on the stone by gravity along the return path

bca is simply mgh. Hence, because gravity is a conservative force, the

work done by gravity on the stone along any of the paths from a to b

must be —mgh, for only if this is true can the total work done by gravity

in a round trip be zero. This means that gravity does negative work on

the stone as it moves from a to b, or, to put it another way, work must
be done against gravity along any of the paths ab. You can compute
directly the result that the work done by gravity along any path from

a to b equals —mgh. For any of these paths can be decomposed into in-

finitesimal displacements which are alternately horizontal and vertical;

no work is done by gravity in horizontal displacements, and the net

vertical displacement is the same in all cases. Hence the work done by

gravity on the stone moving from a to b depends only on the positions

of a and b and not at all on the path taken.

For a nonconservative force, such as friction, the work done is not

independent of the path taken between two fixed points. We need only

point out that as we push a block over a (rough) table between any two
points a and b by various paths, the distance traversed varies and so

does the work done by the frictional force. It depends on the path.

The definitions of conservative force which we have given are

equivalent to one another. Which one we use depends only on con-

venience. The round-trip approach shows clearly that kinetic energy is

conserved when conservative forces act. If we wish to develop the idea

of potential energy, however, the path independence statement is pref-

erable.
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figure 8-3

A stone is raised from a to b via

various paths 1, 2, 3, and 4.

In this section we shall focus attention not on the moving block of

Fig. 8-1 but rather on the isolated system (block + spring). Instead of

saying that the block is moving we prefer, from this point of view, to say

that the configuration of the system is changing. We measure both the

position of the block and the configuration of the system at any instant

by the same parameter x, namely, the displacement of the free end of

the spring from its normal position, corresponding to an unstretched

spring. The kinetic energy of the system is the same as that of the block

because we have assumed the spring to be massless.

We have seen that the kinetic energy of the system of Fig. 8-1 de-

creases during the first half of the motion, becomes zero, and then

increases during the second half of the motion. If there is no friction,

the kinetic energy of the system when it has regained its initial con-

figuration returns to its initial value.

8-3
POTENTIAL ENERGY



Under these circumstances (conservative forces acting) it makes
sense to introduce the concept of energy of configuration, or potential

energy U, and to say that if K for the system changes by AK as the con-

figuration of the system changes (that is, as the block moves in the sys-

tem of Fig. 8-1), then U for the system must change by an equal but

opposite amount so that the sum of the two changes is zero, or

AK + MJ = 0. |8-4a)

Alternatively, we can say that any change in kinetic energy K of the

system is compensated for by an equal but opposite change in the po-

tential energy U of the system so that their sum remains constant

throughout the motion, or

K + U = a constant. (8-4b)

The potential energy of a system represents a form of stored energy

which can be fully recovered and converted into kinetic energy. We
cannot associate a potential energy with a nonconservative force such

as the force of friction because the kinetic energy of a system in which
such forces act does not return to its initial value when the system

returns to its initial configuration.

Equations 8-4 apply to a closed system of interacting objects, such

as the (mass + spring) system of Fig. 8-1. In this example, because we
have taken the spring to be effectively massless, the kinetic energy

may be associated with the moving mass alone. The block slows down
(or speeds up) because a force is exerted on it by the spring; it is appro-

priate, then, to associate the potential energy of the system with this

force, that is to say, with the spring. Thus in this simple case we say

that kinetic energy, localized in the mass, decreases during the first

part of the motion whereas potential energy, localized in the spring,

increases during this same time.*

Equations 8-4 are essentially bookkeeping statements about energy.

They, and the concept of potential energy, have no real meaning, how-
ever, until we have shown how to calculate U as a function of the con-

figuration of the system within which the conservative forces act; in

the example of Fig. 8-1 this means that we must be able to calculate

U[x), where x is the spring displacement.

To refine our concept of potential energy U let us consider the

work-energy theorem, W = AK, in which W is the work done by the

resultant force on a particle as it moves from a to b. For simplicity let

us assume that only a single force F acts on the particle; this is effec-

tively true in the system of Fig. 8-1. If F is conservative, we can com-
bine the work-energy theorem (Eq. 8-1) with Eq. 8-4a, obtaining

W = AK = -AU. [8-5a]

The work W done by a conservative force depends only on the starting

and the end points of the motion and not on the path followed between

them. Such a force can depend only on the position of a particle; it does

not depend on the velocity of the particle or on the time, for example.

For motion in one dimension, Eq. 8-5a becomes

lust as we assumed the spring t<> be effectively massless we also assume the block to be

rigid tli.it is effectively "springless." In a more general system, kinetic and potential

energy could each be present in various parts of the system in varying proportions as the

system configuration i hanges.



hU = -W = -\ F[x) dx, [8-5b]

the particle moving from x to x. Equation 8-5 b shows how to calculate

the change in potential energy AU when a particle, acted on by a con-

servative force F[x), moves from point a, described by x , to point b,

described by x. The equation shows that we can only calculate A17 if

the force F depends only on the position of the particle (that is, on the

system configuration), which is equivalent to saying that potential

energy has meaning only for conservative forces.

Now that we know that the potential energy U depends on the posi-

tion of the particle only, we can write Eq. 8-4£> as

Yinv2 + U[x) = E (one-dimension) (8-6d)

in which £, which remains constant as the particle moves, is called the

total mechanical energy. Suppose that the particle moves from point a

(where its position is x and its speed is v
)
to point b (where its position

is x and its speed is v)
;
the total mechanical energy E must be the same

for each system configuration when the force is conservative, or, from

Eq. 8-6a,

imv2 + U[x) = imv„2 + U[x ). (8-6b)

The quantity on the right depends only on the initial position x and

the initial speed v{) , which have definite values; it is, therefore, constant

during the motion. This is the constant total mechanical energy E.

Notice that force and acceleration do not appear in this equation, only

position and speed. Equations 8-6 are often called the law of conserva-

tion of mechanical energy for conservative forces.

In many problems we find that although some of the individual

forces are not conservative, they are so small that we can neglect them.

In such cases we can use Eqs. 8-6 as a good approximation. For example,

air resistance may be present but may have so little effect on the motion
that we can ignore it.

Notice that, instead of starting with Newton's laws, we can simplify

problem solving when conservative forces alone are involved by starting

with Eqs. 8-6. This relation is derived from Newton's laws, of course,

but it is one step closer to the solution (the so-called first integral of the

motion). We often solve problems without analyzing the forces or writ-

ing down Newton's laws by looking instead for something in the mo-
tion that is constant; here the mechanical energy is constant and we
can write down Eqs. 8-6 as the first step.

For one-dimensional motion we can also write the relation between

force and potential energy (Eq. 8-5b) as

*W—^- 18-71

To show this, substitute this expression for F(x) into Eq. 8-5 b and ob-

serve that you get an identity. Equation 8-7 gives us another way of

looking at potential energy. The potential energy is a function of posi-

tion whose negative derivative gives the force.

You may have noticed that we wrote down the quantity U(x) in Eqs.

8-6 although we are only able to calculate changes in U (from Eq. S-5b)

and not U itself. Let us imagine that a particle moves from a to b along

the x-axis and that a single conservative force F(x) acts on it. To assign



a value to Ub , the potential energy at point b, let us write

\U = Ub - Ua,

or (see Eq. 8-5b),

Ub = MJ + Ua = -
\

Xb

F(x) dx + Ua . (8-8)

We cannot assign a value to Ub until we have assigned one to U„. If

point b is any arbitrary position x, so that Ub = U[x), we give meaning
to U[x) by choosing point a to be some convenient reference position,

described by x„ = x , and by arbitrarily assigning a value to the potential

energy U„ = U[x ) when the body is at that point. Thus Eq. 8-8 becomes

U[x) = -(' F(x) dx + U[xo). (8-9)

The potential energy when the body is at the reference position, that is,

U[x ), is usually given the arbitrary value zero.

It is often convenient to choose the reference position x to be that at

which the force acting on the particle is zero. Thus the force exerted by

a spring is zero when the spring has its normal unstretched length; we
usually say that the potential energy is also zero for this condition. Also,

the attraction of the earth on a body decreases as the body moves away
from the earth, becoming zero at an infinite distance. We usually take

infinity as our reference position and assign the. value zero to the poten-

tial energy associated with the gravitational force at that position (see

Chapter 16). So far, however, we have been more concerned with the

gravitational pull on bodies such as baseballs, etc., which, in compari-

son to the earth's radius, never move very far from the earth's surface.

Here the gravitational force (= mg) is essentially constant and we find

it convenient to take the zero of potential energy to be, not at infinity,

but at the surface of the earth.

The effect of changing the coordinate of the standard reference posi-

tion x , or of the arbitrary value assigned to U{x ), is simply to change

the value of U[x) by an added constant. The presence of an arbitrary

added constant in the potential energy expression (Eq. 8-9) makes no
difference to the equations that we have written so far. This simply

adds the same constant term to each side of Eq. 8-6/1, for example, leav-

ing that equation unchanged. Furthermore, changing U[x) by an added

constant does not change the force calculated from Eq. 8-7 because the

derivative of a constant is zero. All this simply means that the choice of

a reference point for potential energy is immaterial because we are al-

ways concerned with differences in potential energy, rather than with

any absolute value of potential energy at a given point.

There is a certain arbitrariness in specifying kinetic energy also. In

order to determine speed, and hence kinetic energy, we must specify a

reference frame. The speed of a man sitting on a train is zero if we take

the train as a reference frame, but it is not zero to an observer on the

ground who sees the man move by with uniform velocity. The value of

the kinetic energy depends on the reference frame used by the observer.

Hence the important thing about mechanical energy E, which is the

sum ot the kinetic and the potential energies is not its actual value

during .1 given motion tins depends on the observer) but the fact that

this value does not < hange during the- motion foi any particular observe]

when the fori es are < onservative.



Let us now calculate the potential energy in one-dimensional motion

for two examples of conservative forces, the force of gravity for motions

near the earth's surface and the elastic restoring force of an (ideal)

stretched spring.

For the force of gravity we take the one-dimensional motion to be

vertical, along the y-axis. We take the positive direction of the y-axis to

be upward; the force of gravity is then in the negative y-direction, or

downward. We have F[y) = —mg, a constant. The potential energy at

position y is found from Eq. 8-9, or

U[y) = - \

V
F[y) dy + (7(0) = - P [-mg] dy + U\0) = mgy + U(0).

Jo Jo

The potential energy can be taken as zero where y =0, so that (7(0) = 0,

and

U[y) = mgy. (8-10)

The gravitational potential energy is then mgy. The relation F[y) =
—dU/dy (Eq. 8-7) is satisfied, for —d[mgy)ldy = —mg. We choose y =
to be at the surface of the earth for convenience, so that the gravita-

tional potential energy is zero at the earth's surface and increases lin-

early with altitude y.

If we compare points y and y — 0, the conservation of kinetic plus

potential energy, Eq. 8-6b, gives us the relation

\mv2 + mgy = jmv 2
.

This is mathematically equivalent to the well-known result (see Eq.

3-17),

v2 = v 2 — 2gy.

If our particle moves from a height hi to a height h 2 , we can use Eq. 8-6h

to obtain

imvi 2 + mghi = imv2
2 + mgh>.

This result is equivalent to that of Example 5, Chapter 7. The total

mechanical energy E is constant and is conserved during the motion,

even though the kinetic energy and the potential energy vary as the con-

figuration of the system (particle + earth) changes.

A second example of a conservative force is that exerted by an elastic

spring on a body of mass m attached to it moving on a horizontal fric-

tionless surface. If we take x„ = as the position of the end of the spring

when unextended, the force exerted on the mass when the spring is

stretched a distance x from its unextended length is F = —kx. The po-

tential energy is obtained from Eq. 8-9,

U[x)
\:

F[x) dx + U{0)
/:

-kx) dx+ U[0).

If we choose (7(0) = 0, the potential energy, as well as the force, is zero

when the spring is unextended, and

U[ x) = - f {-kx) dx = ikx2

Jo

The result is the same whether we stretch or compress the spring, that

is, whether x is plus or minus.

The relation F[x) = -dU/dx (Eq. 8-7) is satisfied, for -d{ikx2 )/dx =
—kx. The elastic potential energy of the spring is then

8-4
ONE-DIMENSIONAL
CONSERVATIVE
SYSTEMS



U[x) = \kx2
. (8-11)

The body of mass m will undergo a motion in which the total energy £

is conserved (Fig. 8-4). From Eq. 8-6b we have

\mv2 + ikx2 = imv 2
.

^>
Wmw/mmm

(b)

U K

v =

(a)

U K

<^
>ddw

(h)

U K

figure 8-4

A mass attached to a spring slides

back and forth on a frictionless

surface. The system is called a

harmonic oscillator. The motion of

the mass through one cycle is

illustrated. Starting at the left (9

o'clock) the mass is in its extreme

left position and momentarily at

rest: K = 0. The spring is extended

to its maximum length: U = L/max .

[K and U are illustrated in the bar

graphs below each sketch.) An
eighth-cycle later inext drawing) the

mass has gained kinetic energy, but

the spring is no longer so

elongated; K and U have here the

same value, K= U = UmaJ2. At the

top this spring is neither elongated

nor compressed and the speed is a

maximum: U = 0, K = Kmax = Um , is .

The cycle continues, with the total

energy E = K + U always the same:

E = Kmax = Umax . The harmonic

oscillator will be analyzed more
closely in Chapter 15.

U K

Here v() is the speed of the particle for x = 0. Physically we achieve such

a result by stretching the spring with an applied force to some position,

xm , and then releasing the spring. Notice that at x = the energy of the

system (particle + spring) is all kinetic. At x = xm (the maximum value

of x), v must be zero, so that here the system energy is all potential. At

x = xm , we have

or

ikx,,,2 = jmv»2

x„, = Vm/k v .

For positions between Xi and x2 , Eq. 8-6/7 gives

l

rkx. hnvt 2 ikx2
2 + kmvz2

.

We have seen that the kinetic energy of a body is the work that ti

body can do by virtue of its motion. We express the kinetic energy by

the formula K = Imv2
. We cannot give a similar universal formula by

which potential energy can be expressed. The potential energ) 0) a S) S

tern ft bodies /s the work that the system <>t bodies can do by virtue 0)

the relative position <>t it\ parts, that i\. by \ ntue at its configuration,

In ea< I) i .isi we must determine how much work the system can do in

passing from one 1 onfiguration to anothei and then take tins as the dit



ference in potential energy of the system between these two configura-

tions.

The potential energy of the spring depends on the relative position of

the parts of the spring. Work can be obtained by allowing the spring to

return from its extended to its unextended length, during which time

it exerts a force through a distance. If a mass is attached to the spring, as

in our example, the mass will be accelerated by this force and the poten-

tial energy will be converted to kinetic energy. In the gravitational case

an object occupies a position with respect to the earth. The potential

energy is a property of the object and the earth, considered as a system

of bodies. It is the relative position of the parts of this system that deter-

mines its potential energy. The potential energy is greater when the

parts are far apart than when they are close together. The loss of poten-

tial energy is equal to the work done in this process. This work is con-

verted into kinetic energy of the bodies. In our example we ignored the

kinetic energy acquired by the earth itself as an object fell toward it. In

principle, this object exerts a force on the earth and causes it to acquire

an acceleration, relative to some inertial frame. The resulting change

in speed, however, is extremely small, and in spite of the enormous
mass of the earth, its additional kinetic energy is negligible compared

to that acquired by the falling object. This will be proved in a later chap-

ter. In other cases, such as in planetary motion where the masses of the

objects in our system may be comparable, we cannot ignore any part of

the system. In general, potential energy is not assigned to either body

separately but is considered a joint property of the system.

What is the change in gravitational potential energy when a 1600-lb (= 71 17 N) EXAMPLE ]

elevator moves from street level to the top of the Empire State Building, 1250

ft |= 381 m) above street level-

The gravitational potential energy of the system (elevator + earth) is U=mgy.
Then

But

so that

AU = U2 - U, = mg[y, - y,).

mg=W= 1600 lb and y-i-yx = 1250 ft,

AU = 1600 x 1250 ft • lb = 2.00 x 10* ft • lb = 2.71 x 106
J.

As an example of the simplicity and usefulness of the energy method of solving

dynamical problems, consider the problem illustrated in Fig. 8-5. A block of

mass m slides down a curved frictionless surface. The force exerted by the sur-

face on the block is always normal to the surface and to the direction of the

EXAMPLE 2

figure 8.5

Example 2. A block sliding down a

frictionless curved surface.



motion of the block, so that this force does no work. Only the gravitational

force does work on the block and that force is conservative. The mechanical

energy £ is, therefore, conserved and we can write at once

This gives

4mvi z + mgyi = 4mv2
2 + mgy2 .

v-/ = Vl* + 2g(y, - y.J.

The speed at the bottom of the curved surface depends only on the initial speed

and the change in vertical height but does not depend at all on the shape of the

surface. In fact, if the block is initially at rest at y t
= h, and if we set y> = 0, we

obtain

v2 = Vlgh.

At this point you should recall the independence of path feature of work done

by conservative forces and should be able to justify applying the ideas developed

for one-dimensional motion to this two-dimensional example.

In this problem the value of the force depends on the slope of the surface at

each point. Hence, the acceleration is not constant but is a function of position.

To obtain the speed by starting with Newton's laws we would first have to de-

termine the acceleration at each point and then integrate the acceleration over

the path. We avoid all this labor by starting at once from the fact that the

mechanical energy is constant throughout the motion.

The spring in a spring gun has a force constant of 4.0 lb/in. (= 7.0 N/cm). It is

compressed 2.0 in. (= 5.1 cm) from its natural length; and a ball weighing 0.030

lb (= 0.133 N) is put into the barrel against it. Assuming no friction and a hori-

zontal gun barrel, with what speed will the ball leave the gun when released?

The force is conservative so that mechanical energy is conserved in the

process. The initial mechanical energy is the elastic potential energy of the

spring, zkx2
, and the final mechanical energy is the kinetic energy of the ball,

2mv2
. Hence,

ikx* imv2-

or

/
48 lb/ft

" \ (0.030 lb)/(32 ft/s2
)

ft) = 38 ft/s(= 11.6m/s).

EXAMPLE 3

Equation 8-6a gives the relation between coordinate and speed for one-dimen-

sional motion when the force depends on position only. The force and the ac-

celeration have been eliminated in arriving at this equation. To complete the

solution of the dynamical problem we must eliminate the speed and determine

position as a function of time.

We can do this in a formal way, as follows. From Eq. 8-6a we have

W2 + U[x) = E.

Solving for v, we obtain

dx

dt
/A
in

or

dx

Vm

[E-U[x)},

dt.

(8-12)

[£- !

8-5
THE COMPLETE
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Then the function x[t) may be found by solving for \ the equation



fJl.
dx

^[E-UM] /:
dt = t- t . 18-13)

Here the particle is taken to be at x at the time t and £ is the constant total

energy. In applying this equation, the sign of the square root taken corresponds

to whether v points in the positive or in the negative x-direction. When v

changes direction during the motion it may be necessary to carry out the inte-

gration separately for each part of the motion.

Even when this integral cannot be evaluated or when the resulting equation

cannot be solved to give an explicit solution for x(t), the equation of energy con-

servation gives us useful information about the solution. For example, for a

given total energy £, Eq. 8-12 tells us that the particle is restricted to those re-

gions on the x-axis where £ > U[x). We cannot have an imaginary speed or a

negative kinetic energy physically, so that £ — U[x) must be zero or greater.

Furthermore, we can obtain a good qualitative description of the types of motion

possible by plotting U(x) versus x. This description depends on the fact that the

speed is proportional to the square root of the difference between £ and U.

For example, consider the potential energy function shown in Fig. 8-6. This

could be thought of as an actual profile of a frictionless roller coaster, but in

general it can represent the potential energy of a nongravitational system. Since

we must have £ 2 U[x) for real motion, the lowest total energy possible is £
( >.

At this value of the total energy, £ = U and the kinetic energy must be zero.

The particle must be at rest at the point xn . At a slightly higher energy £, the

particle can move between Xi and x2 only. As it moves from x its speed de-

creases on approaching either X] or x2 . At Xi or x2 the particle stops and reverses

its direction. These points X: and x2 are, therefore, called turning points of the

motion. At a total energy £2 there are four turning points, and the particle can

oscillate in either one of the two potential valleys. At the total energy £3 there

is only one turning point of the motion, at x.-i. If the particle is initially moving
in the negative x-direction, it will stop at x3 and then move in the positive

x-direction. It will speed up as U decreases and slow down as U increases. At
energies above E4 there are no turning points, and the particle will not reverse

direction. Its speed will change according to the value of the potential at each

point.

At a point where U[x) has a minimum value, such as at x = x , the slope of the

curve is zero so that the force is zero, that is, £(x )
= — [dU/dx)x=Xo = 0. A particle

at rest at this point will remain at rest. Furthermore, if the particle is displaced

slightly in either direction, the force, £(x) = —dU/dx, will tend to return it, and

it will oscillate about the equilibrium point. This equilibrium point is, there-

fore, called a point of stable equilibrium.

At a point where U[x) has a maximum value, such as at x = x4 , the slope of

the curve is zero so that the force is again zero, that is, F(x4 ) =—{dU/dx)x=X4 = 0.

A particle at rest at this point will remain at rest. However, if the particle is dis-

figure 8-6

A potential energy curve.

*3 *\ *0 *2



placed even the slightest distance from this point, the force, F{x) =—dU/dx, will

tend to push it farther away from the equilibrium position. Such an equilibrium

point is, therefore, called a point of unstable equilibrium.

In an interval in which U[x) is constant, such as near x = x5 , the slope of the

curve is zero so that the force is zero, that is, F(x5 )
= —[dU/dx)x=X5 = 0. Such an

interval is called one of neutral equilibrium, since a particle can be displaced

slightly without experiencing either a repelling or a restoring force.

From this it is clear that if we know the potential energy function for the

region of x in which the body moves, we know a great deal about the motion of

the body.

The potential energy function for the force between two atoms in a diatomic EXAMPLE 4
molecule can be expressed approximately as follows:

U[x)
b_

x6

where a and b are positive constants and x is the distance between atoms.

[a] At what values of x is U[x) equal to zero ? At what value of x is U[x) a

minimum ?

In Fig. 8-7a we show U[x) versus x. The values of x at which U[x) equals zero

are found from

X 12 X6

Hence

x6

U[x) also becomes zero asx^^ [see figure or put x= ^c into equation for U[x)],

so that x = 3c is also a solution.

The value of x at which U[x) is a minimum is found from

That is,

suw-a

-12a 6b .

or

x6 = la
x =

la

b'

[b] Determine the force between the atoms.

From Eq. 8-7

-674a

figure 8-7

Example 4. (a) The potential energy

and (bj the force between two

atoms in a diatomic molecule as a

function of the distance x between

atoms.

IW—£1*1,

-dla
dx \x 12

-)
xV

\la

v 13

6b
v7

We plot the force as a function of the separation between the atoms in Fig. 8-7/).

When the force is positive (from x = to x = ^'lalb), the atoms are repelled from

one another [force directed toward increasing x). When the force is negative

(from x = ^lalb to x = ^), the atoms are attracted to one another (force directed

toward decreasing x). At x = "fylalb the force is zero
;
this is the equilibrium

point and is a point of stable equilibrium.

[c] Assume that one of the atoms remains at rest and that the other moves
along x Des< ribe the possible motions

I mm the analysis ot this section it is clear that the atom oscillates about the

equilibrium separatum at x \ .'</// > much as a particle sliding up ami down the

iin tionli ss lulls ot the potential valley.



\d) The energy needed to break up the molecule into separate atoms is called

e dissociation energy. What is the dissociation energy of the molecule'the dissociation energy, vvnai is uic uissuiaauuii cncigy ui mc iiiuici-uic:

augh kinetic energy to get over the potential hill, it will no
^ r\tr\e*r otnm J-i*=»nr^ tnp niccnri-ihnn e>r\c*ro\? D pnn^lc tnp

It One atOm naS enOUgn mhvlh, LULig^ lu ^i \jvca uic puiwiuai i ui, n vv lij. nu

longer be bound to the other atom. Hence, the dissociation energy D equals the

change in potential energy from the minimum value at x = ^lalb to the valuechange in potential energy fro

at x = 3c. This is simply

C/|X=<*)- 17 X
la =

4a 2
/

b

2
—)
lalbl 4a

If the kinetic energy at the equilibrium position is equal to or greater than this

value, the molecule will dissociate.

So far we have discussed potential energy and energy conservation for

one-dimensional systems in which the force was directed along the line

of motion. We can easily generalize the discussion to three-dimensional

motion.

If the work done by the force F depends only on the end points of the

motion and is independent of the path taken between these points, the

force is conservative. We define the potential energy U by analogy with

the one-dimensional system and find that it is a function of three space

coordinates, that is, U = U[x,y,z). Again we obtain an expression for the

conservation of mechanical energy.

The generalization of Eq. 8-5/? to motion in three dimensions is

AU = - - I

or, more compactly in vector notation,

Fx dx - Fy dy
JVo

Fz dz

AC7 = - F(r) • dx

|8-5c)

(8-5d)

in which AU is the change in potential energy for the system as the par-

ticle moves from the point (xo,yo,z ), described by the position vector

r , to the point [x.y.z], described by the position vector r. Fx, F„, and Fz

are. the components of the conservative force F(r) = F(x,y,z).

The generalization of Eq. 8-6/b to three-dimensional motion is

\mv2 + U[x,y,z) = imv 2 + L7(x
(,,yo,z„)

which can be written in vector notation as

(8-6c)

imv • v + U[r) = imvo • v„ + U[t
)

(8-6d)

in which v • v = vx2 + vy
2 + vs

2 = v2 and v • v = vox2 + v0y
2 + v0z

2 = v 2
-

Likewise Eq. 8-6a becomes

\mv2 + U[x,y,z) = E

in three dimensions, E being the constant total mechanical energy.

Finally, the generalization of Eq. 8-7 to three dimensions is

F r = —l -t i k -7—
dx ' fiy Bz

It we substitute this expression for F into Eq. 8-5d, we again obtain an

identify. In vector language the conservative force F is said to be the

negative of the gradient of the potential energy U[x,y,z).

You can show that all these expressions reduce to the correct one-

dimensional equations for motion along the x-axis.

8-6
TWO- AND
THREE-DIMENSIONAL
CONSERVATIVE
SYSTEMS



Consider the single pendulum, Section 7-4, Fig. 7-8a. The motion of the system

is in the x-y plane, that is, it is a two-dimensional motion. The tension in the

cord is always at right angles to the motion of the suspended particle, so that

this force does no work on the particle. If the pendulum is displaced through

some angle and is then released, only the gravitational force of attraction exerted

on the particle by the earth does work on it. Since this force is conservative, we
can use the equation of energy conservation in two dimensions,

}mv2 + U[x,y) = E.

But U[x,y) equals mgy, where y is taken as zero at the lowest point of the arc

14 = 0°). Then,

jmv2 + mgy = E.

The particle is pulled through an angle </> before being released. The potential

energy there is mgh, corresponding to a height y = h above the reference point.

At the release point [<j> = <f> ) the speed and the kinetic energy are zero so that the

potential energy equals the total mechanical energy at that point.

Hence,

EXAMPLE 5

and

or

E = mgh

jmv2 + mgy = mgh,

\mv2 = mg[h - y).

The maximum speed occurs at y = 0, where v = V2gh.

The minimum speed occurs at y = h, where v = 0.

At y = the energy is entirely kinetic, the potential energy being zero.

At y = h the energy is entirely potential, the kinetic energy being zero.

At intermediate positions the energy is partly kinetic and partly potential.

Notice that U S £ at all points of the motion; the pendulum cannot rise

higher than y = h, its initial release point.

So far we have considered only the action of a single conservative force

on a particle. Starting from the work-energy theorem, or

W, + Wo + + w n = u< 18-2)

we saw that, if only one force, say Fi, was acting and if it was conserva-

tive, then we could represent the work W x that it did on the particle as a

decrease in potential energy AfJ, of the system (see Eq. 8-5a), or

W, = -AL7,.

Combining this with Eq. 8-2 yielded

AK + AU, = 0.

If several conservative forces such as gravity, an elastic spring force,

an electrostatic force, etc., are acting, we can easily extend these two
equations to

and

1 W r = -2 &U

AK • 1 A// =

l8-14fl)

(8-14/7)

in which 1 Wr is the sum of the work done by the various (conservative)

forces and the Al/'s are the changes in the potential energy of the sys-

tem associated with these touts I he quantity on the Left of Eq. 8-14/>

is simply A/-, the change in the total mechanical energy tin the case in

8-7
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which several conservative forces are acting on a particle. We can write

this equation then as

A£ = (conservative forces), (8-15)

which tells us that, as the system configuration changes the total me-

chanical energy £ for the system remains constant.

Let us now suppose that, in addition to the several conservative

forces, a single nonconservative force due to friction acts on the particle.

We can then write Eq. 8-2 as

Wf+ZWc = A/C,

where 2 Wc is again the sum of the work done by the conservative forces

and Wj is the work done by friction. We can recast this (see Eq. 8- 14a) as

AK + lAU=Wf . (8-16)

Equation 8-16 shows that, if a frictional force acts, the total mechanical

energy is not constant, but changes by the amount of work done by the

frictional force. We can write Eq. 8-16 as

A£ = £-£ =W/ . (8-17)

Since Wf, the work done by friction on the particle, is always negative,

it follows from Eq. 8-17 that the final mechanical energy £ (= K + S U)

is less than the initial mechanical energy £ (= K + 2 U ).

Friction is an example of a dissipative force, one which does negative

work on a body and tends to diminish the total mechanical energy of

the system. If we had used another nonconservative force, then Wf in

Eqs. 8-16 and 8-17 would be replaced by a term W„c , showing again that

the total mechanical energy £ of the system is not constant, but changes

by the amount of work done by the nonconservative force. Hence, only

when there are no nonconservative forces, or when we neglect the

work they do, can we assume conservation of mechanical energy.

What happened to the "lost" mechanical energy in the case of fric-

tion? It is transformed into internal energy Um, resulting in a tempera-

ture rise. The internal energy developed is exactly equal to the me-
chanical energy dissipated. We shall have much more to say about

internal energy in later chapters.

Just as the work done by a conservative force on an object is the

negative of the potential energy gain, so the work done by a frictional

force on an object is the negative of the internal energy gained. In other

words, the internal energy produced is equal to the work done by the

object. Then we can replace Wf in Eq. 8-17 by —Uinl , in which Uint is

the internal energy produced, or

A£+L7in( = 0. (8-18)

This asserts that there is no change in the sum of the mechanical and

internal energy of the system when only conservative and frictional

forces act on the system. Writing this equation as L/„„ = —A£ we see that

the loss of mechanical energy equals the gain in internal energy.

An object with an initial velocity v of 14 m/s falls from a height of 240 m and EXAJWPIjE 6
buries itself in 0.20 m of sand. The mass of the body is 1.0 kg. Find the average

resistive force exerted by the sand on the body. Neglect air resistance and solve

the problem by considerations of work and energy.



The kinetic energy of the body just as it enters the sand is

K = imvo2 + mgh

where m is the mass of the body and h is the height of fall.

Also, from the work-energy principle, we have (approximately)

K = ~Fs,

where F is the average resistive force and s is the distance of penetration into

the ground.

Equating and solving for F gives

- mvp2 mgh
2 s s

_ |1.0 kg)[14 m/s) 2
il.O kg)(9.8 m/s2 )(240 m)

2(0.20 m) (0.20 m]

= 12,250 N.

For what equations in this chapter are the first two equations of this example

special cases-

What error do we make by neglecting (in comparison to h) the extra distance

of fall s before the object is brought to rest" Show that this is equivalent to

neglecting mg in comparison to F in arriving at the resultant force to be used

in the work-energy theorem. Such terms are not always negligible in practice

(see Problem 19, for example).

A 44-N block is thrust up a 30° inclined plane with an initial speed of 5.0 m/s. EXAMPLE T
It is found to travel 1.5 m along the plane, stop, and slide back to the bottom.

Compute the force of friction f (assumed to have a constant magnitude) acting

on the block and find the speed v of the block when it returns to the bottom of

the inclined plane.

Consider first the upward motion. At the top, where this motion ends,

E = K+U = + [44 N)(1.5 m)(sin 30°) = 33 J.

At the bottom, where this motion begins,

44 N

But

and

so that

and

/ 44 N \

£o = K + U = M— —15.0 m/s) 2 + = 57 J.
\9.8 m/s2

/

Wf=-fs = -f{l.5 m)

E - £„ = Wf ,

33 J
— 57 J

= — /il.5 m)

/= 16 N.

Now consider the downward motion. The block returns to the bottom of the

inclined plane with a speed v. Then, at the bottom, where this motion ends,

At the top, where this motion begins,

£o = Kn + £/ = + (44 N)(1.5 m)|sin 30°) = 33 ).

But

Wf =-[16 NH1.5 m) = -24
J

and

£-£« = Wf,



^ N s2/mW - 33 J
= -24

J
'.o /

so that / 22

\9.

and

v = 2.0 m/s.

We can extend the discussion of the previous section by considering 8-8
not only conservative forces and the force of friction but also other, THE CONSERVATION
nonfrictional, nonconservative forces. We can regroup the work-energy OF ENERGY
theorem (Eq. 8-2)

Wi + W2 + • • • + W„ = AK
as

2 Wc + Wf+ 2 Wnc = AK (8-19)

in which 2 Wc is the total work done on the particle by conservative

forces, Wf is the work done by friction, and 2 W„ c is the total work done

by nonconservative forces other than friction. We have seen that each

conservative force can be associated with a potential energy and that

friction is associated with internal energy, or

2 Wc = -2 A£7

and

Wf=-Uintl

so that Eq. 8-19 becomes

2 Wnc = AK + 2 AU + Uint .

Now whatever the W„c are, it has always been possible to find new
forms of energy which corresponds to this work. We can then represent

2 W„c by another change of energy term on the right-hand side of the

equation, with the result that we can always write the work-energy

theorem as

= AK + 2 AU + Ui„, + (change in other forms of energy).

In other words, the total energy — kinetic plus potential plus internal

plus all other forms — does not change. Energymay be transformed from

one kind to another, but it cannot be created or destroyed; the total

energy is constant.

This statement is a generalization from our experience, so far not

contradicted by observation of nature. It is called the principle of the

conservation of energy. Often in the history of physics this principle

seemed to fail. But its apparent failure stimulated the search for the

reasons. Experimentalists searched for physical phenomena besides

motion that accompany the forces of interaction between bodies. Such

phenomena have always been found. With work done against friction,

internal energy is produced; in other interactions energy in the form of

sound, light, electricity, etc., may be produced. Hence the concept of

energy was generalized to include forms other than kinetic and poten-

tial energy of directly observable bodies. This procedure, which relates

the mechanics of bodies observed to be in motion to phenomena which
are not mechanical or in which motion is not directly detected, has

linked mechanics to all other areas of physics. The energy concept now
permeates all of physical science and has become one of the unifying

ideas of physics.*

* See for example, "Concept of Energy in Mechanics," by R. B. Lindsay in The Scientific

Monthly, October 1957.



In subsequent chapters we shall study various transformations of

energy— from mechanical to internal, mechanical to electrical, nuclear

to internal, etc. It is during such transformations that we measure the

energy changes in terms of work, for it is during these transformations

that forces arise and do work.

Although the principle of the conservation of kinetic plus potential

energy is often useful, we see that it is a restricted case of the more
general principle of the conservation of energy. Kinetic and potential

energy are conserved only when conservative forces act. Total energy

is always conserved.

One of the great conservation laws of science had been the law of con- S"*l
servation of matter. From a philosophical point of view an early state- MASS AND ENERGY
ment of this general principle was given by the Roman poet Lucretius,

a contemporary of Julius Caesar, in his celebrated work De Rerum
Natura. Lucretius wrote "Things cannot be born from nothing, cannot

when begotten be brought back to nothing." It was a long time before

this concept was established as a firm scientific principle. The prin-

cipal experimental contribution was made by Antoine Lavoisier (1743-

1794), regarded by many as the father of modern chemistry. He wrote

in 1789 "We must lay it down as an incontestable axiom, that in all

the operations of art and nature, nothing is created; an equal quantity

of matter exists both before and after the experiment . . . and nothing

takes place beyond changes and modifications in the combinations of

these elements."

This principle, subsequently called the conservation of mass, proved

extremely fruitful in chemistry and physics. Serious doubts as to the

general validity of this principle were raised by Albert Einstein in his

papers introducing the theory of relativity. Subsequent experiments on
fast-moving electrons and on nuclear matter confirmed his conclusions.

Einstein's findings suggested that, if certain physical laws were to

be retained, the mass of a particle had to be redefined as

Here m is the mass of the particle when at rest with respect to the ob-

server, called the rest mass; m is the mass of the particle measured as it

moves at a speed v relative to the observer; and c is the speed of light,

having a constant value of approximately 3 x 10 8 m/s. Experimental

checks of this equation can be made, for example, by deflecting high-

speed electrons in magnetic fields and measuring the radii of curvature

of their path. The paths are circular and the magnetic force a centri-

petal one (F= mv2
/r, F and v being known). At ordinary speeds the dif-

ference between m and m is too small to be detectable. Electrons, how-
ever, can be emitted from radioactive nuclei with speeds greater than

nine-tenths that of light. In such cases the results (Fig. 8-8 shows early

data) confirm Eq. 8-20.

It is convenient to let the ratio v/c be represented by ft. Then Eq. 8-20

becomes

m = m (\ - (3
2

)

'

'-.

I n hnd the kinetic energy of a body, we compute the work done by the

resultant force IE setting the body in motion. In Section 7-5 we obtained
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for kinetic energy, when we assumed a constant mass m . Suppose now
instead we take into account the variation of mass with speed and use

m = m (l —
)3
2

)

_1/2 in our previous equation. We find (Problem 29,

Chapter 9) that the kinetic energy is no longer given by im v2 but in-

stead is

K = mc2 — m c2 — [m — m Q )c
2 = Amc2

. (8-21)

The kinetic energy of a particle is, therefore, the product of c2 and the

increase in mass Am resulting from the motion.

Now, at small speeds we expect the relativistic result to agree with

the classical result. By the binomial theorem we can expand (1 — fi
2 )- 112

as

[1
321-1/2

1 + i/3
2 + f)8

4 + i%86 +

At small speeds (3 = vie <§ 1 so that all terms beyond /3
2 are negligible.

Then

K=[m- m )c
2 = m c2

[(l - ^2
)

1/2

= m c2
(l +|/32 + •

1]

1) = im c2
/3

2 = im v2
,

which is the classical result. Notice also that when K equals zero, m =
m as expected.

The basic idea that energy is equivalent to mass can be extended to

include energies other than kinetic. For example, when we compress a

spring and give it elastic potential energy U, its mass increases from

m to m {] + U/c2
. When we add heat energy in amount Q to an object, its

mass increases by an amount Am, where Am is Q/c2
. We arrive at a

principle of equivalence of mass and energy: For every unit of energy E

of any kind supplied to a material object, the mass of the object in-

creases by an amount

Am = E/c2
.

This is the famous Einstein formula

£ = Amc2
. (8-22)

In fact, since rest mass itself is just one form of energy, we can now
assert that a body at rest has an energy m c2 by virtue of its rest mass.
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figure 8-8

The way an electron's mass

increases as its speed relative to the

observer increases. The solid line is

a plot of m = m Q[l — v2/c2 )~ 112
, and

the circles are adapted from

experimental values obtained by

Bucherer and Neumann in 1914.

The curve tends toward infinity

as v —»• c.
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This is called its rest energy. If we now consider a closed system, the

principle of the conservation of energy, as generalized by Einstein, be-

comes

2 [m c2 + %) = constant

or A(S m c2 +2f) = 0,

where 2 m c2 is the total rest energy and 2 ^ is the total energy of all

other kinds. As Einstein wrote, "Pre-relativity physics contains two
conservation laws of fundamental importance, namely the law of con-

servation of energy and the law of conservation of mass
;
these two

appear there as completely independent of each other. Through rela-

tivity theory they melt together into one principle."

Because the factor c2 is so large, we would not expect to be able to

detect changes in mass in ordinary mechanical experiments. A change

in mass of 1 g would require an energy of 9 x 10 13 joules. But when
the mass of a particle is quite small to begin with and high energies can

be imparted to it, the relative change in mass may be readily noticeable.

This is true in nuclear phenomena, and it is in this realm that classical

mechanics breaks down and relativistic mechanics receives its most
striking verification.

A beautiful example of exchange of energy between rest mass and

other forms is given by the phenomenon of pair annihilation or pair pro-

duction. In this phenomenon an electron and a positron, elementary

material particles differing only in the sign of their electric charge, can

combine and literally disappear. In their place we find high-energy radia-

tion, called y- radiation, whose radiant energy is exactly equal to the

rest mass plus kinetic energies of the disappearing particles. The
process is reversible, so that a materialization of rest mass from radiant

energy can occur when a high enough energy y-ray, under proper condi-

tions, disappears; in its place appears a positron-electron pair whose
total energy (rest mass + kinetic) is equal to the radiant energy lost.

Consider a quantitative example. On the atomic mass scale the unit of mass is EXAMPLE 8
1.66 x 10 27 kg approximately. On this scale the rest mass of the proton (the

nucleus of a hydrogen atom) is 1.00731 and the rest mass of the neutron (a

neutral particle, one of the constituents of all nuclei except hydrogen) is

1.00867. A deuteron ithe nucleus of heavy hydrogen) is known to consist of a

neutron and a proton; the rest mass of the deuteron is found to be 2.01360. The
rest mass of the deuteron is less than the combined rest masses of neutron and

proton by 0.00238 atomic mass units. The discrepancy is equivalent in energy to

E = Amc2 = (0.00238 x 1.66 x 10 27 kg)(3.00 x 10" m/s) 2

= 3.57 x 10-" joules = 2.22 x 10" eV.

When a neutron and a proton combine to form a deuteron, this exact amount of

energy is given off in the form of y- radiation. Similarly, it is found that the same

amount of energy must be added to the deuteron to break it up into a proton and

a neutron. This energy is therefore called the binding energy of the deuteron

1. Mountain mads rarely go straight up the slope but wind up gradually. Ex-

plain why.

2. Is any work being done on a car moving with constant speed along a Straight

level road

3. An automobile of mass xn and speed i is moving along .i highway, The

questions
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driver jams on the brakes and the car skids to a halt. In what form does the

lost kinetic energy of the car appear?

4. In the above question, assume that the driver "pumps" the brakes in such a

way that there is no skidding or sliding. In this case, in what form does the

lost kinetic energy of the car appear?

5. An automobile accelerates from rest to a speed v. under conditions such

that no slipping of the driving wheels occurs. Where does the kinetic energy

of the car come from? In particular, is it true that it is provided by the work

done on the car by the (static) frictional force exerted by the road on the car?

6. If it takes no work to hold up a heavy object, why is it tiring?

7. What happens to the potential energy an elevator loses in coming down
from the top of a building to a stop at the ground floor?

8. In Example 2 (see Fig. 8-5) we asserted that the speed at the bottom does

not depend at all on the shape of the surface. Would this still be true if

friction were present?

9. Give physical examples of unstable equilibrium. Of neutral equilibrium.

Of stable equilibrium.

10. Explain, using work and energy ideas, how a child pumps a swing up to

large amplitudes from a rest position. (See "How to Make a Swing Go" by

R. V. Hesheth, Physics Education, July 1975.)

A swinging pendulum eventually comes to rest. Is this a violation of the

law of conservation of energy?

A scientific article ("The Energetic Cost of Moving About" by V. A. Tucker,

American Scientist July-August 1975) asserts that walking and running

are extremely inefficient forms of locomotion and that much greater effi-

ciency is achieved by birds, fish, and bicyclists. Can you suggest an explana-

tion?

13. Two disks are connected by a stiff spring. Can one press the upper disk down
enough so that when it is released it will spring back and raise the lower

disk off the table (see Fig. 8-9)? Can mechanical energy be conserved in such

a case?

14. In the case of work done against friction, the amount of heat energy gen-

erated is independent of the velocity (or inertial reference frame) of the

observer. That is, different observers would assign the same quantity of

mechanical energy transformed into heat energy due to friction. How can

this be explained, considering that such observers measure different quan-

tities of total work done and different changes in kinetic energy in general

(see Problem 21, Chapter 7)1

15. Must all nonconservative forces be dissipative, as friction is? Could 1 Wnc

be greater than zero, in principle?

16. An object is dropped and observed to bounce to one and one-half times its

original height. What conclusion can you draw from this observation?

17. The driver of an automobile traveling at speed v suddenly sees a brick wall

at a distance d directly in front of him. To avoid crashing, is it better for

him to slam on the brakes or to turn the car sharply away from the wall?

(Hint: Consider the force required in each case.)

18. A spring is kept compressed by tying its ends together tightly. It is then

placed in acid and dissolves. What happened to its stored potential energy?

01
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figure 8-9

Question 13

SECTION 8-3

1. A body moving along the x-axis is subject to a force repelling it from the

origin, given by F = kx. (a) Find the potential energy function U(x) for the

motion and write down the conservation of energy condition, [h] Describe

the motion of the system and show that this is the kind of motion we would
expect near a point of unstable equilibrium. Answer: [a] — kx2/2.

2. If the magnitude of the force of attraction between a particle of mass mi
and one of mass m-, is given by

problems



F=k miTn-i

where A is a constant and x is the distance between the particles, find [a]

the potential energy function and [b] the work required to increase the

separation of the masses from x = x : to x = Xi + d.

A chain is held on a frictionless table with one-fifth of its length hanging

over the edge. If the chain has a length 1 and a mass m, how much work is

required to pull the hanging part back on the table" Answer: mgl/50.

SECTION 8-4

4. A 2.0-g (weight mg = 0.071-oz) penny is pushed down on a vertical spring,

compressing the spring by 1.0 cm (0.39 in.). The force constant of the spring

is 40 N/m (2.7 lb/ft). How far above this original position will the penny fly

if it is released!
1

5. A 200-lb man jumps out a window into a fire net 30 ft below. The net

stretches 6.0 ft before bringing him to rest and tossing him back into the air.

What is the potential energy of the stretched net if no energy is dissipated

by nonconservative forces? Answer: 7200 ft • lb.

6. A 2.0- kg (0.14-slug) block is dropped from a height of 0.40 m (1.3 ft) onto a

spring of force constant k = 1960 N/m (134 lb/ft). Find the maximum dis-

tance the spring will be compressed (neglect friction).

7. Show that for the same initial speed v , the speed v of a projectile will be

the same at all points at the same elevation, regardless of the angle of pro-

jection.

8. A certain peculiar spring is found not to conform to Hooke's law. The force

lin newtons) it exerts when stretched a distance x (in meters) is found to

have magnitude 52. 8x + 38.4x2 in the direction opposing the stretch, [a]

Compute the total work required to stretch the spring from x = 0.50 to x =
1.00 m. \b) With one end of the spring fixed, a particle of mass 2.17 kg is

attached to the other end of the spring when it is extended by an amount x=
1 .00 m. If the particle is then released from rest, compute its speed at the

instant the spring has returned to the configuration in which the extension

is x = 0.50 m. (c) Is the force exerted by the spring conservative or noncon-

servative- Explain.

9. It is claimed that large trees can evaporate as much as 1 ton (910 kg mass)

of water per day. [a] Assuming the average rise of water to be 30 ft (9.1 m)

from the ground, how much energy (in kW • h) must be supplied to do this"

{b) What is the average power if the evaporation is assumed to occur during

12 hours of the day? Answer: [a] 2.3 x 10 2 kW • h. [b] 1.9 W.

10. An object is attached to a vertical spring and slowly lowered to its equilib-

rium position. This stretches the spring by an amount d. If the same object

is attached to the same vertical spring but permitted to fall instead, through

what maximum distance does it stretch the spring?

1 1. A body falls from rest from a height h. Determine the kinetic energy and

the potential energy of the body as a function [a] of time and [b] of height.

Graph the expressions and show that their sum, the total energy, is con-

stant in each case.

SECTION 8-5

1 2. A particle moves along a line in a region in which its potential energy varies

as in Fig. 8-10. [a] Sketch, with the same scale on the abscissa, the force

acting OD the particle. Indicate on the graph the approximate numerical

scale tni / k). \b) II the particle has a constant total energy of 4.0 joules,

sketch the graph of its kinetic energy. Indicate the numerical scale on the

K{x) axis

13. An a-paiti< le helium atom nucleus] in a large nucleus is bound hv a poten

ti.il like that shown in Fig. 8-11. \a) Construct .) (unction oi \ which has

1 2 3

x. meters

figure 8-10

Problem 12

U(x)

tiffur«> tt-ll

Problem 13



this general shape, with a minimum value U at x = and a maximum value

Ui at x = Xi and x = —Xi. (b) Determine the force between the a-particle and

the nucleus as a function of x. (c) Describe the possible motions.

SECTION 8-6

14. The string in Fig. 8-12 has a length 1 = 4.0 ft. When the ball is released, it

will swing down the dotted arc. How fast will it be going when it reaches

the lowest point in its swing?

15. A frictionless roller coaster of mass m starts at point A with speed v , as in

Fig. 8-13. Assume that the roller coaster can be considered as a particle and

that it always remains on the track, [a) What will be the speed of the roller

coaster at points B and C? [b] What constant deceleration is required to stop

it at E if the brakes are applied at point D?

Answer: [a] vB = v0i vc = Vv„ 2 + gh. (b) Vv 2 + IghlL.

"3
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figure 8-12
Problems 14, 27, 30

figure 8-13

Problem 15

16. What force corresponds to a potential energy U = —ax2 + bxy + z?

17. The potential energy corresponding to a certain two-dimensional force

field is given by U[x,y) = \k[x2 + y 2
). [a] Derive Fx and Fy and describe the

vector force at each point in terms of its coordinates x and y. [b] Derive Fr

and Fu and describe the vector force at each point in terms of the polar

coordinates r and 6 of the point, (c) Can you think of a physical model of

such a force?

Answer: [a] Fx = — kx-, Fu = —ky
;
F points toward the origin, [b] Fr = —kr

}

F« = 0.

18. The so-called Yukawa potential

U[r) =-- U e- rlr°

gives a fairly accurate description of the interaction between nucleons (i.e.,

neutrons and protons, the constituents of the nucleus). The constant r is

about 1.5 x 10~ 15 meter and the constant U is about 50 MeV. [a] Find the

corresponding expression for the force of attraction, [b] To show the short

range of this force, compute the ratio of the force at r= 2r , 4r , and 10r to

the force at r = r .

19. An ideal massless spring S can be compressed 1.0 m by a force of 100 N.

This same spring is placed at the bottom of a frictionless inclined plane

which makes an angle of = 30° with the horizontal (see Fig. 8-14). A 10-kg

mass M is released from the top of the incline and is brought to rest mo-
mentarily after compressing the spring 2.0 m. [a] Through what distance

does the mass slide before coming to rest? [b) What is the speed of the mass
just before it reaches the spring? Answer: [a] 4.1 m. [b] 4.5 m/s.

20. The magnitude of the force of attraction between the positively charged

nucleus and the negatively charged electron in the hydrogen atom is given

by

figure 8-14
Problem 19



where e is the charge of the electron, k is a constant, and r is the separation

between electron and nucleus. Assume that the nucleus is fixed. The elec-

tron, initially moving in a circle of radius Ri about the nucleus, jumps sud-

denly into a circular orbit of smaller radius R 2 . [a] Calculate the change in

kinetic energy of the electron, using Newton's second law. [b] Using the

relation between force and potential energy, calculate the change in poten-

tial energy of the atom. \c) Show by how much the mechanical energy of the

atom has changed in this process. (This energy is given off in the form of

radiation.)

21

24

25

26

27

A light rigid rod of length 1 has a mass m attached to its end, forming a

simple pendulum. It is inverted and then released. What are [a] the speed v

at its lowest point and [b) the tension T in the suspension at that instant?

(c) The same pendulum is next put in a horizontal position and released

from rest. At what angle from the vertical will the tension in the suspension

equal the weight in magnitude? Answer: [a] 2 Vgl. [b] 5 mg. (c) 71°.

22. A simple pendulum of length 1, the mass of whose bob is m, is observed to

have a speed vQ when the cord makes an angle o with the vertical (0 < 9 <
77/2), as in Fig. 8-15. In terms of g and the foregoing given quantities, deter-

mine [a] the speed v t of the bob when it is at its lowest position; [b] the

least value v2 that v could have if the cord is to achieve a horizontal posi-

tion during the motion; (c) the speed v3 such that if v > v3 , the pendulum
will not oscillate but rather will continue to move around in a vertical

circle.

23. A simple pendulum is made by tying a 2.0-kg stone to a string 4.0 m long.

The stone is projected perpendicular to the string, away from the ground,

with the string at an angle of 60° with the vertical. It is observed to have a

speed of 8.0 m/s when it passes its lowest point (a) What was the speed of

the stone at the moment of release? \b) What is the largest angle with the

vertical that the string will reach during the stone's motion? (c) Using the

lowest point of the swing as the zero of gravitational potential energy, what
is the total mechanical energy of the system?

Answer: [a] 5.0 m/s. (b) 80°. (c) 64 f.

A small block of mass m slides along the frictionless loop-the-loop track

shown in Fig. 8-16. [a] If it starts from rest at P, what is the resultant force

acting on it at Q? [b] At what height above the bottom of the loop should

the block be released so that the force exerted on it by the track at the top

of the loop is equal to its weight?

A point mass m starts from rest and slides down the surface of a frictionless

solid sphere of radius r as in Fig. 8-17. Measure angles from the vertical and

potential energy from the top. Find \a) the change in potential energy of the

mass with angle; [b) the kinetic energy as a function of angle,- (c) the radial

and tangential accelerations as a function of angle; [d) the angle at which
the mass flies off the sphere.

Answer: [a) —mgr{\ — cos &). \b) mgr{\ — cos 9). (c) 2 g(l — cos 9)-, g sin 0.

\d) cos- '2/3.

The particle m in Fig. 8-18 is moving in a vertical circle of radius R inside a

track. There is no friction. When m is at its lowest position, its speed is v„.

(a) What is the minimum value v,„ of v„ for which m will go completely

around the circle without losing contact with the track? |/>) Suppose \„ is

0.775v,„. The particle will move up the track to some point at P at which

it will lose contact with the track and travel along a path shown roughly by

the dashed line. Find the angular position 8 of point /'.

The nail in Fig. 8-12 is located a distance d below the point of suspension.

Show that (/ must be at least 0.6/ if the ball is to swing completely around in

a circle centered on the nail.

Two children are playing a game in which they attempt to hit a small box on

the floor using a spring-loaded marble gun placed horizontally on a friction

less table Fig 8 19] Hie first child compicsscs the spring 1.0 cm and the

J.

figure 8-15
Problem 22

figure 8-16
Problem 24

figure 8-17

Problem 25

figure 8-18

Problem 26
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figure 8-19
Problem 28

marble falls 20 cm short of the target, which is 2.0 m horizontally from the

edge of the table. How far should the second child compress the spring so

that the same marble falls into the box?

29. An escalator joins one floor with another one 25 ft (7.6 m) above. The esca-

lator is 40 ft (12 m) long and moves along its length at 2.0 ft/s (0.61 m/s).

[a] What power must its motor deliver if it is required to carry a maximum
of 100 persons per minute, of average mass 5.0 slugs (73 kg)? [b] A 160-lb

(710-N) man walks up the escalator in 10 s. How much work does the motor

do on him? (c) If this man turned around at the middle and walked down the

escalator so as to stay at the same level in space, would the motor do work

on him? If so, what power does it deliver for this purpose? [d] Is there any

(other?) way the man could walk along the escalator without consuming

power from the motor?

Answer: [a] 6700 ft • lb/s (9100 W). (b) 2000 ft • lb (2700 J), (c) No.

30. Suppose that the string of Fig. 8-12 is very elastic, made of rubber, say, and

that the string is unextended at length 1 when the ball is released, [a] Explain

why you would expect the ball to reach a low point greater than a distance 1

below the point of suspension, [b] Show, using dynamic and energy con-

siderations, that if A7 is small compared to I, the string will stretch by an

amount Ai = 3 mg/k, where k is the assumed force constant of the string.

Notice that the larger k is, the smaller Ai is, and the better the approxima-

tion A/ « 1. (c) Show, under these circumstances, that the speed of the ball

at the bottom is v :

string [k =
siderations.

V2g(i — 3mg/2k), less than it would be for an inelastic

Give a physical explanation for this result using energy con-

SECTION 8-7

31. Two snow-covered peaks at elevations of 3500 m and 3400 m are separated

by a valley. A ski-run extends from the top of the higher peak to the top of

the lower one, with a total length of 3000 m. [a] A skier starts from rest on
the higher peak. With what speed will he arrive at the top of the lower peak

if he goes as fast as possible, never trying to slow down? Neglect friction.

[b] Make a rough estimate of how large a coefficient of friction with the

snow could be tolerated without preventing him from reaching the lower

peak. Answer: [a] 44 m/s. [b] Approximately 1/10.

32. A projectile of mass 9.4 kg is fired straight up with an initial speed of 470

m/s. How much higher would it have gone if the air resistance did not dissi-

pate the energy of 6.8 x 105
} that it does?

33. Show that when friction is present in an otherwise conservative mechani-
cal system, the rate at which mechanical energy is dissipated equals the

frictional force times the speed at that instant, or

dt
[K+U) = -fv

34. A boy is seated on the top of a hemispherical mound of ice (Fig. 8-20). He is

given a very small push and starts sliding down the ice. [a) Show that he
leaves the ice at a point whose height is 2R/3 if the ice is frictionless. [b] If

there is friction between the ice and the boy, would he fly off at a greater or

lesser height than in (a)?

•-.^5^^^5^^^?^^^^%^^^^^^^

figure 8-20
Problem 34



35. A 1.0-kg (weight mg = 2.2 lb) block collides with a horizontal weightless

spring of force constant 2.0 N/m (0.14 lb/ft) (Fig. 8-21). The block com-
presses the spring 4.0 m (13 ft) from the rest position. Assuming that the

coefficient of kinetic friction between block and horizontal surface is 0.25,

what was the speed of the block at the instant of collision?

Answer: 7.2 m/s [23 ft/s).

36. A body of mass m starts from rest down a plane of length 1 inclined at an

angle 6 with the horizontal, [a] Take the coefficient of friction to be /j. and

find the body's speed at the bottom, [b) How far, d, will it slide horizontally

on a similar surface after reaching the bottom of the incline? Solve by using

energy methods and solve again using Newton's laws directly.

37. A 4.0-kg block starts up a 30° incline with 128 J of kinetic energy. How far

will it slide up the plane if the coefficient of friction is 0.30?

Answer: 4.3 m.

3#T A 40-lb body is pushed up a frictionless 30° inclined plane 10 ft long by a

horizontal force F. {a) If the speed at the bottom is 2.0 ft/s and at the top is

10 ft/s, how much work is done by F? (£>) What is the magnitude of the force

F? (c) Suppose the plane is not frictionless, and that /j.k = 0.15. How far up

the plane goes the body go?

39. A particle slides along a track with elevated ends and a flat central part, as

shown in Fig. 8-22. The flat part has a length 1 = 2.0 m. The curved portions

of the track are frictionless. For the flat part the coefficient of kinetic fric-

tion is Hk = 0.20. The particle is released at point A which is at a height

h = 1.0 m above the flat part of the track. Where does the particle finally

come to rest? Answer: In the center of the flat part.

40. A very light rigid rod whose length is / has a ball of mass m attached to one

end (Fig. 8-23). The other end is pivoted frictionlessly in such a way that the

ball moves in a vertical circle. The system is launched from the horizontal

position A with downward initial velocity v . The ball just reaches point D
and then stops, [a) Derive an expression for v in terms of 1, m, and g.

[b] What is the tension in the rod when the ball is at B- (c) A little sand is

placed on the pivot, after which the ball just reaches C when launched from
A with the same speed as before. How much work is done by friction during

this motion? \d) How much total work is done by friction before the ball

finally comes to rest at B after oscillating back and forth several times?

41. The cable of a 4000-lb elevator in Fig. 8-24 snaps when the elevator is at

rest at the first floor so that the bottom is a distance d = 12 ft above a cush-

ioning spring whose spring constant is k = 10,000 lb/ft. A safety device

clamps the guide rails so that a constant friction force of 1000 lb opposes

the motion of the elevator, [a] Find the speed of the elevator just before it

hits the spring, [b) Find the distance s that the spring is compressed, (c) Find

the distance that the elevator will "bounce" back up the shaft, (d) Using

the conservation of energy principle, find approximately the total distance

that the elevator will move before coming to rest. Why is the answer not

exact? Answer: [a] 24 ft/s. [b] 3.0 ft. (c) 9.0 ft. [d] 49 ft.

1 msmsui

figure 8-21

Problem 35

figure 8-22
Problem 39

figure 8-23
Problem 40

SECTION 8-9

42. A vacuum diode consists of a cylindrical anode enclosing a cylindrical

cathode An electron with a potential energy relative to the anode of

4.8 x 10 "'
J
leaves the surface of the cathode with zero initial speed. As-

sume that the electron does not collide with any air molecules and that the

gravitational force is negligible. \a\ What kinetic energy would the electron

have when it strikes the anode' [b] Take 9.1 x 10 •'" kg as the mass of the

electron and find its final speed, (c) Were you )ustified in using classical

rel.it ii ins for kinetic energy and mass rather than the relativism ones?

43. What is tin- speed oi an electron with a kinetic energy of [a] 1.0 x 10s eV
|1.2 - 10 " tt lb] \b] I • 10" eV [1.2 • K) ''

tt • lb)?

Answer: [a] 1.6 108 m/s 103,000 mi/s). (b) 2.8 • 10" m/s (175,000 mi/s).

figure 8-24
Problem 4

1



44. The United States consumed about 1.6 x 10 12 kW • h of electrical energy in

1970. How many kilograms of matter would have to be completely de-

stroyed to yield this energy?

45. A nuclear reactor generating plant supplies 60 MW (8.0 x 104 hp) of useful q
power steadily for a year, {a) How much energy, in joules (ft • lb), did it ^
supply- (fo) Assuming that, in addition, 90 MW (12 x 104 hp) of power is

wasted in heat production, determine the mass (weight) converted to energy

in a year at this plant.

Answer: [a] 1.9 x 10 15
J (1.4 x 10 15

ft • lb), [b] 52 g (1.9 oz). a:

46. How much matter would have to be converted into energy in order to ac-

celerate a 1.0-kiloton spaceship from rest to a speed of (l/10)c?

47. An electron (rest mass 9. 1 x 10 -31 kg) is moving with a speed 0.99 c. [a] What
is its total energy? [b] Find the ratio of the Newtonian kinetic energy to the

relativistic kinetic energy in this case? Answer: [a] 5.8 x 10 -13
J. (b) 0.08.

48. [a] The rest mass of a body is 0.010 kg. What is its mass when it moves at a

speed of 3.0 x 10 7 m/s relative to the observer? At 2.7 x 10 8 m/s? \b) Com-
pare the classical and relativistic kinetic energies for these cases, (c) What if

the observer, or measuring apparatus, is riding on the body?

49. Equation (8-2 1 ), K = [m — m )c
2

, is the usual relativistic equation for kinetic

energy, [a] Show that, by using Eq. (8-20), m = m tt[l — /3
2 )~ 1/2

, we can also ex-

press the relativistic kinetic energy as K= mv2
. \b) Contrast the waym + H7o

these two expressions reduce to the classical result as m —
» m or v/c -» 0.

(See "Parallels between Relativistic and Classical Dynamics for Introduc-

tory Courses" by Donald E. Fahnline, American Journal of Physics, June

1975.)

50. It is believed that the sun obtains its energy by a fusion process in which
four hydrogen atoms are transformed into a helium atom with the emission

of energy in various forms of radiation. If a hydrogen atom has a rest mass
of 1.0081 atomic mass units (see Example 7) and a helium atom has a rest

mass of 4.0039 atomic mass units, calculate the energy released in each

fusion process.



9
conservation of

linear

momentum
So far we have treated objects as though they were particles, having *)»1

mass but no size. In translational motion each point on a body experi- CENTER OF MASS
ences the same displacement as any other point as time goes on, so that

the motion of one particle represents the motion of the whole body. But

even when a body rotates or vibrates as it moves, there is one point on
the body, called the center of mass, that moves in the same way that a

single particle subject to the same external forces would move. Figure

9-1 shows the simple parabolic motion of the center of mass of an In-

dian club thrown from one performer to another,- no other point in the

club moves in such a simple way. Note that if the club were moving in

pure translation (see Fig. 3-1), then every point in it would experience

the same displacements as does the center of mass in Fig. 9-1. For this

reason the motion of the center of mass of a body is called the transla-

tional motion of the body.

When the system with which we deal is not a rigid body, a center of

mass (whose motion can also be described in a relatively simple way)

can be assigned, even though the particles that make up the system may
be changing their positions with respect to each other in a relatively

complicated way as the motion proceeds. In this section we define the

center of mass and show how to calculate its position. In the next sec-

tion we discuss the properties that make it useful in describing the

motion of extended objects or systems of particles.

Consider first the simple case of a system of two particles m, and m>
at distances x, and x 2 respectively, from some origin O. We define a

point C, the center of mass of the system, as a distance x,.„, from the

origin (), where x, ,„ is defined by
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figure 9-1

An Indian club is thrown from one

performer to another. Even though it

rotates and spins around its axis, as

shown, there is one point on its

axis, the center of mass, that

follows a simple parabolic path.

M

O

O

On
hi

O

x (.,

m xx x + m 2x2

mi + m 2

(9-1]

This point (Fig. 9-2) has the property that the product of the total mass
of the system M{= m x + m 2 ) times the distance of this point from the

origin is equal to the sum of the products of the mass of each particle by

its distance from the origin; that is,

(mi + m2)xem = Mxcm = miXi + m 2x2 .

In Eq. 9-1, xcm can be regarded as the mass-weighted mean of Xi and x2 .

An analogy might help to fix this idea. Suppose, for example, that we
are given two boxes of nails. In one box we have n x nails all having the

same length 1V) in the other box we have n 2 nails all having the same
length 1>. We are asked to get the mean length of the nails. If n x

— n 2 ,

the mean length is simply (7, + 72 )/2. But \in x ^ n 2 , we must allow for the

fact that there are more nails of one length than another by a "weight-

ing" factor for each length. For h this factor is nil[n x + n2 ) and for 72 this

factor is n 2l[n x + n 2 ), the fraction of the total number of nails in each box.

Then the weighted-mean length is

or

7

1 =

ni + n 2

h +
ni + n 2

n x li + n 2l 2

nx + n 2

The center of mass, defined in Eq. 9-
1 , is then a weighted-mean displace-

ment where the "weighting" factor for each particle is the fraction of the

total mass that each particle has.

If we have n particles, m Xl m 2 ,
• ,m„ along a straight line, by defini-

>^i

•xi *|

*2— H

figure 9-2

The center of mass of the two

masses m x and m 2 lies on the line

joining mi and m 2 at C, a distance

xcm from the origin.



tion the center of mass of these particles relative to some origin is

miXi + m 2x2 + • • • + m„x„ _ 2 m,-x,-

m x + m 2 + + m„ 2 nij
(9-2)

where Xi, x>, •
, x„ are the distances of the masses from the origin from

which xcm is measured. The symbol 2 represents a summation opera-

tion, in this case over all n particles. The sum

is the total mass of the system. We can then rewrite Eq. 9-2 in the form

Mxtm = 2 triiXi. \9-2a)

Suppose now that we have three particles nor in a straight line
;
they

will lie in a plane, as in Fig. 9-3. The center of mass C is defined and

located by the coordinates xcm and ycmi where

y«-i

miXi + m 2x2 + m3x3

mi + m 2 + m 3

miyi + m 2y2 + m 3y3

mi + m 2 + m 3

(9-3)

in which xu y x are the coordinates of the particle of mass m Vl x2 , y2 are

those of m-i; and x3/ y3 are those of m 3 . The coordinates xtm , y,.m of the

center of mass are measured from the same arbitrary origin.

For a large number of particles lying in a plane, the center of mass is

at xcm/ y,m , where

-^M-n

2 mix,- _ 1 ^
2 m, M ^ and y<-,

2 m,y,

2 rrii

J_
M 2 m,y,- (9-4)

in which M (= 2 m,) is the total mass of the system.

For a large number of particles not necessarily confined to a plane but

distributed in space, the center of mass is at x
(

.m , ycm, z (
.m , where

Xcm = 77 2 m,X" ycm = 77 ^ m!'y ! '
Z<=™

= M S m,Z '-
'

9 " 5fl
'

In vector notation each particle in the system can be described by a

position vector r, in a particular reference frame and the center of mass

can be located by a position vector r(m . These vectors are related to x,-,

y,-, Zi, and x,.m , y,m , z,m in Eq. 9-5d by

and
ti = ix,- + jy, + kz,-

i

= ixcm + \y,m + kz,. r

Thus the three scalar equations of Eq. 9-5a can be replaced by a single

vector equation

*™ = mS m '
r

<
(9-5b)

in which the sum is a vector sum. You can prove that Eq. 9-Sb is true by

substituting the expressions given for r, and tcm just above into Eq. 9-5/'.

Note the economy of expression permitted by the use of vectors. Equa-

tion 9 5b shows that, if the origin of our reference frame is at the center

of mass (which means that r,.m = 0), then 2 m,r, = for the system.

Equations 9 5 are the most general case for a collection of particles,

Equations 9- 1 through 9 1 are special instances of this one. The location

y\ |mi

ycm J T
ys T

i

V "*3

^2 ---»m 2

i

X2 *1 Xcm *3

figure 9-3

The center of mass of the three

masses mi, m>, and m s lies at point

C, with coordinates xcm , y, m . C lies

in the same plane as that of the

triangle formed by the three

masses.



of the center of mass is independent of the reference frame used to lo-

cate it (see Problem 1). The center of mass of a system of particles de-

pends only on the masses of the particles and the positions of the par-

ticles relative to one another.

A rigid body, such as a meter stick, can be thought of as a system of

closely packed particles. Hence it also has a center of mass. The num-
ber of particles (atoms, for example) in the body is so large and their

spacing so small, however, that we can treat such a body as though it

has a continuous distribution of mass. To obtain the expression for the

center of mass of a continuous body, let us begin by subdividing the

body into n small elements of mass Am, located approximately at the

points x„ yi, z\. The coordinates of the center of mass are then given

approximately by

_ 2 Am,-x,- _ 2 Am,-y,- _ 2 Am,-z,-
X,m ":

2 Ami ' ycm 2 Am* '

Zcm ~ 2 Am,
'

Now let the elements of mass be further subdivided so that the number
of elements n tends to infinity. The points x,-, y,-, z, will locate the mass
elements more precisely as n is increased and will locate them exactly

as n becomes infinite. The continuous body is then subdivided into an

infinite number of infinitesimal mass elements. We can now give the

coordinates of the center of mass precisely as

/ x dm 1 f ,

-Jdrn- = MJ xdm
'

/ y dm _ 1

cm
,. 2 Am,*,-

= hm „ .

Am.^o 2 Am,-

cm = lim \^ iYi

Am,-0 2 Ami

cm = hm v .

to-o 2 Am,-

^ j y dm, (9-6fl)
S dm

/ zdm 1 f ,

T^nT = MJ zdm -

In these expressions dm is the differential element of mass at the point

x, y, z, and / dm equals M, where M is the total mass of the body. For a

continuous body the summation of Eq. 9-5a is replaced by the integra-

tion of Eq. 9-6a.

The vector expression that is equivalent to the three scalar expres-

sions of Eq. 9-6a is

r,m = m I t dm [9-6b)

As before, the summation of Eq. 9-Sb has been replaced by an integra-

tion. Once again we see that if the origin of our reference frame is at the

center of mass (that is, if rcm = 0), then / r dm = for the body. This in-

tegral, and the corresponding sum 2 m,r, of Eq. 9-5b, is called the first

moment of mass for the system.

Often we deal with homogeneous objects having a point, a line, or a

plane of symmetry. Then the center of mass will lie at the point, on the

line, or in the plane of symmetry. For example, the center of mass of a

homogeneous sphere (which has a point of symmetry) will be at the

center of the sphere, the center of mass of a cone (which has a line of

symmetry) will be on the axis of the cone, etc. We can understand that

this is so because, from symmetry, the first moment of mass
(
/ r dm)

is zero at the center of a sphere, somewhere along the axis of a cone, etc.

If follows from Eq. 9-6b that i,.m = for such points which means that

the center of mass is located at these points.



Locate the center of mass of three particles of mass m, = 1.0 kg, m-2 = 2.0 kg, and mL^LJ^Nlmr IjWj 1

m 3 = 3.0 kg at the corners of an equilateral triangle 1.0 m on a side.

Choose the x-axis along one side of the triangle as shown in Fig. 9-4. Note y(meters)

that m.i is then V3/2 m along the y-axis. Then,

= S niiXi = 11.0 kg)(0) + 12.0 kg)|1.0 m) + (3.0 kg)(j m) _ -

X,m
2 m,-

"

H.0 + 2.0 + 3.0] kg
12 m '

1 miyi _ (1.0 kg)l0) + |2.0 kg)|0) + |3.0 kg)(V3/2 m) _ V3 m' cm 2 mi (1.0 + 2.0 + 3.0) kg 4

The center of mass C is shown in the figure. Why is it not at the geometric »»i

center of the triangle'
x (meters)

figure 9-4

Example 1. Finding the center of

mass C of three unequal masses

forming an equilateral triangle.

Find the center of mass of the triangular plate of Fig. 9-5.

If we can divide a body into parts such that the center of mass of each part is

known, we can usually find the center of mass of the body simply. The triangu-

lar plate may be divided into narrow strips parallel to one side. The center of

mass of each strip lies on the line which joins the middle of that side to the op-

posite vertex. But we can divide up the triangle in three different ways, using

this process for each of three sides. Hence the center of mass lies at the inter-

section of the three lines which join the middle of each side with the opposite

vertices. This is the only point that is common to the three lines.

EXAMPLE 2

figure 9-5

Example 2. Finding the center of

mass C of a triangular plate.

Now we can discuss the physical importance of the center-of-mass con-

cept. Consider the motion of a group of particles whose masses are

mi, m>, . . . , m„ and whose total mass is M. For the time being we will

assume that mass neither enters nor leaves the system so that the total

mass M of the system remains constant with time. In Section 9-7 we
shall consider systems in which M is not constant; a familiar example is

a rocket, which expels hot gases as its fuel burns, thus reducing its mass.

From Eq. 9-5b we have, for our fixed system of particles,

Mr,. 777 if, + m>T> + + m„i„,

where r, .,„ is the position vector identifying the center of mass in a par-

ticular reference frame. Differentiating this equation with respect to

time, we obtain

M Arm _ m A, dtt ,—1— — 777 1 —

j

V m> -j r-

<// (// (It
+ 7n„

./r„

dt
(9-7)

9-2
MOTION OF THE
CENTER OF MASS



or

Mv c
.m = miVj + m 2v 2 + • + m n\n ,

where Vi is the velocity of the first particle, etc., and dtcJdt (= vcm ) is the

velocity of the center of mass.

Differentiating Eq. 9-7 with respect to time, we obtain

„dvcm d\i . d\ 2 . .
d\ n , n ,

= m x ?kx + m2a2 + • • + m„a„,

where ai is the acceleration of the first particle, etc., and d\cm/dt (= acm )

is the acceleration of the center of mass of the system. Now, from

Newton's second law, the force Fi acting on the first particle is given

by Fi = mia,. Likewise, F 2 = m 2a 2 , etc. We can then write Eq. 9-8 as

Macm = F, + F 2 + • • • + F„. (9-9)

Hence the total mass of the group of particles times the acceleration of

its center of mass is equal to the vector sum of all the forces acting on

the group of particles.

Among all these forces will be internal forces exerted by the particles

on each other. However, from Newton's third law, these internal forces

will occur in equal and opposite pairs, so that they contribute nothing

to the sum. Hence the internal forces can be removed from the problem.

The right-hand sum in Eq. 9-9 represents the sum of only the external

forces acting on all the particles. We can then rewrite Eq. 9-9 as simply

Macm = Fext . (9-10)

This states that the center of mass of a system of particles moves as

though all the mass of the system were concentrated at the center of

mass and all the external forces were applied at that point.

Notice that we obtain this simple result without specifying the na-

ture of the system of particles. The system can be a rigid body in which
the particles are in fixed positions with respect to one another, or it can

be a collection of particles in which there may be all kinds of internal

motion. Whatever the system is, and however its individual parts may
be moving, its center of mass moves according to Eq. 9-10.

Hence, instead of treating bodies as single particles as we have done
in previous chapters, we can treat them as collections of particles. Then
we can obtain the translational motion of the body, that is, the motion
of its center of mass, by assuming that all the mass of the body is con-

centrated at its center of mass and all the external forces are applied at

that point.* This, in fact, is the procedure that we followed implicitly

in all our force diagrams and problem solving.

Aside from justifying and making more concrete our previous pro-

cedure, we have now found how to describe the translational motion of

a system of particles and how to describe the translational motion of a

body which may be rotating as well. In this chapter and the next we
apply this result to the linear motion of a system of particles. In later

chapters we shall see how it simplifies the analysis of rotational mo-
tion.

* When the external force is gravity, it acts through the center of gravity of the body. In

every case we have considered, the center of gravity coincides with the center of mass,

which is a more general concept. We will discuss the conditions under which these points

are different for a body in Chapter 14.



Consider three particles of different masses acted on by external forces, as

shown in Fig. 9-6. Find the acceleration of the center of mass of the system.

First we find the coordinates of the center of mass. From Eq. 9-3,

yc

|8.0 x 4) + (4.0 x -2) + (4.0 x 1)

16

|8.0 x l) + (4.0 x 2) + (4.0 x --3)

16
m = 0.25 m.

These are shown as C in Fig. 9-6.

To obtain the acceleration of the center of mass, we first determine the re-

sultant external force acting on the system consisting of the three particles. The
x-component of this force is

Fx = 14 N-6.0 N = 8.0 N,

and the y-component is

F„ = 16 N.

Hence the resultant external force has a magnitude

F = V(8.0) 2 + |16)
2 N= 18 N,

and makes an angle 6 with the x-axis given by

16 N
tan 6 = = 2.0 or 6 = 63°.

8.0 N

Then, from Eq. 9-10, the acceleration of the center of mass is

Wf'lll mm
18 N

M 16 kg
1.1 m/s2

,

making an angle of 63° with the x-axis.

Although the three particles will change their relative positions as time goes

on, the center of mass will move, as shown, with this constant acceleration.

EXAMPLE 3

A16N

-3
4 kg 14 N

-D>

figure 9-6
Example 3. Finding the motion of

the center of mass of three masses,

each subjected to a different force.

The forces all lie in the plane

defined by the particles. The
distances indicated along the axes

are in meters.

The momentum of a single particle is a vector p defined as the product 9-3
of its mass m and its velocity v. That is, LINEAR MOMENTUM

OF A PARTICLE
p = m\. i9-n:

Momentum, being the product of a scalar by a vector, is itself a vector.

Because it is proportional to v, the momentum p of a particular particle

depends on the reference frame of the observer; we must always specify

this frame.

Newton, in his famous Principia, expressed the second law of motion

in terms of momentum (which he called "quantity of motion"). Ex-

pressed in modern terminology Newton's second law reads: The rate

of change of momentum of a body is proportional to the resultant force

acting on the body and is in the direction of that force. In symbolic

form this becomes

l ~Tt (9-12)

If our system is a single particle of (constant) mass m, this formulation

of the second law is equivalent to the form F = ma, which we have used

up to now. That is, if m is a constant, then

= d£_d_= -n\my
dt dt

dym~r~ ma.



The relations F = ma and F = dp/dt for single particles are completely

equivalent in classical mechanics.

In relativity theory (See Supplementary Topic V) the second law for a single

particle in the form F = ma is not valid. However, it turns out that Newton's

second law in the form F = dp/dt is still a valid law if the momentum p for a

single particle is defined not as m v but as

P =
m v

Vl - v2/c2
(9-13)

This result suggested a new definition of mass (compare Eqs. 9-11 and 9-13)

mom =
Vl - v2/c2

so that the momentum could still be written as p = mv; see Section 8-9. In this

equation v is the speed of the particle, c is the speed of light, and m is the "rest

mass" of the body (its mass when v = 0). From this definition we must expect

the mass of a particle to increase with its speed. Elementary particles such as

electrons, protons, etc., may acquire enormous speeds, comparable to the speed

of light. This concept can be put to a direct test in such cases because the in-

crease in mass over the rest mass for such particles is large enough to measure

accurately. Results of all such experiments indicate that this effect is real and

given exactly by the equation above. (See for example, Fig. 8-8.)

Suppose that instead of a single particle we have a system of n particles,

with masses mi, m>, etc. We shall continue to assume, as we did in Sec-

tion 9-2, that no mass enters or leaves the system, so that the mass
M (=1 mi) of the system remains constant with time. The particles may
interact with each other and external forces may act on them as well.

Each particle will have a velocity and a momentum. Particle 1 of mass
mi and velocity v, will have a momentum pi = miVi, for example. The
system as a whole will have a total momentum P in a particular refer-

ence frame, which is defined to be simply the vector sum of the mo-
menta of the individual particles in that same frame, or

Pl + p2 + • • • + P»

m^i + m 2v 2 + • • •

(9-14)

+ m„v„.

If we compare this relation with Eq. 9-7, we see at once that

P = Mvcm , (9-15)

which is an equivalent definition for the momentum of a system of

particles. In words, Eq. 9-15 states: The total momentum of a system of

particles is equal to the product of the total mass of the system and the

velocity of its center of mass.

We have seen (Eq. 9-10) that Newton's second law for a system of

particles can be written as

Fext = Ma c ,
(9-10)

in which Fext is the vector sum of all the external forces acting on the

system; we recall that the internal forces acting between particles can-

cel in pairs because of Newton's third law (see Fig. 9-7). If we differen-

tiate Eq. 9-15 with respect to time we obtain, for an assumed constant

mass M,

dt dt
Ma,.m . (9-16)

9-4
LINEAR MOMENTUM
OF A SYSTEM OF
PARTICLES



m\

f3l t> Vj f2i

«23 , •

»32 m2

(a) (b) (c)

figure J>-7

Relationship between the forces acting on a system of three masses mi, m 2 ,

and m 3 . (a,) All the forces acting on each mass are shown here, as well as the

location of the center of mass. On mi act forces f_>i and f3 i exerted by m 2

and m :i respectively, as well as Fi, a force from some external agent.

Similar sets of forces act on m-> and m 3 . However, according to Newton's

third law, internal forces f3 i and ii3 must be equal and opposite and must
both lie along the line of centers of mi and m3. Similar statements hold for

the other two pairs of action-reaction forces, (b) If we are interested only in

the motion of the system as a whole, we may consider all the forces to act

on a mass M = m, + m 2 + m :( , located at the center of mass. Owing to the

equality of the action-reaction pairs of internal forces as just stated, they

cancel each other identically, leaving only the three external forces Fi,

F2 , and F3 . We add these graphically in (c) to yield a net force Fex i
acting on

the center of mass of the system.

Comparison of Eqs. 9-10 and 9-16 allows us to write Newton's second

law for a system of particles in the form

dV
Fex, = ^' (9-17)

This equation is the generalization of the single-particle equation F =
dp/dt (Eq. 9-12) to a system of many particles, no mass entering or

leaving the system. Equation 9-17 reduces to Eq. 9-12 for the special

case of a single particle, there being only external forces on a one-

particle system.

Suppose that the sum of the external forces acting on a system is zero. 9-5
Then, from Eq. 9-17, CONSERVATION OF

-j- — or P = a constant.
dt

When the resultant external force acting on a system is zero, the total

vector momentum of the system remains constant. This simple but

quite general result is called the principle of the conservation of linear

momentum. We shall see that it is applicable to many important physi-

cal situations.

The conservation of linear momentum principle is the second of the

great conservation principles that we have met so far, the first being the

conservation of energy principle. Later we shall meet several others,

among them the conservation of electric charge and of angular mo-
mentum. Conservation principles are of theoretical and practical im-

portance in physics because they are simple and universal. They are all

cast in the form: While the system is changing there is one aspect of the

system that remains unchanged. Different observers, each in his own
reference frame, would all agree, if they watched the same changing

ni thai tin conservation laws applied to the system, Foi the con

LINEAR MOMENTUM



servation of linear momentum, for example, observers in different ref-

erence frames would assign different values of P to the linear momen-
tum of the system, but each would agree (assuming F ext = 0) that his

own value of P remained unchanged as the particles that make up the

system move about.

The total momentum of a system can only be changed by external

forces acting on the system. The internal forces, being equal and oppo-

site, produce equal and opposite changes in momentum which cancel

each other. For a system of particles

Pl + p2 + • • + P„ = P,

so that when the total momentum P is constant we have

Pi + P-2 + • • + P» = a constant = P . (9-18)

The momenta of the individual particles may change, but their sum
remains constant if there is no external force.

Momentum is a vector quantity. Equation 9-18 is therefore equiva-

lent to three scalar equations, one for each coordinate direction. Hence
the conservation of linear momentum supplies us with three conditions

on the motion of a system to which it applies. The conservation of

energy on the other hand supplies us with only one condition on the

motion of a system to which it applies, because energy is a scalar.

The law of the conservation of linear momentum holds true even in atomic and

nuclear physics, although Newtonian mechanics does not. Hence this con-

servation law must be more fundamental than the Newtonian principles. In

our derivation of this principle we must have made more rigid assumptions

than we needed to. This is true even in the framework of classical mechanics.

Recall the key role played by Newton's third law in this deduction of momen-
tum conservation. This law was used to justify the assumption that the sum
of the internal forces acting on all the particles is zero. However, it is somewhat
artificial to regard the internal forces in a piece of matter as resulting from pairs

of equal and opposite forces between the various pairs of atoms. These internal

forces are actually many-body forces, depending on not only the relative separa-

tion and orientation of two atoms but also on the positions and orientations of

neighboring atoms. If it were possible to prove our assumption without using

Newton's third law, the law of conservation of linear momentum would not

depend on the validity of the third law of motion. Actually we can prove this

assumption on the basis of a much less stringent requirement than that the third

law should hold. The proof lies outside the scope of this text.*

Consider first a problem in which an external force acts on a system of particles.

Recall our previous discussion of projectile motion (Chapter 4). Now let us

imagine that our projectile is a fireworks shell that explodes while in flight. The
path of the shell is shown in Fig. 9-8. We assume that the air resistance is

negligible. The system is the shell, the earth is our reference frame, and the

external force is that of gravity. At the point x, the shell explodes and shell

fragments are blown in all directions. What can we say about the motion of this

system thereafter?

The forces of the explosion are all internal forces; they are forces exerted by
part of the system on other parts of the system. These forces may change the

momenta of all the individual fragments from the values they had when they

made up the shell, but they cannot change the total vector momentum of the

system. Only an external force can change the total momentum. The external

9-6
SOME APPLICATIONS
OF THE MOMENTUM
PRINCIPLE

EXAMPLE 4

* See "On Newton's Third Law and the Conservation of Momentum" by E. Gerjuoy,

American fournal of Physics, November 1949.
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Example 4. A projectile, following

the usual parabolic trajectory,

bursts at Xi. The center of mass of

the fragments continues along the

same parabolic path.

force, however, is simply that due to gravity. Because a system of particles as a

whole moves as though all its mass were concentrated at the center of mass
with the external force applied there, the center of mass of the fragments will

continue to move in the parabolic trajectory that the unexploded shell would

have followed. The change in the total momentum of the system attributable

to gravity is the same whether the shell explodes or not.

What can you say about the mechanical energy of the system before and

after the explosion 7

Consider now two blocks A and B, of masses m A and m B , coupled by a spring

and resting on a horizontal frictionless table. Let us pull the blocks apart and

stretch the spring, as in Fig. 9-9, and then release the blocks. Describe the sub-

sequent motion.

EXAMPLE 5

figure 9-9

Example 5. Two blocks A and B,

resting on a frictionless surface, are

connected by a spring. If they are

held apart and then released, the

sum of their momenta remains

zero.

If the system consists of the two blocks and spring, then after we have re-

leased the blocks there is no net external force acting on the system. We can

therefore apply the conservation of linear momentum to the motion. The mo-
mentum of the system before the blocks were released was zero in the reference

frame shown attached to the table, so the momentum must remain zero there-

after. The total momentum can be zero even though the blocks move because

momentum is a vector quantity. One block will have positive momentum [A

moves in the +x direction) and the other block will have negative momentum
[B moves in the —x direction). From the conservation of momentum we have

initial momentum = final momentum.

Therefore

01

= m«v /t + in ,v
i

m /(V/, = —m ,v
i

m„
\a = - v„.

nu

< sample, it m i
is 2 kg and mi is I kg, then v , will always be one hall \ in

magnitude and oppositel) directed .is the blocks move



The kinetic energy of block A is im A vA 2 and can be written as [m A vA )'2/2mA

and that of block B is \m BvB2 and can be written as (ra 8v8 |

2/2ms . But

Ka

Kb

2m B[mA vA )

2

2mA{mBvB )

2

m B

m A

in which mAvA equals mBvB because of momentum conservation. The kinetic

energies of the blocks at any instant are inversely proportional to their respec-

tive masses. Because mechanical energy is conserved also, the blocks will con-

tinue to oscillate back and forth, the energy being partly kinetic and partly

potential. What is the motion of the center of mass of this system?

If mechanical energy is not conserved, as would be true if friction were

present, the motion will die out as the energy is dissipated. Can we apply the

conservation of linear momentum in this case? Explain.

As an example of recoil, consider radioactive decay. An a-particle (the nucleus

of a helium atom) is emitted from a uranium-238 nucleus, originally at rest,

with a speed of 1.4 x 10 7 m/s and a kinetic energy of 4.1 MeV (million electron

volts). Find the recoil speed of the residual nucleus (thorium-234).

We think of the system (thorium + a-particle) as initially bound and forming

the uranium nucleus. The system then fragments into two separate parts. The
momentum of the system before fragmentation is zero. In the absence of ex-

ternal forces, the momentum after fragmentation is also zero. Hence,

initial momentum = final momentum,

= Ma\a + MThvTh;

Ma

M,
•v„.

The ratio of the a-particle mass to the thorium nucleus mass, MJMJh , is 4/234

and va = 1.4 x 10 7 m/s. Hence,

vTh = -(4/234)(1.4 x 10 7 m/s) = -2.4 x 10 5 m/s.

The minus sign indicates that the residual thorium nucleus recoils in a direc-

tion exactly opposite to the motion of the a-particle, so as to give a resultant

vector momentum of zero.

How can we compute the kinetic energy of the recoiling nucleus (see pre-

vious example)? Where does the energy of the fragments come from?

EXAMPLE 6

Consider now the apparently simple example of a ball thrown up from the

earth by a person and then caught by him on its return. To simplify matters we
can consider the person to be part of the earth since he does not lose contact

with it. We also assume that air resistance is negligible.

The system being considered consists of the earth and the ball. The gravita-

tional forces between the parts of the system are now internal forces. Let us
choose a reference frame in which the system (earth + ball) is at rest. When the

ball is thrown up, the earth must recoil as seen by an observer in this reference

frame. The momentum of the system (earth + ball) is zero initially and no ex-

ternal forces act. Therefore, momentum is conserved and the total momentum
remains zero throughout the motion. The upward momentum acquired by the

ball is balanced by an equal and opposite downward momentum of the earth.

We have

initial momentum = final momentum,

= mB\B + mE\E,

EXAMPLE 7

m„v„ -m,.:vE .



Here m B and mE are the masses of ball and earth respectively and vB and vE are

the velocities of the ball and the earth in our selected reference frame. Owing
to the enormous mass of the earth in comparison with the ball, the recoil speed

of the earth is negligibly small.

As the ball and earth separate, the internal force of gravitational attraction

pulls them together until they cease separating and begin to approach one an-

other. As the ball falls toward the earth, the earth falls toward the ball with an

equal but oppositely directed momentum. As the ball is caught, its momentum
is neutralized by (and it neutralizes) the momentum of the earth. Both objects

lose their relative motion, the total momentum is still zero, and the original

situation before throwing is restored.

You will recall that when we discussed the conservation of energy in the

presence of gravitational potential, we neglected to consider the motion of the

earth itself. We took the surface of the earth as our zero level of gravitational

potential energy. The reference position did not matter, because we were con-

cerned only with changes in potential energy. However, in computing changes

in kinetic energy, we assumed that the earth remained stationary, as in the case

of the ball thrown up from the earth.

In principle, we cannot ignore the change in the kinetic energy of the earth

itself. For example, when the ball falls toward the earth, the earth is slightly

accelerated toward the ball. We neglected this fact before because we assumed
that the change in kinetic energy of the earth is negligible. This result is not

obvious, because although the earth's speed will certainly be small, its mass is

enormous and the kinetic energy acquired might be significant. To settle the

point we compute the ratio of the kinetic energy of the earth to that of the ball.

Using mEvE = m BvB from momentum conservation, we have

Ke

Kb

fniEVE1 2{mEvE )

\m BvB2 i[m BvB )

m B

mE

m B

mE

Since the mass of the ball m B is negligibly small compared to the mass of the

earth mE , the kinetic energy acquired by the earth, KE , is negligibly small com-

pared to that of the ball, KB . For example, if m B = 6 kg (a rather massive ball),

then, since mE = 6x 1024 kg, KE/KB = 10" 24
!

Notice that this problem is identical in principle to Example 5. The differ-

ences are only those of detail; in one the potential energy is elastic and in the

other the potential energy is gravitational; in one the masses are pictured as of

the same order of magnitude, and in the other they are of very different orders

of magnitude.

So far we have dealt only with systems in which the total system mass M re-

mained constant with time. Now we consider systems in which mass enters

or leaves the system while we are observing it, dM/dt being positive in the

former case and negative in the latter.

Figure 9- 10a shows a system of mass M whose center of mass is moving with

velocity v as seen from a particular reference frame. An external force Fcxt acts

on the system. At a time At later the configuration has changed to that shown
in Fig. 9-10/7. A mass AM has been ejected from the system, its center of mass
moving with velocity u as seen by our observer. The system mass is reduced to

M — AM and the velocity v of the center of mass of the system is changed to

v + Av.

The student may imagine the system of Fig. 9-10 to represent a rocket. It

ejects hot gas from its orifice at a fairly high speed, decreasing its own mass and

increasing its own speed. In a rocket the loss of mass is continuous during the

burning process. The external force F, Al is nut the thrust of the rocket but is the

force of gravity on the rocket and the resisting force of the atmosphere

To analyze the situation let us, for the time being, define the system to be

one ot constant mass. This means that in Fig. 9-lOfa, we shall include in our

q not only the massM AM ot the body Inn also tin- ejected mass _y\f the

total mass ot the system being the M of Fig
i|

10a Doing so permits us to apply

SYSTEMS OF VARIABLE
MASS
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figure 9-10
A mass M moving with velocity v

ejects a mass AM during a time

interval At. An external force Fext

(not shown) acts on the system.

the results that we have derived so far for constant mass systems. We shall see

that this approach leads us to the form of Newton's second law for systems in

which the mass is not constant.

From Eq. 9-17

Fext
rfP

dt
(9-17)

we can write, as an approximate result for the finite time interval At,

F ~ AP = p/~ P
'

ext
_

At At

in which Pf is the (final) system momentum in Fig. 9- 10b and P, is the (initial)

system momentum for Fig. 9- 10a. ButP/= (M — AM)|v + Av) + AMu andP, = Mv.
This leads to

_ _ [(M- AM)(v + Av) + AMu] - [Mv]

= M Ay

At

At

[u - (v + Av)]
AM
At

' (9-19)

Now, if we let At approach zero, the configuration of Fig. 9-106 approaches that

of Fig. 9-lOfl; that is, Av/At approaches d\/dt, the acceleration of the body in

Fig. 9-lOfl. The quantity AM is the mass ejected in At: this leads to a decrease in

the mass M of the original body. Since dM/dt, the change in mass of the body
with time, is intrinsically negative in this case, the positive quantity AM/At is

replaced by —dM/dt as At approaches zero. Finally, Av goes to zero as At ap-

proaches zero. Making these changes in Eq. 9-19 leads to

or

,
, d\ dM dM
dt dt dt

V d
,AA I

dMF- = ^(Mv)-u—
(9-20fl)

(9-20b)

which is Newton's second law, defining the external forces on a body (like that

of Fig. 9-lOa) whose mass is changing.

Note that these equations reduce to the familiar forms F ext = Ma and F ext
=

[d/dt){Mv) respectively for the special case of a body of constant mass {dM/dt =
0). It is important to note that we cannot derive a general expression for New-
ton's second law for variable mass systems by treating the mass in F PXl = dP/dt =
d[Mv)/dt as a variable. For this leads to

F, xt = d[M\)/dt = M dx/dt + v dM/dt,

which is only a special case of the more general Eq. 9-20, namely, the case in

which either [a) dM/dt = 0, a system of constant mass, or [b] u = 0, a special

choice of reference frame. We can use F ext = dP/dt to analyze variable mass sys-

tems only if we apply it to an entire system of constant mass having parts

among which there is an interchange of mass. This indeed is what we have done
in deriving Eqs. 9-20. The importance of the momentum formulation Fex ,

=
dP/dt in classical physics lies in the fact that it highlights momentum conserva-



tion and gives us a simple, physical way to treat complicated systems. Since the

choice of what we will take as the system is ours to make, we can always choose

a system of constant mass by defining our system broadly enough.

However, it is often convenient, as in rocket problems, to choose a system

whose mass varies with time. In such cases we apply Newton's second law of

Eqs. 9-20 in a form that is sometimes more convenient and interpretable more
physically. The quantity u — (v + Av) in Eq. 9-19 is just v rel , the relative velocity

of the ejected mass with respect to the main body. Therefore Eq. 9-20a may be

written as

, „ d\ . dM ,_ „ , ,M^ = F ext + (u-v)— [9-21a)

or

dv dMM^ = -Eext + YTei
~ (9-2 lb)

The last term in Eq. 9-2 lb, [v re ,
[dM/dt]] , is the rate at which momentum is

being transferred into (or out of) the system by the mass that the system has

ejected (or collected). It can be interpreted as the force exerted on the system by

the mass that leaves it (or joins it). For a rocket, this term is called the thrust

and it is the rocket designer's aim to make it as large as possible. Inspection of

Eq. 9-21 b shows that this requires that the rocket eject as much mass per unit

time as possible and that the speed of the ejected mass relative to the rocket be

as high as possible. We can rewrite Eq. 9-2 lb as

dv

dt
"•* j. -Text "" 'reaction

in which Freaction (= vn.| dM/dt) is the reaction force exerted on the system by the

mass that leaves it.

A machine gun is mounted on a car that can roll with negligible friction on a EXAJWPLE 8
horizontal surface as in Fig. 9-1 la. The mass of the system (car + gun) at a par-

ticular instant is M. At that same instant the gun is firing bullets of mass m
whose velocity, in the reference frame shown, is u. The velocity of the car in

this same frame is v and the velocity of the bullets with respect to the car is

u — v. The number of bullets fired per unit time is n. What is the acceleration

of the car?

We select the car and gun as our system. Because its mass M is variable, we
apply Newton 's second law in the form given in Eq. 9-2 1 b. Since no net external

force acts on the system, we have F ext = in that equation, yielding

. . ^ dMMA" T-A"
Now d\/dt is a, the acceleration of the system; v,.,., is u — v, pointing to the left

in Fig. 9-1 la, and dM/dt is —mn. Inserting these in the equation above yields

d\ \y..\mn)

dt M
This shows that a points in the direction opposite to v ,.,.,, that is, a points to the

right in Fig. 9- 1 la. If v rr[ = 500 m/s, m = 10 g, n = 10/s, and M = 200 kg at some
instant, then at that instant

(500m/s)(10 *kg)|10/sec)

200 kg
=0.25 m/s'.

The magnitude of the average "thrust" of the ejected bullets on the system

(car -4 gun) at this instant is given by

F= vrelnm [500 m/s)|10/s)(10 - kg)

= 50 N.
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(a) Example 8. A machine gun is fixed to a car that rolls with negligible

friction. The gun fires bullets of mass m at a rate (number per unit time) n,

the velocity of the bullets with respect to the gun being u — v. At the

instant shown some bullets have already left the system. The velocities

indicated for the car and the bullets are those that would be measured by

an observer in a reference frame fixed to the rails as shown. The reaction

force on the system is F = —mrjv re i

= [dM/dt)v reh (b) A rocket moves through

space with negligible external forces. Gas particles are ejected from the

exhaust, the particles having a velocity u — v with respect to the rocket.

The rate at which mass is expelled at the exhaust is —dM/dt. The reaction

force on the rocket is F = [dM/dt)\ rel . The velocities indicated for the rocket

and exhaust gases are relative to the ground.

In Figure 9-1 lb we show the analogous situation for a rocket. It is instructive

to view this problem from the point of view of Newton's third law and the

momentum principle. Choose a fixed-mass system (rocket + gas) and attach a

reference frame to its center of mass. The rocket forces a jet of hot gases from

its exhaust; this is the action force. The jet of hot gases exerts a force on the

rocket, propelling it forward. This is the reaction force. These forces are in-

ternal forces in the system (rocket + gas). In the absence of external forces the

total momentum of the system is constant (the center of mass, initially at rest,

remains at rest). The individual parts of the system (rocket and gases) may
change their momentum, however; with respect to the center of mass frame,

the hot gases acquire momentum in the backward direction and the rocket ac-

quires an equal amount of momentum in the forward direction.

You can analyze the system (bullets + car and gun) in a similar way.

A rocket weighs 30,000 lb when fueled up on the launching pad. It is fired ver-

tically upward and, at burnout, weighs 10,000 lb. Gases are exhausted at the

rate of 10 slugs/s with a velocity of 5000 ft/s, relative to the rocket (exhaust

velocity), both quantities being assumed to be constant while the fuel is burning.

[a] What is the thrust 1 The thrust F is the last term in Eq. 9-2 lb, or

F=vTel-z-= (5000 ft/s)(10 slugs/s) = 50,000 lb.

Note that initially, when the fuel tanks are full, the net upward force acting on
the rocket (neglecting air resistance) is the thrust (50,000 lb) minus the initial

weight (30,000 lb) or 20,000 lb. Just before burnout the net upward force is

50,000 lb minus 10,000 lb or 40,000 lb.

EXAMPLE 9



(b) If we could neglect all external forces, including gravity and air resis-

tance, what would be the speed of the rocket at burnout"

If we put F ext = in Eq. 9-2 lb, we have

dv dM , dM
* =T-ir or dv=v- -M-

Integrating this expression (see Appendix I) from the instant the velocity is v

and the mass of the rocket is M to the instant when the velocity is v and the

mass of the rocket is M, we obtain

" dMf
v

, f-
M dM

the exhaust velocity being assumed constant during this time. This yields

v - v = -v rel In (M /M) = -vre , In ( 1 + —°—— j-

Hence the change in velocity of the rocket in any interval of time depends only

on the exhaust velocity [being opposite in direction from it) and on the fraction

of mass exhausted during that time interval.

In our example, v = and M /M = (30,000/10,000) = 3.0, so that the speed

of the rocket at burnout is

v = vrel In (Mo/M) = (5000 ft/s) In 3.0 = 3800 mi/h.

If the external forces of gravity and air resistance were taken into account, the

final speed would be smaller.*

Assuming that the rocket starts from rest
(
v = 0) with an initial massM and

reaches a final velocity vf at burnout when its mass is Mfl we can write the

rocket equation above as

Mf

Mo

in which vrel is the exhaust velocity.

The classical rocket (or variable mass) equations imply that the speed of the

rocket can increase to any value provided only that the rocket expels enough

propellant so that the final remaining mass is sufficiently small. However, we
know from relativistic mechanics that a rocket cannot be accelerated to a speed

equal to or greater than the speed of light. Once the rocket's speed approaches

the relativistic range the classical equations are no longer applicable. One must

take into account the variation of inertial mass of a particle with speed and the

relativistic velocity formula. The resulting equations apply to a relativistic

rocket.

t

Sand drops from a stationary hopper at a rate dM/dt onto a conveyor belt moving EXAJWPMjE 1

with velocity v in the reference frame of the laboratory, as in Fig. 9-12. What
force is required to keep the belt moving at a speed vl

This is a clear-cut example of a force associated with change of mass alone,

the velocity being constant. We take as our system the belt of varying mass so

that Eq. 9-21/) applies. We must put dvldt = in that equation because the

velocity of the belt is constant. Furthermore, to an observer at rest on the belt,

the falling sand (and the hopper) would appear to have a horizontal motion with

speed v in a direction opposite to that shown for the belt in the laboratory.

Therefore v,,., = —v in Eqs. 9-21. More formally, v,.,., = u — v
;
but u = 0, so that

v ri .|
= —v. Making these substitutions yields

Pol .in exact solution of the classical rocket problem see "Variable-Mass Dynamics"
by j. L. Menam Journal of En Education, Decembei I960

The Equal t Motion for Relativists Particles and Systems with a Variable Rest

is," by Kalman B Pomeranz, Amerit an Journal of Physics I >ecembei L964
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figure 9-12
Example 10. Sand drops from a

hopper at a rate dM/dt onto a

conveyer belt moving with

velocity v in the reference frame of

the laboratory. The force F required

to keep the belt moving at constant

velocity is v dM/dt. The hopper is at

rest in the reference frame shown.
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In this example, dM/dt is positive because the system is gaining mass with time.

Hence, as expected, the necessary external force must point in the direction in

which the belt moves. Note that, in the absence of friction, the mass of the belt

itself does not enter the problem.

The power supplied by the external force is

P = F-v = v-F = v-(v dM/dt) = v2 {dM/dt).

Since v = a constant, we can write this as

P =
d[Mv = 2-r (-Mvi

dt dt \2

dK
dt'

This tells us that the power required to keep the belt moving is twice the rate at

which the kinetic energy of the system is increasing; note that we need not con-

sider the kinetic energy of the belt itself because — its speed being constant — its

kinetic energy does not change. It is clear that mechanical energy is not con-

served in this case. Where is the other half of the power going ? In which of the

previous examples did we have conservation of momentum without conserva-

tion of mechanical energy?

The student should be able to solve Example 10 alternatively by choosing a

fixed-mass system and applying the momentum principle.*

questions1. Must there necessarily be any mass at the center of mass of a system?

2. Does the center of mass of a solid body necessarily lie within the body? If

not, give examples.

3. How is the center of mass concept related to the concept of geographic cen-

ter of the country? To the population center of the country? What can you

conclude from the fact that the geographic center differs from the popula-

tion center?

4. An amateur sculptor decides to portray a bird (Fig. 9-13). Luckily the final

model is actually able to stand upright. The model is formed of a single

sheet of metal of uniform thickness. Of the points shown, which is most
likely to be the center of mass?

* See "Force, Momentum Change, and Motion" by Martin S. Tiersten, American Journal

of Physics, January 1969, for an excellent general reference on systems of fixed and vari- figure 9-13
able mass. Question 4



5. The location of the center of mass of a group of particles with respect to

those particles does not depend on the reference frame used to describe the

system. Is that so? Can you choose a reference frame whose origin is ac-

tually at the center of mass?

6. If only an external force can change the state of motion of the center of mass
of a body, how does it happen that the internal force of the brakes can bring

a car to rest?

7. Can a body have energy without having momentum? Explain. Can a body

have momentum without having energy? Explain.

8. A light and a heavy body have equal kinetic energies of translation. Which
one has the larger momentum?

9. A bird is in a wire cage hanging from a spring balance. Is the reading of the

balance when the bird is flying about greater than, less than, or the same as

that when the bird sits in the cage?

10. Can a sailboat be propelled by air blown at the sails from a fan attached to

the boat?

11. A canoeist in a still pond can reach shore by jerking sharply on the rope

attached to the bow of the canoe. How do you explain this? (yes she can! —
its true).

12. How might a person standing at rest on a frictionless horizontal surface get

altogether off of it?

13. A man stands still on a large sheet of slick ice
;
in his hand he holds a lighted

firecracker. He throws the firecracker into the air. Describe briefly, but as

exactly as you can, the motion of the center of mass of the firecracker and

the motion of the center of mass of the system consisting of man and fire-

cracker. It will be most convenient to describe each motion during each of

the following periods: [a) after he throws the firecracker, but before it ex-

plodes; (b) between the explosion and the first piece of firecracker hitting

the ice
;

(c) between the first fragment hitting the ice and the last fragment

landing; \d) during the time when all fragments have landed but none has

reached the edge of the ice.

14. As stated in the text one cannot use the equation F ext = d[M\)/dt for a sys-

tem of variable mass. To show this [a] put the equation in the equivalent

form (Fex1
- M-j-)/(dM/dt) = v and [b] show that one side of this equation

has the same value in all inertial frames, whereas the other side does not.

Hence the equation cannot be generally valid, [c] Show that Eq. 9-20 leads

to no such contradiction.

15. You throw an ice cube with velocity v into a hot gravity-free, evacuated

space. The cube gradually melts to liquid water and then boils to water

vapor, [a] Is it a system of particles all the time? [b] If so, is it the same sys-

tem of particles? |c) Does the motion of the center of mass undergo any
abrupt changes? [d] Does the total linear momentum change? (e) Would
your answers change if the space were not gravity free?

16. In 1920 a prominent newspaper editorialized as follows about the pioneer-

ing rocket experiments of Robert H. Goddard, dismissing the notion that a

rocket could operate in a vacuum: "That Professor Goddard, with his chair

in Clark College and the countenancing of the Smithsonian Institution,

does not know the relation of action to reaction, and of the need to have

something better than a vacuum against which to react — to say that would
be absurd. Of course, he seems only to lack the knowledge ladled out daily

in hi^h schools." What is wrong with this argument?

17. The final velocity of the final stage of a multistage rocket is much greater

than the final velocity of a single-stage rocket of the same total weight and

fuel supply. Explain tins fact.

is. As a rocket expels burned fuel the Location ol the centei ol mass ol the

rocket (in a frame attached to the rocket! changes Must one take tins into

accouni in an exact solution of the rockei problem?



19. Explain clearly the distinction between the origin of the varying mass of a

classical system and that of a relativistic system.

20. Can you think of variable mass systems other than the examples given in

the text"

SECTION 9-1

1. Show that the ratio of the distances of two particles from their center of

mass is the inverse ratio of their masses.

2. Experiments using the diffraction of electrons show that the distance be-

tween the centers of the carbon (C) and oxygen (O) atoms in the carbon

monoxide gas molecule is 1.130 x 10 10 m. Locate the center of mass of a

CO molecule relative to the carbon atom.

3. The mass of the moon is about 0.013 times the mass of the earth, and the

distance from the center of the moon to the center of the earth is about 60

times the radius of the earth. How far is the center of mass of the earth-

moon system from the center of the earth' Take the earth's radius to be

6400 km. Answer: 4900 km.

4. The masses and coordinates of four particles are as follows: 5.0 kg, x = y =
0.0 cm

;
3.0 kg, x = y = 8.0 cm

;
2.0 kg, x = 3.0 cm, y = 0.0 cm

;
6.0 kg, x = -2.0

cm, y = —6.0 cm. Find the coordinates of the center of mass of this collec-

tion of particles.

5. In the ammonia (NH :! ) molecule, the three hydrogen (H) atoms form an

equilateral triangle, the distance between centers of the atoms being

1.628 x 10" 10 m, so that the center of the triangle is 9.39 x 10" m from

each hydrogen atom. The nitrogen (N) atom is at the apex of a pyramid, the

three hydrogens constituting the base (see Fig. 9-14). The hydrogen-nitrogen

distance is 1.014 x 10 10 m. Locate the center of mass relative to the nitro-

gen atom.

Answer: 6.74 x 10 I2 m toward the plane of the hydrogens, along the axis

of symmetry.

6. Find the center of mass of a homogenous semicircular plate. Let a be the

radius of the circle.

problems

O
r-
m

figure 9-14
Problem 5

SECTION 9-2

7. Two blocks of masses 1.0 kg (weight 2.2 lb) and 3.0 kg (weight 6.6 lb) con-

nected by a spring rest on a frictionless surface. If the two are given veloci-

ties such that the first travels at 1.7 m/s (5.6 ft/s) toward the center of mass
which remains at rest, what is the velocity of the second?

Answer: 0.57 m/s (1.9 ft/s), toward center of mass.

8. Two particles P and Q are initially at rest 1.0 m apart. P has a mass of 0.10

kg and Q a mass of 0.30 kg. P and Q attract each other with a constant force

of 1.0 x 10" 2 N. No external forces act on the system, [a] Describe the mo-
tion of the center of mass. \b) At what distance from P's original position do

the particles collide?

9. A man of mass m clings to a rope ladder suspended below a balloon of mass
M. The balloon is stationary with respect to the ground, [a) If the man be-

gins to climb the ladder at a speed v (with respect to the ladder), in what
direction and with what speed (with respect to the earth) will the balloon

move? (b) What is the state of motion after the man stops climbing?

10.

Answer: [a] down,
m

m M v. [b) Balloon again stationary.

A cannon and a supply of cannon balls are inside a sealed railroad car as in

Fig. 9-15. The cannon fires to the right; the car recoils to the left. The can-

non balls remain in the car after hitting the far wall. Show that no matter

1PP WW
figure 9-15
Problem 10



11.

how the cannon balls are fired the railroad car cannot travel more than its

length L, assuming it starts from rest.

A dog, weighing 10 lb, is standing on a flatboat so that he is 20 ft from the

shore. He walks 8.0 ft on the boat toward shore and then halts. The boat

weighs 40 lb, and one can assume there is no friction between it and the

water. How far is he from the shore at the end of this timer (Hint: The cen-

ter of mass of boat + dog does not move. Why") The shoreline is also to the

left in Fig. 9-16. Answer: 14 ft.

^tf^Z±
Tm. Reg. U. S. Pat. OH.—All nghtt reierved

fC> 1965 by United Feature Syndicate. Inc.

Yi. A ball of mass m and radius R is placed inside a larger hollow sphere with

the same mass and inside radius 2R. The combination is at rest on a fric-

tionless surface in the position shown in Fig. 9-17. The smaller ball is re-

leased, rolls around the inside of the hollow sphere, and finally comes to

rest at the bottom. How far will the larger sphere have moved during this

process •

13. Ricardo, mass 80 kg, and Carmelita are enjoying Lake Merced at dusk in a

30-kg canoe. When the canoe is at rest in the placid water they change seats,

which are 3.0 m apart and symmetrically located with respect to the canoe's

center. Ricardo notices that the canoe moved 0.40 m relative to a submerged

log, and calculates Carmelita's mass, which she has declined to tell him.

What is it' Answer: 58 kg.

14. An 80- kg man is standing at the rear of a 400-kg iceboat that is moving at

4.0 m/s across ice that may be considered to be frictionless. He decides to

walk to the front of the 1 8 m-long boat and does so at a speed of 2.0 m/s with

respect to the boat. How far did the boat move across the ice while he was

walking'

figure 9-16
Problem 1

1

figure 9-17

Problem 12

SECTION 9-3

15. How fast must an 1800-lb (mass = 816 kg) Volkswagen travel {a) to have the

same momentum as a 5850-lb (mass = 2650 kg) Cadillac going 10 mi/h (16

km/h) : [b] To have the same kinetic energy-
1

(c) Make the same calculations

using a 10-ton (mass = 9080 kgl truck instead of a Cadillac'

Answer: [a) 33 mi/h (52 km/h). [b] 18 mi/h (29 km/h). (c) 110 mi/h (180

km/lii. $3 mi/h |52 km/h).

16. A SO g ball is thrown into the air with an initial speed ot 15 m/s at an angle

of 45°. \a) What are the values ot the kinetic energy oi the ball initially and



just before it hits the ground? [b] Find the corresponding values of the

momentum (magnitude and direction), (c) Show that the change in momen-
tum is just equal to the weight of the ball multiplied by the time of flight.

17. A 5.0-kg object with a speed of 30 m/s strikes a steel plate at an angle of 45°

and rebounds at the same speed and angle (Fig. 9-18). What is the change

(magnitude and direction) of the linear momentum of the object'

Answer: 210 kg • m/s, perpendicular to the plate.

18. Two bodies, each made up of weights from a set, are connected by a light

cord which passes over a light, frictionless pulley with a diameter of 5.0 cm.

The two bodies are at the same level. Each originally has a mass of 500 g.

[a] Locate their center of mass, (b) Twenty grams are transferred from one

body to the other, but the bodies are prevented from moving. Locate the

center of mass, (c) The two bodies are now released. Describe the motion

of the center of mass and determine its acceleration.

45° \ / 45°

figure 9-18
Problem 17

SECTION 9-4

19. A 200-lb man standing on a surface of negligible friction kicks forward a

0.10-lb stone lying at his feet so that it acquires a speed of 10 ft/s. What
velocity does the man acquire as a result?

Answer: 5.0 x 10 3 ft/s, backward.

20. A pellet gun fires ten 2.0-g pellets per second with a speed of 500 m/s. The
pellets are stopped by a rigid wall, {a) What is the momentum of each pellet?

[b] What is the kinetic energy of each pellet? (c) What is the average force

exerted by the pellets on the wall?

21. A machine gun fires 50-g bullets at a speed of 1000 m/s. The gunner, holding

the machine gun in his hands, can exert an average force of 180 N against

the gun. Determine the maximum number of bullets he can fire per minute.

Answer: 220 bullets per minute.

22. A very flexible uniform chain of massM and length L is suspended from one

end so that it hangs vertically, the lower end just touching the surface of a

table. The upper end is suddenly released so that the chain falls onto the

table and coils up in a small heap, each link coming to rest the instant it

strikes the table. Find the force exerted by the table on the chain at any in-

stant, in terms of the weight of chain already on the table at that moment.

SECTION 9-5

23. A body of mass 8.0 kg is traveling at 2.0 m/s under the influence of no ex-

ternal force. At a certain instant an internal explosion occurs, splitting the

body into two chunks of 4.0 kg mass each; 16
J
of translational kinetic

energy are imparted to the two-chunk system by the explosion. Neither

chunk leaves the line of the original motion. Determine the speed and direc-

tion of motion of each of the chunks after the explosion.

Answer: One chunk comes to rest. The other moves ahead with a speed of

4.0 m/s.

24. The last stage of a rocket is traveling at a speed of 25,000 ft/s (7600 m/s).

This last stage is made up of two parts which are clamped together, namely,

a rocket case with a mass of 20 slugs (290 kg) and a payload capsule with a

mass of 10 slugs (150 kg). When the clamp is released, a compressed spring

causes the two parts to separate with a relative speed of 3000 ft/s (910 m/s).

[a) What are the speeds of the two parts after they have separated? Assume
that all velocities are along the same line, (b) Find the total kinetic energy

of the two parts before and after they separate and account for the difference,

if any.

25. A radioactive nucleus, initially at rest, decays by emitting an electron and

a neutrino at right angles to one another. The momentum of the electron is

1.2 x 10 22 kg-m/s and that of the neutrino is 6.4 x 10~ 23 kg-m/s. [a] Find the



direction and magnitude of the momentum of the recoiling nucleus, [b] The
mass of the residual nucleus is 5.8 x 10 -26 kg. What is its kinetic energy

of recoil :

Answer: [a] 1.4 x 10~22 kg • m/s, 150° from the electron track and 120° from

the neutrino track, [b] 1.0 eV.

2(y Each minute, a special game-warden's machine gun fires 22£v_l^>g rubber

bullets with a muzzle velocity of 1200 m/s. How many bullets must be fired

at an 85-kg animal charging toward the warden at 4.0 m/s in order to stop

the animal in its tracks" (Assume the bullets travel horizontally and drop

to the ground after striking the target.)

27. A vessel at rest explodes, breaking into three pieces. Two pieces, having

equal mass, fly off perpendicular to one another with the same speed of 30

m/s. The third piece has three times the mass of each other piece. What is

the direction and magnitude of its velocity immediately after the explosion''

Answer: 14 m/s, 135° from either other piece.

28. A shell is fired from a gun with a muzzle velocity of 1500 ft/s, at an angle

of 60° with the horizontal. The shell explodes into two fragments of equal

mass 50 s after leaving the gun. One fragment, whose speed immediately

after the explosion is zero, falls vertically. How .far from the gun does the

other fragment land, assuming level terrain?

29. A block of mass m rests on a wedge of mass M which, in turn, rests on a

horizontal table, as shown in Fig. 9-19. All surfaces are frictionless. If the

system starts at rest with point P of the block a distance h above the table,

find the velocity of the wedge the instant point P touches the table.

Answer:
2m 2gh cos2a

[M + m)[M + m sin2a)

figure 9-19
Problem 29

SECTION 9-7

30. [a) Show that the rocket speed is equal to the exhaust speed when the ratio

MJM is e (about 2.7). Specify the coordinate system in which this result

holds, [b] Show also that the rocket speed is twice the exhaust speed when
MJM is e2 (about 7.4).

31. A rocket is moving away from the solar system at a speed of 6.0 x 103 m/s.

It fires its rocket engine, which ejects exhaust with a relative velocity of

3.0 x 103 m/s. The mass of the rocket at this time is 4.0 x 104 kg, and it ex-

periences an acceleration of 2.0 m/s2
. [a] What is the velocity of the exhaust

relative to the solar system? \b) At what rate was exhaust ejected during the

firing? Answer: {a) 3.0 x 103 m/s. [b] 27 kg/s.

32. A widely used rocket fuel is kerosene and liquid oxygen, capable of giving

an exhaust velocity v re: of 8000 ft/s (about 1.5 mi/s). [a] Neglect gravity and

the weight of fuel tanks, pumps, etc., and find how many pounds of this

fuel one needs for each pound of payload in order to get a rocket, starting

from rest, to reach a velocity of 7.5 mi/s (the velocity of escape from the

earth is 7.0 mi/s). [b] In the Mariner probe to Mars the initial weight was
about 200,000 lb and the payload about 500 lb, a "fuel" to payload ratio of

400 to 1 . Starting a rocket from rest, what final velocity is achievable under

these circumstances? (c) The actual final rocket velocity was about 15 mi/s,

much greater than the value found in [b). Explain this, considering the fol-

lowing factors: the external forces and weight neglected in [a] must be taken

into account; the rocket uses a .number of stages; the initial rocket velocity

is that of the earth's surface, in a reference frame attached to the sun.

33. A 6000-kg rocket is set for vertical firing. If the exhaust speed is 1000 m/s,

how much ^as must be ejected each second to supply the thrust needed a]

to oven ome the weight of the rocket, and [b] to give the rocket An initial

upward acceleration oi 20 m Answer: [a] 59 kg/s. [b] 180 kg s

34. Consult! a particle acted on by a force having the same direction as its

velocity. \a\ Usui)' the relativists relation / d[mv)ld\ foi a single particle,

show thai



F ds = mv dv + v2 dm,

where ds is an infinitesimal displacement, (b) Using the relativistic rela-

tion v2 = (1 — m>;2/m 2 )c2 , show that §
O

THo2c2 ^
mv dv = —dm. Cm 2

(c) Substitute the relations for mv dv and v2 into result [a) and show that

o
£

35. A railroad flatcar of weight W can roll without friction along a straight

horizontal track as shown. Initially a man of weight w is standing on the

car which is moving to the right with speed v . What is the change in veloc-

ity of the car if the man runs to the left (Fig. 9-20) so that his speed relative

to the car is vtei just before he jumps off at the left end"

Answer: wvTu[/[W + w).

figure 9-20
Problem 35

36. Assume that the car in Problem 35 is initially at rest. It holds n men each

of weight w. If each man in succession runs with a relative velocity vrei
and

jumps off the end, do they impart to the car a greater velocity than if they

all run and jump at the same time"

37. A toboggan weighing 12 lb and carrying 80 lb of sand slides from rest down
an icy slope 300 ft long, inclined 30° below the horizontal. The toboggan

has a hole in the bottom, so that the sand leaks out at the rate of 5.0 lb/s.

How long does it take the toboggan to reach the bottom of the slope?

Answer: 6.1 s.

38. Two long barges are floating in the same direction in still water, one with a

speed of 10 km/h and the other with a speed of 20 km/h. While they are pass-

ing each other, coal is shoveled from the slower to the faster one at a rate of

1000 kg/min. How much additional force must be provided by the driving

engines of each barge if neither is to change speed? Assume that the shovel-

ing is always perfectly sideways and that the frictional forces between the

barges and the water do not depend on the weight of the barges.

39. A jet airplane is traveling 180 m/s (600 ft/s). The engine takes in 68 m3 (2400

ft
3

) of air making a mass of 70 kg (4.8 slugs) each second. The air is used to

burn 2.9 kg (0.20 slugs) of fuel each second. The energy is used to compress

the products of combustion and to eject them at the rear of the plane at

490 m/s (1600 ft/s) relative to the plane. Find (a) the thrust of the jet engine

and [b] the delivered power (horsepower).

Answer: [a) 2.3 x 10" N (5100 lb). \b) 4.1 x 10 6 W (5600 hp).

40. A freight car, open at the top, weighing 10 tons, is coasting along a level

track with negligible friction at 2.0 ft/s when it begins to rain hard. The rain-

drops fall vertically with respect to the ground. What is the speed of the car

when it has collected 0.50 ton of rain' What assumptions, if any, must you
make to get your answer?

41. A flexible inextensible string of length / is threaded into a smooth tube, into

which it snugly fits. The tube contains a right-angled bend, and is positioned

in the vertical plane so that one arm is vertical and the other horizontal.

Initially, at t = 0, a length y of the string is hanging down in the vertical

^



• arm. The string is released and slides through the tube, so that at any sub-

sequent time t later, it is moving with a speed dy/dt, where y{t) is the length

of the string that is then hanging vertically. \a) Show that in terms of the

variable mass problem v re i

= 0, so that the equation of motion has the form

b m dv/dt = F ext . lb) Show that the specific equation of motion is {d2y/dt 2)=gy.

(c) Show that conservation of mechanical energy leads to [dy/dt) 2 -gy2 = a

constant, and that this is consistent with lb), [d] Show that y= ly /2)le
N9 "-

e-v57T<] is a solution to the equation of motion [by substitution into lb)] and

2: discuss the solution.
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10

collisions
We learn much about atomic, nuclear, and elementary particles experi-

mentally by observing collisions between them. On a larger scale we
can interpret such things as the properties of gases in terms of particle

collisions. In this chapter we apply the principles of conservation of

energy and conservation of momentum to the collisions of particles.

In a collision a relatively large force acts on each colliding particle for

a relatively short time. The basic idea of a "collision" is that the motion
of the colliding particles (or of at least one of them) changes rather ab-

ruptly and that we can make a relatively clean separation of times that

are "before the collision" and those that are "after the collision."

When a bat strikes a baseball for example, the beginning and the end

of the collision can be determined fairly precisely. The bat is in contact

with the ball for an interval that is quite short in comparison to the time

during which we are watching the ball. During the collision the bat

exerts a large force on the ball (Fig. 10-1). This force varies with time in

a complex way that we can measure only with difficulty. Both the ball

and the bat are deformed during the collision.* Forces that act for a time

that is short compared to the time of observation of the system are

called impulsive forces.

When an alpha particle (He4
) "collides" with a nucleus of gold (Au 197

),

the force acting between them may be the well-known repulsive elec-

trostatic force associated with the charges on the particles. The particles

may not "touch," but we still may speak of a "collision" because a rela-

tively strong force, acting for a time that is short in comparison to the

10-1
WHAT IS A COLLISION!

figure 10-1

A high-speed flash photograph of a

bat striking a baseball. Notice the

deformation of the ball, indicating

the enormous magnitude of the

impulsive force at this instance.

(Courtesy Harold E. Edgerton,

Massachusetts Institute of

Technology, Cambridge, Mass.)

See "Batting the Ball" by P. Kirkpatrick, American journal of Physics, August 1963.
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time that the alpha particle is under observation, has a marked effect on
the motion of the alpha particle.

When a proton [H 1 or p) with energy of, say, 25 MeV, "collides" with

a nucleus of, say, a silver isotope (perhaps Ag 107
), the particles may ac-

tually "touch," the predominant force then acting between them being,

not the electrostatic repulsive force, but the strong, short-range, attrac-

tive nuclear force |see page 106). The proton may enter the silver nu-

cleus, forming a compound structure. A short time later— the "collision

interval" may be 10 -18
s — this compound structure may break up into

two different particles, according to a scheme such as

p + Ag107 -* a + Pd 104
,

in which a (= He4
) is an alpha particle. Thus we may broaden the con-

cept of collision to include events (usually called reactions) in which
the identities of the interacting particles change during the event. The
conservation principles are applicable to all these examples.

We may, if we wish, broaden our definition of "collision" even fur-

ther to include the spontaneous decay of a single particle into two or

more other particles. An example is the decay of the elementary par-

ticle called the sigma particle into two other particles, the pion and the

neutron (see Appendix I) or

2" —» 77" + n.

Although two bodies do not come in contact in this process (unless we
consider it in reverse), it has many features in common with collisions:

( 1 ) there is a clean distinction between "before the event" and "after the

event," and (2) the laws of conservation of momentum and energy per-

mit us to learn much about such processes by studying the "before" and

"after" situations, even though we may know little about the force laws

that operate during the "event" itself.

In studying collisions in this chapter our aim will be this: given the

initial motions of the colliding particles, what can we learn about their

final motions from the principles of conservation of momentum and

energy, assuming that we know nothing about the forces acting during

the collision-

figure 10-2

How an impulsive force F{t) might

vary with time during a collision

starting at time t, and ending

at tf.

Let us assume that Fig. 10-2 shows the magnitude of the force exerted

on a body during a collision. We assume that the force has a constant

direction. The collision begins at time t, and ends at time tf, the force

being zero before and after collision. From Eq. 9-12 we can write the

change in momentum dp of a body in a time dt during which a force F

acts on it as

dp = F dt. 10-1!

We can find the change in momentum of the body during a collision by

integrating over the time of collision, that is,

P/ - P-
= dp F dt 10-2)

in which the subscripts ; [= initial] and f [= Html) refer to the times be-

fore and after the collision, respectively. The integral ol a force over the

time interval during which the force acts is called the impulse ) ol the

Force Hence the change in momentum of a body acted on by an impul-

10-2
IMPULSE AND
MOMENTUM



sive force is equal to the impulse. Both impulse and momentum are

vectors and both have the same units and dimensions.

The impulsive force represented in Fig. 10-2 is assumed to have a con-

stant direction. The impulse of this force, F dt, is represented in mag-

nitude by the area under the force-time curve.*

Consider now a collision between two particles, such as those of masses

mi and m>, shown in Fig. 10-3. During the brief collision these particles

exert large forces on one another. At any instant F, is the force exerted

on particle 1 by particle 2 and F2 is the force exerted on particle 2 by

particle 1. By Newton's third law these forces at any instant are equal in

magnitude but oppositely directed.

The change in momentum of particle 1 resulting from the collision is

Api = ('f
f 1 dt = ¥i At

in which Fi is the average value of the force Fi during the time interval

of the collision At = t/ — U.

The change in momentum of particle 2 resulting from the collision is

Ap 2 F 2 dt = F, At

in which F 2 is the average value of the force F2 during the time interval

of the collision At = tj — t,.

If no other forces act on the particles, then Ap] and Ap 2 give the total

change in momentum for each particle. But we have seen that at each

instant F! = —

F

2 , so that Fi = —

F

2 , and therefore

Ap, = -Ap 2 .

If we consider the two particles as an isolated system, the total mo-
mentum of the system is

P = Pi + p 2 ,

and the total change in momentum of the system as a result of the col-

lision is zero, that is,

AP = Api + Ap 2 = 0.

Hence, if there are no external forces the total momentum of the sys-

tem is not changed by the collision. The impulsive forces acting during

the collision are internal forces which have no effect on the total mo-
mentum of the system.

We have defined a collision as an interaction which occurs in a time

At that is negligible compared to the time during which we are ob-

serving the system. We can also characterize a collision as an event in

which the external forces that may act on the system are negligible

compared to the impulsive collision forces. When a bat strikes a base-

ball, a golf club strikes a golf ball, or one billiard ball strikes another,

10-3
CONSERVATION OF
MOMENTUM DURING
COLLISIONS

figure 10-3

Two "particles" mi and m>, in

collision, experience equal and

opposite forces along their line of

centers, according to Newton's third

law
;
Fi(t) = -Fi(t).

*The impulse J, defined from Eq. 10-2, does not depend critically on the precise values

of ti and tj- as long as these times are far enough apart to include the crosshatched area of

Fig. 10-2. For reasons that will appear later we usually choose f, and £/ with a separation

that is just large enough to make a clean distinction between the "collision" and the

"before and after intervals."



external forces act on the system. Gravity or friction exerts forces on

these bodies, for example; these external forces may not be the same
on each colliding body nor are they necessarily canceled by other ex-

ternal forces. Even so it is quite safe to neglect these external forces

during the collision and to assume momentum conservation provided,

as is almost always true, that the external forces are negligible com-
pared to the impulsive forces of collision. As a result the change in

momentum of a particle during a collision arising from an external force

is negligible compared to the change in momentum of that particle

arising from the impulsive collisional force (Fig. 10-4).

For example, when a bat strikes a baseball, the collision lasts only

a small fraction of a second. Because the change in momentum is large

and the time of collision is small, it follows from

Ap = F At

that the average impulsive force F is relatively large. Compared to this

force, the external force of gravity is negligible. During the collision we
can safely ignore this external force in determining the change in mo-
tion of the ball; the shorter the duration of the collision the more likely

this is to be true.

In practice, therefore, we can apply the principle of momentum con-

servation during collisions if the time of collision is small enough. We
can then say that the momentum of a system of particles just before

the particles collide is equal to the momentum of the system just after

the particles collide.

figure 10-4

During a collision, the impulsive

force Fi m/I is generally much greater

than any external forces Fexl , which
may act on the system.

We can always calculate the motions of bodies after collision from their

motions before collision if we know the forces that act during the col-

lision, and if we can solve the equations of motion. Often we do not

know these forces. However, the principle of conservation of momen-
tum must hold during the collision. We already know that the principle

of conservation of total energy holds. Although we may not know the

details of the interaction, we can use these principles in many cases to

predict the results of the collision.

Collisions are usually classified according to whether or not kinetic

energy is conserved in the collision. When kinetic energy is conserved,

the collision is said to be elastic. Otherwise, the collision is said to be

inelastic. Collisions between atomic, nuclear, and fundamental par-

ticles are sometimes (but not always) elastic. These are, in fact, the

only truly elastic collisions known. Collisions between gross bodies are

always inelastic to some extent. We can often treat such collisions as

approximately elastic, however, as, for example, collisions between

ivory or glass balls. When two bodies stick together after collision, the

collision is said to be completely inelastic. For example, the collision

between a bullet and a block of wood into which it is fired is com-

pletely inelastic when the bullet remains embedded in the block. The
term completely inelastic does not mean that all the initial kinetic

energy is lost; as we shall see, it means rather that the loss is as great as

is consistent with momentum conservation.

Even if the forces of collision are not known, we can find the mo-
tions of the particles after collision from the motions before collision,

provided the collision is completely inelastic, or, if the collision is

elastic, provided the collision is a one dimensional one. For a one

dimensional collision the relative motion after collision is alone the

10-4
COLLISIONS IN ONE
DIMENSION



same line as the relative motion before collision. We restrict ourselves

to one-dimensional motion for the present.

Consider first an elastic one-dimensional collision. We can imagine

two smooth nonrotating spheres moving initially along the line joining

their centers, then colliding head-on and moving along the same straight

line without rotation after collision (see Fig. 10-5). These bodies exert

forces on each other during the collision that are along the initial line

of motion, so that the final motion is also along this same line.

mi

Before

Vli
-O

\

mi

v
2i

After

mi
9-

c>

"2)
-t>

figure 10-5
Two spheres before and after an

elastic collision. The velocity,

vn — v2 i, of mi relative to m 2 before

collision is equal to the velocity,

v2/ — Vi/, of m 2 relative to mi after

collision.

The masses of the spheres are mi and m>, the (scalar) velocity com-
ponents being vu and v2 , before collision and Vi/and v2/ after collision.*

We take the positive direction of the momentum and velocity to be to

the right. We assume, unless we specify otherwise, that the speeds of

the colliding particles are low enough so that we need not use the rela-

tivistic expressions for momentum and kinetic energy. Then from con-

servation of momentum we obtain

miVii + m 2v2i = m^v if + m 2v2f.

Because we are considering an elastic collision the kinetic energy is

conserved by definition and we obtain

imiVi;2 + jrm 2v2i
2 = imiVi/2 + \m 2v2?.

It is clear at once that, if we know the masses and the initial velocities,

we can calculate the two final velocities v^and v2/ from these two equa-

tions.

The momentum equation can be written as

fflilvii - Vif) = m 2 [v2f — Vzi),

and the energy equation can be written as

mifvii
2 - Vif) = m 2{v2f

2 - v2i
2

).

;i0-3)

;i0-4)

Dividing Eq. 10-4 by Eq. 10-3, and assuming v->f ¥= v2 , and v,/ # Vi, (see

Question 7), we obtain

Vi; V2/ + V2 i

and, after rearrangement,

Vii - V2i = V2f
- Vif UO-5)

This tells us that in an elastic one-dimensional collision, the relative

velocity of approach before collision is equal to the relative velocity of

separation after collision.

* The notation used is easy to interpret and to remember and reveals much information

in a simple compact way. The number subscripts, such as 1 and 2, specify the particle and

the letter subscripts, i and f, indicate initial value (before the collision) and final value

(after the collision), respectively.



To find the velocity components v if and v2/ after collision from the

velocity components vu and Vu before collision, we can use any two
of the three previous numbered equations. Thus from Eq. 10-5

V2f= VU + Vif
— Vzu

Inserting this into Eq. 10-3 and solving for v y( , we find that

(m x
— m>\

,
/ 2m >

m, + m 2 / \JUi + m.

Likewise, inserting v,/ = v2f + v2i — Vu (from Eq. 10-5) into Eq. 10-3 and

solving for v2f , we obtain

/ 2m, \ , (m 2 -mA
V-,f = : )Vu + : )V>j.3 \m, + m>J \m l + m>/

There are several cases of special interest. For example, when the

colliding particles have the same mass, mi equals m 2 so that the two
previous equations become simply

v ij = v2 i and v2f=Vu-

That is, in a one-dimensional elastic collision of two particles of equal

mass, the particles simply exchange velocities during collision.

Another case of interest is that in which one particle m 2 is initially

at rest. Then v2i equals zero and

mi — m>\ I 2m,
vif = : \Vu, vtf = — \Vu.1 \m x + mj J \m, + m 2)

Of course, if m, = m 2 also, then v
v
,-— and v2f= vu as we expect. The

first particle is "stopped cold" and the second one "takes off" with the

velocity the first one originally had. If, however, m> is very much
greater than m,, we obtain

Vu- = —Vu and v2f = 0.

That is, when a light particle collides with a very much more massive

particle at rest, the velocity of the light particle is approximately re-

versed and the massive particle remains approximately at rest. For ex-

ample, suppose that we drop a ball vertically onto a horizontal surface

attached to the earth. This is in effect a collision between the ball and

the earth. If the collision is elastic, the ball will rebound with a re-

versed velocity and will reach the same height from which it fell.

If, finally, m> is very much smaller than m,
;
we obtain

Vif = vu v2f
as 2vu .

This means that the velocity of the massive incident particle is virtu-

ally unchanged by the collision with the light stationary particle, but

that the light particle rebounds with approximately twice the velocity

of the incident particle. The motion of a bowling ball is hardly affected

by collision with an inflated beach ball of the same size, but the beach

ball bounces away quickly.

Neutrons produced in a reactor from the fission of uranium atoms
move very fast and must be slowed down if they are to produce more
fissions. Assuming that they make elastic collisions witb the nuclei at

rest, what material should be picked to moderate (that is, to slow down]

the neutrons in the reactor? We can answer this from the considera-

tions iust discussed. If the stationary targets were massive nuclei, like



lead, the neutrons would simply bounce back with practically the same 3

z

tn

speed they had initially. If the stationary targets were very much lighter

than the neutrons, like electrons, the neutrons would move on with

practically the same velocity they had initially. However, if the sta-
t~!

tionary targets are particles of nearly the same mass, the neutrons will

be brought almost to rest in a (head-on) collision with them. Hence,

hydrogen, whose nucleus (proton) has nearly the same mass as a neu- ^

tron, should be most effective. Other considerations affect the choice

of a moderator for neutrons, but momentum and energy considerations

alone limit the choice to the lighter elements. m

If a collision is inelastic then, by definition, the kinetic energy is not S
conserved. The final kinetic energy may be less than the initial value, ^
the difference being ultimately converted to heat energy or to potential §
energy of deformation in the collision, for example; or the final kinetic

energy may exceed the initial value, as when potential energy is re-

leased in the collision. In any case, the conservation of momentum still

holds, as does the conservation of total energy.

Let us consider finally a conpletely inelastic collision. The two par-

ticles stick together after collision, so that there will be a final common
velocity vf. It is not necessary to restrict the discussion to one-dimen-

sional motion. Using only the conservation of momentum principle,

we find

miVu + m 2v2 i
= (mi + m 2 )v/. (10-6)

This determines V/ when \u and v2 , are known.

A baseball weighing 0.35 lb is struck by a bat while it is in horizontal flight with EXAMPLE
a speed of 90 ft/s. After leaving the bat the ball travels with a speed of 1 10 ft/s

in a direction opposite to its original motion. Determine the impulse of the

collision.

We cannot calculate the impulse from the definition J
= / F dt because we

do not know the force exerted on the ball as a function of time. However, we
have seen (Eq. 10-2) that the change in momentum of a particle acted on by an

impulsive force is equal to the impulse. Hence

J
= change in momentum = P/ — p,

= m\f - m\i = (—j(vy - v.).

Assuming arbitrarily that the direction of v, is positive, the impulse is then

/ = (ff|^)(-

!

10 ft/s - 90 ^/s) = -2.2 lbs

The minus sign shows that the direction of the impulse acting on the ball is

opposite that of the original velocity of the ball.

We cannot determine the force of the collision from the data we are given.

Actually, any force whose impulse is —2.2 lb-s will produce the same change in

momentum. For example, if the bat and ball were in contact for 0.0010 s, the

average force during this time would be

F =^ ==MJ^ = -2200lb.
At 0.0010 s

For a shorter contact time the average force would be greater. The actual force

would have a maximum value greater than this average value.

How far would gravity cause the baseball to fall during its collision time?



[a] By what fraction is the kinetic energy of a neutron (mass mi) decreased in a

head-on elastic collision with an atomic nucleus (mass m-A initially at rest"

The initial kinetic energy of the neutron Kt is Im^,,2
. Its final kinetic energy

Kf is im,v,/2
. The fractional decrease in kinetic energy is

K, - Kf i- 'V

Ki

But, for such a collision,

so that Ki Kf

= 1

Vu 2

m

Ki
= 1

-

,vu ,

m-2

mi — m 2

mi + m2

Am xm,

im. m>

[b] Find the fractional decrease in the kinetic energy of a neutron when it

collides in this way with a lead nucleus, a carbon nucleus, and a hydrogen

nucleus. The ratio of nuclear mass to neutron mass (= m 2/mi) is 206 for lead, 12

for carbon, and 1 for hydrogen.

For lead, m 2 = 206m,,

K, - Kf _ 4 x 206

Ki (207) 2

carbon, m 2 = 12m,,

Ki- Kf_ 4X 12

Ki U3)
2

hydrogen, m 2
= m,,

Ki- Kf_ 4 x 1

0.02

0.28

or

or

2%.

28%.

Ki |2)
2

or 100',.

These results explain why paraffin, which is rich in hydrogen, is far more
effective in slowing down neutrons than is lead.

EXAMPLE 2

The Ballistic Pendulum. The ballistic pendulum is used to measure bullet

speeds. The pendulum is a large wooden block of mass M hanging vertically by

two cords. A bullet of mass m, traveling with a horizontal speed Vi, strikes the

pendulum and remains embedded in it (Fig. 10-6). If the collision time (the

time required for the bullet to come to rest with respect to the block) is very

small compared to the time of swing of the pendulum, the supporting cords

remain approximately vertical during the collision. Therefore, no external hori-

zontal force acts on the system (bullet + pendulum) during collision, and the

horizontal component of momentum is conserved. The speed of the system

after collision vf is much less than that of the bullet before collision. This final

speed can be easily determined, so that the original speed of the bullet can be

calculated from momentum conservation.

The initial momentum of the system is that of the bullet mv,, and the mo-
mentum of the system just after collision is (m + M)vf, so that

mvi = (m + M)vf .

After the collision is over, the pendulum and bullet swing up to a maximum
height y, where the kinetic energy left after impact is converted into gravita-

tional potential energy. Then, using the conservation of mechanical energy

his i>nri iii the motion, we obtain

£(m + M)vf = [m +M)i )

Solving these two equations for v,, we obtain

in f M ,-—
v, = V2xy.m

Heni i- we t.in find tin initial speed ol tin- bullet In measuring m, A! .md y.

EXAMPLE 3

figure 10-<i

Example 3. A ballistic pendulum
consisting of a huge wooden block

of mass M suspended by cords.

When a bullet of mass /?; and

velocity v, is fired into it, the block

swings rising .1 maximum
distance y.



The kinetic energy of the bullet initially is imvi 2 and the kinetic energy of

the system (bullet + pendulum) just after collision isi[m + M)v/. The ratio is

m M)vf m
-frmvi* m + M

For example, if the bullet has a mass m = 5 g and the block has a massM = 2000

g, only about one-fourth of 17c of the original kinetic energy remains; over 99%
is converted to other forms of energy, such as heat energy.

The velocity of the center of mass of two particles is not changed by their col-

lision, for the collision, whether elastic or inelastic, does not change the total

momentum of the system of two particles, only the distribution of momentum
between the two particles. The momentum of the system can be written

(Eq. 9-15) as P = |mi + m2)vcm . If no external forces act on the system, then P

is constant before and after the collision, and the center of mass moves with

uniform velocity throughout.

If we choose a reference frame attached to the center of mass, then in this

center-of-mass reference frame, v,.m = and P = 0. There is a great simplicity and
symmetry in describing collisions with respect to the center of mass, and it is

customary to do so in nuclear physics. For whether collisions are elastic or in-

elastic, momentum is conserved, and in the center of mass reference frame the

total momentum is zero. These results hold in two and three dimensions as

well as in one because momentum is a vector quantity.

As an example, consider a head-on elastic collision between two particles

ffli and m 2 . Let m 2 equal 3mi and let m> be at rest, so that v2 , equals zero in the

laboratory reference frame. The total momentum of the two particles is just

that of the incident particle rriiVu, so that

m x vxi [mi + m 2 )vL
.

or

m,

mi + ni%
Vu ivu .

After the collision, m x has a velocity Vy=—\vu and m 2 has a velocity v2/
= |v I( .

The total momentum of the two particles (njivv + m 2v2f ) is the same as before

the collision, and the motion of the center of mass is unchanged (check this). In

Fig. 10-7a we show a series of "snapshots" of the collision taken at equal time

Vl,'

mi

vcm = ivi;

c.m.r •»*
|vu
mi

=

mi

-iv Xl

«*m 2

x <y

x<-»

x»t>

x «-l

x »-t>

•-O

figure 10-7

(a) An elastic collision in the

laboratory reference frame, (b) The
same elastic collision in the

center-of-mass reference frame.

(a) <b)



intervals as seen in the laboratory reference frame. In Fig. 10- lb we show the

same situation as seen in the center-of-mass reference frame, where vcm is zero.

Notice the symmetry of the particles' motions when described in this way. The
particle coming from the left has a speed fvu with respect to the center of mass
(where vu is the speed of mi in the laboratory frame) and recedes with this same
speed. The particle coming from the right has a speed }vu with respect to the

center of mass and recedes with this same speed.

If the collision is completely inelastic, the motion after collision is simply

that of two particles moving along together at the center of mass. In Figs. 10-8a

and 10-8i> we show how the collision of Fig. 10-7, now assumed to be com-

pletely inelastic, would be described in the laboratory and the center-of-mass

reference frames, respectively. These figures are exactly like the previous ones

until the collision occurs; after the collision, however, the motion of the center

of mass describes that of the entire system.

Vcm =

"12

X<)-»

m\ + m?

(a)

Vcm= jy\i

(b)

VCm=

figure 10-8

(a) A completely inelastic collision

in the laboratory reference frame.

(b) The same completely inelastic

collision in the center-of-mass

reference frame. In each case the

motion before collision is the same
as that of Fig. 10-7.

The distinction between kinetic energy and momentum and the relationship

of these concepts to force were not clearly understood until late in the eigh-

teenth century. Scientists argued whether kinetic energy or momentum was
the "true'' measure of the effect of a force on a body. Descartes argued that when
bodies interact, all that can happen is the transfer of momentum from one body
to another, for the total momentum of the universe remains constant; hence

the only "true" measure of a force is the change in momentum it produces in a

given time. Leibnitz attacked this view and argued that the "true" measure of

a force is the change it produces in kinetic energy (called by him vis viva or

living force, taken to be twice what we now call kinetic energy).

In his treatise on mechanics (1743), D'Alembert dismissed the argument as

being pointless and arising from a confusion of terminology. The cumulative

effect of a force can be measured by its integrated effect over time, J / dt, which
produces a change in momentum, or by its integrated effect over space. / F dx.

which produces a change in kinetic energy. Both concepts are useful and valid

although different. Which one we use depends on what we are interested in oi

what is more COnvenienl As oui present study of collisions illustrates, we fre

quently use both concepts in the same problem (see Question 23]

A more modern view is to look foi quantities oi the motion tli.it are m
variant, rather than focusing on the concept of ton e I he question .is to whethe)

10-5
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the energy or the momentum is the "real" quantity of motion becomes point-

less for there is no unique "quantity of motion." Instead, both energy and
momentum may be regarded as invariant quantities of the motion in that for

an isolated system the total of each of these quantities, summed up over all

parts of the system, remains constant with time. There may be an exchange of

energy, and of momentum, between different parts of an isolated system, but

the total of each quantity is conserved.

In two or three dimensions (except for a completely inelastic collision)

the conservation laws alone cannot tell us the motion of particles after

a collision if we know the motion before the collision. For example, for

a two-dimensional elastic collision, which is the simplest case, we have

four unknowns, namely the two components of velocity for each of

two particles after collision,- but we have only three known relations

between them, one for the conservation of kinetic energy and a con-

servation of momentum relation for each of the two dimensions. Hence
we need more information than just the initial conditions. When we
do not know the actual forces of interaction, as is often the case, the

additional information must be obtained from experiment. It is sim-

plest to specify the angle of recoil of one of the colliding particles.

Let us consider what happens when one particle is projected at a

target particle which is at rest. This case is not as restrictive as it may
seem, for we can always pick our reference frame to be one in which
the target particle is at rest before the collision. Much experimental

work in nuclear physics involves projecting nuclear particles at a target

which is stationary in the laboratory reference frame. In such collisions,

because of momentum conservation, the motion is in a plane deter-

mined by the lines of recoil of the colliding particles. The initial mo-
tion need not be along the line joining the centers of the two particles.

The force of interaction may be electromagnetic (in which we include

"contact" forces; see page 106), gravitational, or nuclear. The par-

ticles need not "touch"; strong forces, which act at relatively close dis-

tances of approach and for a time short compared to the observation

time, deflect the particles from their initial courses.

A typical situation is shown in Fig. 10-9. The distance b between the

initial line of motion and a line parallel to it through the center of the

10-6
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figure 10-9

Two particles, rrii and m2 ,

undergoing a collision. The open

circles indicate their positions

before collision, the shaded ones

after collision. Initially m 2 is at rest.

The impact parameter b is the

distance by which the collision

misses being head-on.



target particle is called the impact parameter. This is a measure of

the directness of the collision, b = 0, corresponding to a head-on colli-

sion. The direction of motion of the incident particle m x after collision

makes an angle di with the initial direction, and the target projectile

m>, initially at rest, moves in a direction after collision making an angle

2 with the initial direction of the incident projectile. Applying the con-

servation of momentum, which is a vector relation, we obtain two
scalar equations; for the x-component of motion we have

miVi, = m\V\f cos d x + m2v2/ cos 2 ,

and for the y-component

= miVij sin t) x
— m>v>f sin 6>.

Let us now assume that the collision is elastic. Here the conservation of

kinetic energy applies and we obtain a third equation,

imiVu2 = imiVij2 + \m 2vv
2

.

If we know the initial conditions [mi, m2, and vu ), we are left with four

unknowns {v lf, v->f , 6\, and 0>) but only three equations relating them.

We can determine the motion after collision only if we specify a value

for one of these quantities, such as #,.

Two skaters collide and embrace, as Fig. 10-10 suggests. One, whose mass mi is

70 kg [W, = m,g = 150 lb), is initially moving east at a speed Vi of 6.0 km/h (3.7

mi/hl. The other, whose massm- is 50 kg [W> = m>g= 110 lb), is initially moving
north at a speed v-> of 8.0 km/h |5.0 mi/h). [a) What is the final velocity of the

couple" [b] What fraction of the initial kinetic energy of the skaters is lost be-

cause of the collision"

EXAMPLE 4

y (north)

*V (east)

figure 10-10

Example 4. (a) initial situation.

(b) final situation.

(b)

[a] Figure 10-10 shows the initial and final situations. Because P = P, (no ex-

ternal forces act) we can write for the x component of momentum

m,v, = \rrii + m>)v cos

and for the y component oi momentum

m : v-2 = (mi I
in .)v sin a.



tan

Dividing the second equation by the first, we get

m 2v2 _ (50 kg)|8.0 km/h)

m,v, ~ (70 kg)|6.0 km/h)

= 0.95 or = 43°,

which gives the direction of the final velocity.

Then, from the y-component equation we have

m 2v2

(mi + m 2 ) sin

(50 kg)(8.0 km/h)
~

(70 kg + 50 kg) sin 43°

= 4.9 km/h (3.0 mi/h),

which gives the magnitude of the final velocity.

[b] The initial kinetic energy of the skaters is

K,,
= |m,v, 2 + |m 2v2

2

\ (70 kg)(6.0 km/h) 2 + \ (50 kg)(8.0 km/h) 2

= 220 J.

The final kinetic energy of the couple is

K>=i(m, + m 2 )v
2

Hence,

= 1 (70 kg + 50 kg)|4.9 km/h) 2

=fi44o
kgkm2v^^-Vf^^y

I h2 /\3600s/Ukm/

= 110 J.

Ki-Kf 220 J
— 110 J _ 1

K, 220
J 2

so that 50$ of the initial kinetic energy is lost in the collision.

A gas molecule having a speed of 300 m/s collides elastically with another mole- EXAJWPIjE 5
cule of the same mass which is initially at rest. After the collision the first

molecule moves at an angle of 30° to its initial direction. Find the speed of each

molecule after collision and the angle made with the incident direction by the

recoiling target molecule.

This example corresponds exactly to the situation discussed before the last

example, with m, = m>, Vu = 300 m/s, and 0, = 30°. Setting m, equal to m 2/ we
have the relations

Vu=Vif cos 0i + V2/ cos 02,

v,/ sin 0i = v-,f sin 2 ,

and

Vu2 = V,/2 + v2/.

We must solve for v ifl v2/ , and 0->. To do this we square the first equation (rewrit-

ing it as Vu — Vu cos 0\ = v2/ cos 0->), and add this to the square of the second equa-

tion (noting that sin2 + cos2 =.1)
;
we obtain

Vi,-
2 + vu2 — IvuVxf cos 0i = v-zj

2
.
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figure 10-11

Photographs of trajectories of

particles undergoing collisions in a

cloud chamber, a device that makes
these paths visible. The chamber
contains saturated water vapor. If

the vapor is slightly compressed and

then allowed to expand quickly,

the water vapor will condense in

droplets along the trajectory. The
incident particle in all four cases is

a helium nucleus (He4
, or a). In (a)

the target is a hydrogen nucleus

(H 1 or p). The other tracks are

similar, except that in (b) the target

is another He4 nucleus, whereas in

(c) and (d) the targets are fluorine

and chlorine nuclei respectively. In

general, the particles do not lie in

the plane of the photograph.

Stereoscopic photos are required for

a complete analysis.

t'iMM m WWfl

1, I
figure 10-12

(a) Four proton-proton collisions in a 10"-diameter bubble chamber. The

original high-energy proton entered from the upper right. The spiral tracks

are low energy electrons. The other tracks passing through the chamber are

mesons of various kinds Stereoscopic viewing shows that the angle

between the outgoing tracks in each case is 90°. This is not apparent m the

figure because the tracks do not lie in the plane of the figure, (b) A
schematic representation of the proton tracks in (a). (Photo courtesy

Laurence Radiation Laboratory.)



Combining this with the third equation, we obtain

2v,f = 2vu Vif cos 6»i

or (because v lf
¥- 0)

vv= vu cos di = (300 m/s)(cos 30°)

or

Vif = 260 m/s.

From the third equation

v-if = vu2 - Vif = (300 m/s) 2 - (260 m/s) 2
,

or

v2f
= 150 m/s.

Finally, from the second equation

sin 0> = {vif/v->f) sin fli

= (260/150)(sin 30°) = 0.866

or

02 = 60°.

The two molecules move apart at right angles [0 X + 2 = 90° in Fig. 10-9).

You should be able to show that in an elastic collision between particles of

equal mass, one of which is initially at rest, the recoiling particles always move
off at right angles to one another.

In Fig. 10-11, we show photographs of four elastic nuclear collisions

that take place in a Wilson cloud chamber.* The tracks of the particles

are made visible by the trail of droplets left in their wake. In each case

the incident particle is an «-particle (He4
)
and the target nucleus is

essentially at rest before collision. Notice that as the target mass in-

creases, the angle between the recoiling particles increases (see Problem

42). In case [b] where the target is also an a-particle, stereoscopic photos

show that the recoiling particles move off at right angles; the angle is

not quite a right angle in the figure because the particles do not lie in the

plane of the figure.

Figure 10-12 shows a series of four successive elastic collisions be-

tween protons caused when a high energy proton enters a bubble cham-

bert filled with liquid hydrogen, which supplies the target protons. The
tracks of the particles are made visible in this case by the trail of bubbles

left in their wake. Since the interacting particles are of equal mass and

the collisions are elastic, the particles recoil at right angles to each

other; this is apparent when the tracks of Fig. 10- 12a are viewed stereo-

scopically.

Although we have introduced the concept of the impact parameter b to IO-7
describe collisions (see Fig. 10-9), it must be clear that, when we deal CROSS SECTION
with particles of atomic or subatomic dimensions, we cannot define the

track of the incident particle or the location of the target particle pre-

*In 1927, the English physicist, C. T. R. Wilson, received the Nobel prize for inventing

the cloud chamber; his investigations started along an entirely different line, namely, an
attempt to produce in the laboratory a certain atmospheric phenomenon observed on Ben
Nevis, a mountain in Scotland.

tin 1960, the American physicist, Donald Glaser, received the Nobel prize for inventing

the bubble chamber; it is said that the concept occurred to him while watching bubbles
form in a glass of beer.



cisely enough. In practice, as when we bombard a thin target foil with a

beam of a-particles from a cyclotron, we must deal in a statistical way
with a large number of independent collisions between the a-particles

and the nuclei in the target; the impact parameters for individual colli-

sions cannot be determined.

The situation is much the same as if we were firing a machine gun at

random [in the dark, say) at the side of a distant barn of area A on which
someone had hung a number of small dinner plates, each of area <r, in

random (but not overlapping) positions. If the number of plates is q and

if the rate at which bullets strike the barn is R , what is the rate R at

which plates are broken- It is, on the basis of the random character of

the events,

R = R [a-q/A), [10-7a)

where aq is the total area of all the plates. We could, in fact, use this

relation to measure a, the geometrical area of a single plate. Solving for

<x yields

a = RA/R q \10-7b)

which permits us to find <x from measured values of R, A, R , and q. We
may call cr the cross section for the event consisting of the impact of a

bullet on a plate.

Let us now consider a more restricted class of event, namely the im-

pact of a bullet on a plate causing the plate to break into (say) exactly

five pieces. The rate R$ at which events of this kind occur is much less

than the rate R at which the events described above occur. We may
assign a cross section o-5 to these restricted events and may measure it,

by analogy with Eq. 10-7, from

ff-s = R<A/Roq. (10-8)

We can consider other ways of breaking plates such as breaking into

thirteen pieces, breaking so that one fragment has an area equal to half

the plate or more, breaking so that one fragment flies vertically upward,

and so on. Each of these events can be assigned its own cross section ax
by measuring the rate R x at which the events occur. None of these cross

sections necessarily has anything to do with the geometrical area of the

plate; all are measures of the probability of occurrence of the events to

which they are assigned. Cross sections are important because they are

identified with single events and are independent of the details of par-

ticular experimental setups. In Eq. 10-8, for example, we would find the

same value for cr5 no matter how large the barn [A], how many plates [q],

or how rapid the rate of fire of the machine gun [R () ) }
the measured value

of R r, would always be such as to yield the same measured value for cr5 .

Similarly, in nuclear physics we often bombard targets with nuclear

projectiles, measure the rate at which events of a selected type occur,

and assign a cross section to those events. For example, let us bombard
a thin gold foil (Aum ) with deuterons (H2

, or d) whose energy is, say,

30 Mev. Many events can occur, among them ( 1 ) elastic scattering of the

deuteron into the forward hemisphere, (2) elastic scattering of the

deuteron into the backward hemisphere, (3) inelastic scattering ol

the deuteron between the angles of 30° and 60° with the direction of the

incident beam, (4) the nuclear reaction d + Au 1<J7 —*p + Au198
, and (5) the

nuclear reaction d I Au l! '7 —> n + Hg l!m
, in which n represents a neutron

Each of these events (and many others that could be written down) has

its own cross section <r.r which allows us to calculate the rate Rj .it



which these events occur if we know the details of the experimental

arrangement. The ultimate goal of all the experiments is to understand

the nature of nuclear forces.

Let the area of the foil exposed to the beam be A and the thickness of

the foil be x. If there are n target particles per unit volume in the foil,

the total number of available target particles is nAx. If the effective area

(i.e., the cross section) for the event we are concerned with is <jx , the

total effective area of all the nuclei is nAxcrx . If R is the rate at which

projectiles strike the target and Rx is the rate at which the events in

which we are interested occur, we have, because of the random nature

of the events (see Eq. l0-7a),

or

Rx _ [nAx<rx )

Ro~ A

Rx = R nx(Tx . ;io-9)

Thus we can measure ax for the event by measuring R x , R , n, and x and

substituting into Eq. 10-9. Cross sections are commonly expressed in

barns or submultiplies thereof; one barn = 10~28 m2
.

Cross sections almost always depend on the energy of the incident

particle, often exhibiting sharp peaks as the energy is varied. This

simply means that at certain rather precisely defined characteristic

energies the reaction is much more likely to "go" than at others. In

much the same way a steel plate will vibrate with large amplitude at a

series of rather precisely defined characteristic frequencies. We shall

study such "resonances" in Chapter 20 and elsewhere.

Figure 10-13 shows one of the thousands of cross section curves that

have been measured for various atomic and nuclear process. Let a highly

collimated beam of neutrons of kinetic energy K fall on a thin foil of

cadmium. The process to which the cross section cr in Fig. 10-13 refers

is any process (absorption, elastic scattering, or inelastic scattering) that

results in the removal of a neutron from the collimated beam. The num-
bers above the various peaks show the particular isotope responsible for
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that peak; this can be learned from other experiments using foils made
of the separated isotopes. The strong peak labeled "113" that occurs at

0.17 electron volts is caused by the reaction

Cd 113 + n -* Cd 114 + y

in which y represents a gamma ray. This reaction, which has a peak

cross section of 7600 barns, is responsible for the very large absorbing

power of cadmium for slow neutrons. Note that both scales in Fig. 10-13

are logarithmic.

[a] About 1910, Geiger and Marsden, working under Ernest Rutherford at the

University of Manchester, performed a series of classic experiments that estab-

lished the fact that atoms consisted of a small nucleus surrounded by a cloud of

electrons rather than a sphere of distributed positive and negative charges, as

Thomson had suggested earlier.

This experiment was in essence that shown very schematically in Fig. 10-14.

Here a-particles from a polonium source are allowed to strike a gold foil 4.0 x

10 7 m thick. It is found that although most of the a-particles pass through the

foil [forward scattering), about 1 in 6.17 x 10 4 are scattered backward, that is,

are deflected through an angle greater than 90°. The number of gold atoms per

unit volume in the foil is 5.9 x 1028/m3
. What is the scattering cross section in

barns for backward scattering (1 barn = 10 28 m2
)?

From

we have

or

nxcr = fraction scattered backward

(5.9 x 1028/nr,
)(4.0 x 10- m)o- = 1/(6.17 x 104

)

a = 6.9 x 10-28 m2 = 6.9 barns.

This is the cross section for backward scattering.

[b] Rutherford reasoned that the backward scattering could not be caused by

electrons in the atom
;
the a-particles are so much more massive than the elec-

trons that they would hardly be deflected at all by them, let alone be scattered

backward. He then suggested the nuclear model of the atom, attributing the

scattering to collisions between a-particles and the massive positive core of the

atom, the nucleus.

Assuming that the cross section for backward scattering is approximately

equal to the area offered by a gold nucleus for direct collisions, estimate the

effective size of a gold nucleus.

If the effective radius of the gold nucleus is taken to be r, we have

a = irr2
,

or

r2 = ct/tt = 6.9 x 10~28 m 2
/7r,

r= 1.5 x 10 > 4 m.

EXAMPLE 6

Polonium

a-source

J\

Beam of

a-particles Forward

scattering

-Gold foil

figure 10-14

Example 6. a-particles stream from

a polonium source and a beam is

formed by collimating slits. Some
of the a-particles are scattered

backward by the gold foil target;

the rest pass through the toil

Collimating slits Backward scattering



This is the approximate radius of a gold nucleus which compares with the value

of about 1.5 x 10 10 m for the gold atom. Hence the massive nucleus is concen-

trated in a very small region of the atom (about 1 part in 10 12 by volume).

We stated in Section 10- 1 that reactions and radioactive decay processes,

for atoms, nuclei, and elementary particles, can be treated by the same
methods used in collision studies, namely: We can apply the principles

of conservation of linear momentum and energy to the (well-defined)

periods "before the event" and "after the event." For these processes we
must use the conservation of total energy because kinetic energy is not

conserved. In this section we only consider examples in which the

speeds of the particles are negligible with respect to the speed of light.

This means that we may use the classical expressions for momentum
and energy and need not use the relativistic expressions.

10-8
REACTIONS AND
DECAY PROCESSES

Nuclear Reactions. A thin film containing a fluorine (F 19 ) compound is bom-
barded by a beam of protons [p] which has been accelerated to an energy of 1.85

MeV (million electron volts,- 1 MeV = 1.60 x 10~ 13
J) in a Van de Graaff accelera-

tor. Some of the protons interact with the fluorine nuclei to produce the follow-

ing nuclear reaction:

F 1!» + p^ 16 + a

It is observed that the a-particles (which are helium nuclei) that emerge at right

angles to the incident proton beam (see Fig. 10-15) have speeds of 1.95 x 10 7 m/s.

What can you learn about the reaction by applying the laws of conservation of

linear momentum and of total energy ? The masses involved are, to a precision

good enough for our purposes,

mp = 1.01 u m = 16.0 u

mF = 19.0 u ma = 4.00 u,

in which 1 u [unified atomic mass unit) = 1.66 x 10" kg.

EXAMPLE 7

figure 10-15
Example 7. The nuclear reaction

p + F19 —> a + 16
, showing the

situation before and after the event,

in the laboratory reference frame.

The x- and y-components of linear momentum are conserved, which means
that they have the same values before and after the reaction. In the laboratory

reference frame of Fig. 10-15, then

and

m„vv = m v cos H

= m ava — m v sin 6

(x-component)

(y-component)

[10-10)

[10-11)



For the conservation of total energy we write

Q + impvp
2 = im Vo2 + \mava2 110-12)

in which it is clear that Q is the amount by which the kinetic energy of the sys-

tem after the reaction exceeds the kinetic energy of the system before the reac-

tion. Note that we have assumed that the particles are moving slowly enough

so that we may use the classical expression for kinetic energy (imv2
) rather than

the relativistic one [m c2
[ 1/Vl — v2/c2 — 1 )

] . If Q is positive, kinetic energy must
be generated by the reaction.

The energy represented by Q can only come from differences in the rest

energies of the particles before or after the reaction, according to Einstein's well-

known relation £ = Amc2 (see Section 8-9). Thus (if Q is positive), we expect that

the rest mass of the system after the reaction would be slightly less than its rest

mass before the reaction and that Q would indeed be given by the Einstein

relation

Q = imc2

= [[mp + mF ) -\m a + m )]c2
. (10-13)

Note that Eqs. 10-12 and 10-13 are independent relations for Q, being connected

through Einstein's mass-energy relation.

The three conservation equations contain just three unknowns, v , 9, and Q.

To find Q from them let us first eliminate 8 between the first two equations by

squaring and adding (recalling that cos2 6 + sin2 6 = 1). We obtain

mp
2vp

2 + m a
2va

2 = m 2 v 2
.

We can now eliminate v between this relation and Eq. 10-12. You can show
that, after a little rearrangement, we obtain

Q = Ka (l +mjm )
~ Kp (l -mplm<>). (10-14)

From the data given we know that Kp [= impvp
2

)
= 1.85 MeV and

Ka = }m ava2

= |(4.00 u)(1.66 x 10- 27 kg/u)(1.95 x 10 7 m/s) 2

= (1.26 x 10- 12
I)(l MeV/1.60 x 10 13

J)

= 7.88 MeV.

We may now calculate Q from Eq. 10-14 as

Q = (7.88 MeV)|l + 4.00/16.0) - (1.85 MeV)(l - 1.01/16.0) = 8.13 MeV.

Thus, by using the principles of conservation of linear momentum and total

energy, we can calculate Q for the reaction without making any observations on
the recoiling O 16 nucleus. If we want to know v and for this nucleus we can

easily calculate them from Eqs. 10-10 and 10-1 1.

The result Q = 8.13 MeV is an important bit of information about the reac-

tion. From Eq. 10-13, which is a relation for Q independent of Eq. 10-14, we can

now calculate that the decrease in rest mass during the reaction is given by

Am = Q/c2

= (8.13 MeV x 1.60 x 10 i:i J/MeV)/(3.00 x 10« m/s) 2

= (1.44 x 10 «• kg)(l u/1.66 x 10 27 kg)

= 0.00873 u.

We can verify this result by calculating ±m [= [mp +mF )
— [ma + nh, ]

|
from ver)

precise measurements of the foui separate masses made in .1 mass spectrometei

sec Problem 47). The excellent agreement that we gel shows once again the

essentia] validity of Einstein's mass energy relationship



1. Explain how conservation of momentum applies to a handball bouncing off

a wall.

2. How can you reconcile the sailing of a sailboat into the wind with the con-

servation of momentum principle-'

3. Is it true that the acceleration of a baseball after it has been hit does not

depend on who hit it?

4. Many features on cars, such as collapsible steering wheels and padded dash-

boards, are meant to transfer momentum more safely for passengers. Ex-

plain, using the impulse concept.

5. C. R. Daish (see "At Impact, Clubhead Travels 100 Mph," Museum, De-

cember 1973) states that, for professional golfers, the initial speed of the

ball of the clubhead is about 140 mi/h. He also says: [a] ". . . if the Empire

State Building could be swung at the ball at the same speed as the clubhead,

the initial ball velocity would only be increased by about 2% . .
."-, and

(b) that, once the golfer has started his downswing, camera clicking, sneez-

ing, etc., can have no effect on the motion of the ball. Can you give qualita-

tive arguments to support these two statements?

6. The blades of a turbine are usually curved rather than flat in shape so that

the fluid striking them follows a path resembling a u-turn. Convince your-

self about the fluid's motion and explain the advantage of the curved shape

over the flat one.

7. It is obvious from inspection of Eqs. 10-3 and 10-4 that a valid solution to

the problem of finding the final velocities of two particles in a one-dimen-

sional elastic collision is vy = vu and v2f
= v2i . What does this mean physi-

cally?

8. Consider a one-dimensional elastic collision between a given incoming

body A and a body B initially at rest. How would you choose the mass of B,

in comparison to the mass of A, in order that B should recoil with [a] the

greatest speed, (b) the greatest momentum, and (c) the greatest kinetic

energy ?

9. A football player, momentarily at rest on the field, is about to catch a foot-

ball when he is tackled by a running player on the other team. This is cer-

tainly a collision (inelastic!) and momentum must be conserved. In the

reference frame of the football field there is momentum before the collision

but there seems to be none after the collision. Is linear momentum really

conserved?

10. Steel is more elastic than rubber. Explain what this means.

11. Two clay balls of equal mass and speed strike each other head-on, stick to-

gether, and come to rest. Kinetic energy is certainly not conserved. What
happened to it? Is momentum conserved?

12. Discuss the possibility that, if only we could take into account internal

motions of atoms and such in bodies, all collisions are elastic.

13. In commenting on the fact that kinetic energy is not conserved in a totally

inelastic collision, a student observed that kinetic energy clearly is not con-

served in an explosion and that a totally inelastic collision is merely the

reverse of an explosion. Is this a useful or valid observation?

14. A sand glass is being weighed on a sensitive balance, first when sand is

dropping in a steady stream from the upper to the lower part and then again

after the upper part is empty. Are the two weights the same or not? Explain

your answer.

15. Give a plausible explanation for the breaking of wooden boards or of bricks

by a karate punch (see "Karate Strikes" by Jearl D. Walker, American Jour-

nal of Physics, October 1975).

16. In which one of the following cases is the linear momentum of the italicized

objects most nearly conserved? [a] a ball falling freely in vacuum,- [b] an
automobile making a turn at constant speed; (c) a rubber ball as it bounces
from the floor

;
(d) two balls as they collide at right angles; (e) a bullet and

the gun from which it is fired by a man holding the gun.

questions
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17. If (only) two particles collide, are we ever forced to resort to a three-dimen-

sional description to describe the event? Explain.

18. In a two body collision in the center-of-mass reference frame the momenta
of the particles are equal and opposite to one another both before and after

the collision. Is the line of relative motion necessarily the same after colli-

sion as before? Under what conditions would the magnitudes of the veloci-

ties of the bodies increase? decrease? remain the same as a result of the

collision?

19. When dealing with atoms, nuclei, or elementary particles, what does it

mean to say that two such bodies "touch" during a collision?

20. When the forces of interaction between two particles have an infinite range,

such as the mutual gravitational attraction between two bodies, can the

cross section for "collision" be finite? Is it at all useful to regard this inter-

action as a collision?

21. Why does the computation of the radius of the gold nucleus in Example 5

give only an approximate answer?

22. Could we determine in principle the cross section for a collision by using

only one bombarding particle and one target particle? In practice?

23. We have seen that the conservation of momentum may apply whether

kinetic energy is conserved or not. What about the reverse, that is, does the

conservation of kinetic energy imply the conservation of momentum in

classical physics? (See "Connection between Conservation of Energy and

Conservation of Momentum" by Carl G. Adler, Am. /. Phys., May 1976.)

SECTION 10-2

1. A ball of mass m and speed v strikes a wall perpendicularly and rebounds

with undiminished speed. If the time of collision is f, what is the average

force exerted by the ball on the wall? Answer: 2mv/t.

2. A stream of water impinges on a stationary "dished" turbine blade, as

shown in Fig. 10-16. The speed of the water is u, both before and after it

strikes the curved surface of the blade, and the mass of water striking the

blade per unit time is constant at the value /x. Find the force exerted by the

water on the blade.

3. A 150-g (0.01 slug) ball is moving at a speed of 40 m/s (130 ft/s) when it is

struck by a bat that reverses its direction and gives it a speed of 60 m/s

(200 ft/s). What average force was exerted by the bat if it was in contact with

the ball for 5.0 ms? Answer: 3000 N (660 lb).

4. A 1.0- kg ball drops vertically onto the floor with a speed of 25 m/s. It re-

bounds with an initial speed of 10 m/s. [a] What impulse acts on the ball

during contact? [b] If the ball is in contact for 0.020 s, what is the average

force exerted on the floor?

5. A cue strikes a billiard ball, exerting an average force of 50 N over a time of

10 ms. If the ball has mass 0.20 kg, what speed does it have after impact?

Answer: 2.5 m/s.

6. A croquet ball (mass 0.50 kg) is struck by a mallet, receiving the impulse

shown in the^raph (Fig. 10-17). What is the ball's velocity just after the force

has become zero?

7. The force on a 10- kg (0.69 slug) object increases uniformly from zero to 50 N
II lb) in 4.0 s. What is the object's final speed if it started from rest :

/In >wer: 10 m/s (32 ft/s).

A golfei hits a golf ball imparting to it an initial velocity of magnitude

5.0 X 10' cm/s directed 30° above the horizontal. Assuming that the mass
of the ball is 25 g and the club and ball are in contact for 0.010 s find ,<;! the

impulse imparted to the ball; \b\ the impulse imparted to the club; [c] the

average force exerted on the ball by the club; [d] the work June on the ball.

9. A stic.mi lit watei from a hose is sprayed on a wall. It the speed oi the watei

m/s 16 ft/s) and the hose sprays 300 cm'/s 0.011 ftVs), what is the

problems
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average force exerted on the wall by the stream of water? Assume that the

water does not spatter back appreciably. The density of water is 1.0 g/cm3

(1.9 slug/ft3 ). Answer: 1.5 N (0.33 lb).

10. Two spacecraft are separated by exploding a small charge placed between

them. If the masses of the crafts are 1200 kg and 1800 kg and the impulse of

the force of the explosion is 600 N-s, what is the relative speed of recession

of the two craft?

SECTION 10-4

1 1. A bullet of mass 10 g strikes a ballistic pendulum of mass 2.0 kg. The center

of mass of the pendulum rises a vertical distance of 12 cm. Assuming the

bullet remains embedded in the pendulum, calculate its initial speed.

Answer: 310 m/s.

12. A 6.0-kg box sled is traveling across the ice at a speed of 9.0 m/s when a

12- kg package is dropped into it vertically. Describe the subsequent motion

of the sled.

13. [a) Show that in a one-dimensional elastic collision the speed of the center

of mass of two particles, rrh moving with initial speed vu and m 2 moving

with initial speed v-., is

15

16

17

19

\ ~, vii + ;

Vmi + m-i) \m x + m 2

Vu

[b] Use the expressions obtained for vlf and v2j, the particles' speeds after

collision, to derive the same result for vcm after the collision.

14. A body of 2.0 kg mass makes an elastic collision with another body at rest

and continues to move in the original direction but with one-fourth of its

original speed. What is the mass of the struck body?

In a breech-loading automatic firearm of early vintage the reloading mecha-

nism at the rear of the bore is activated when the breech-block, which re-

coils after the bullet is fired, compresses a spring by a predetermined

amount d. [a] Show that the speed v of the bullet of massm must be at least

dVkM/m on firing, for automatic loading, where k is the force constant of

the spring and M is the mass of the breech-block. (£>) In what sense, if any,

can this process be regarded as a collision?

A steel ball weighing 1.0 lb is fastened to a cord 27 in. long and is released

when the cord is horizontal. At the bottom of its path the ball strikes a

5.0-lb steel block initially at rest on a frictionless surface (Fig. 10-18). The
collision is elastic. Find [a] the speed of the ball and (£>) the speed of the

block just after the collision.

A bullet weighing 1.0 x 10 2 lb (mass = 4.5 x 10 3 kg) is fired horizontally

into a 4.0-lb (mass = 1.8 kg) wooden block at rest on a horizontal surface.

The coefficient of kinetic friction between block and surface is 0.20. The
bullet comes to rest in the block which moves 6.0 ft (1.8 m). Find the speed

of the bullet. Answer: 3500 ft/s ( 1 100 m/s).

Two pendulums each of length 1 are initially situated as in Fig. 10-19. The
first pendulum is released and strikes the second. Assume that the collision

is completely inelastic and neglect the mass of the strings and any fac-

tional effects. How high does the center of mass rise after the collision?

Two particles, one having twice the mass of the other, are held together

with a compressed spring between them. The energy stored in the spring is

60 J. How much kinetic energy does each particle have after they are re-

leased?

Answer: 20 J for the heavy particle; 40 J for the light particle.

20. A railroad freight car weighing 32 tons and traveling 5.0 ft/s overtakes one

weighing 24 tons traveling 3.0 ft/s in the same direction, [a) Find the speed

of the cars after collision and the loss of kinetic energy during collision if

the cars couple together, (b) If the collision is elastic, the freight cars do not

couple but separate after collision. What are their speeds?

tv

e

*3

O

a
On

"a

figure 10-

Problem 16

18

--•
.i_
d-
f
-

figure 10-19

Problem 18

mi



22.

21. An electron collides elastically with a hydrogen atom initially at rest. The
initial and final motions are along the same straight line. What fraction of

the electron's initial kinetic energy is transferred to the hydrogen atom"

The mass of the hydrogen atom is 1840 times the mass of the electron.

Answer: 0.227c.

A block of mass m, = 100 kg is at rest on a very long frictionless table, one

end of which is terminated in a wall. Another block of mass m-2 is placed

between the first block and the wall and set in motion to the left with con-

stant speed v>i, as in Fig. 10-20. Assuming that all collisions are completely

elastic, find the value of m-> for which both blocks move with the same
velocity after m- has collided once with m, and once with the wall. The wall

has infinite mass effectively.

An electron, mass m, collides head-on with an atom, mass M, initially at

rest. As a result of the collision a characteristic amount of energy £ is

stored internally in the atom. What is the minimum initial speed v that

the electron must have' (Hint: Conservation principles lead to a quadratic

equation for the final electron velocity v and a quadratic equation for the

final atom velocity V. The minimum value v follows from the requirement

that the radical in the solutions for v and V be real.)

23

Answer: v = \2E ——,
V Mm I

24. A ball of mass m is projected with speed v* into the barrel of a spring-gun of

mass M initially at rest on a frictionless surface; see Fig. 10-21. The massm
sticks in the barrel at the point of maximum compression of the spring. No
energy is lost in friction. What fraction of the initial kinetic energy of the

ball is stored in the spring-'

25. A box is put on a scale that is adjusted to read zero when the box is empty.

A stream of pebbles is then poured into the box from a height h above its

bottom at a rate of /x (pebbles per second). Each pebble has a mass m. If the

collisions between the pebbles and the box are completely inelastic, find the

scale reading at time t after the pebbles begin to fill the box. Determine a

numerical answer when /jl = 100 s ', h = 25 ft, mg = 0.010 lb, and r = 10 s.

Answer: 11 lb.

26. A scale is adjusted to read zero. Particles fall from a height of 9.0 ft (2.7 m)

colliding with the balance pan of the scale; the collisions are elastic, that is,

the particles rebound upward with the same speed. If each particle has a

mass of 1/128 slug (1 10 g) and collisions occur at the rate of 32 s ', what is

the scale reading in pounds (kg)"

27. Mass m, collides head-on with m2l initially at rest, in a completely in-

elastic collision. \a) What is the kinetic energy of the system before colli-

sion" [b] What is the kinetic energy of the system after collision- (c) What
fraction of the original kinetic energy was converted into heat energy"

[d] Let v, „, be the velocity of the center of mass of the system. View the col-

lision from a primed reference frame moving with the center of mass so that

vu ' = v,, — vcm , v2 i
= — Vcm- Repeat parts {a), (£>), and (c), as seen by an ob-

server in this reference frame. Is the mechanical energy converted to heat

energy the same in each case? Explain.

Answer: (a) m,vu
2/2. [b] mi 2 v,;

2/2(m, + m.). (c) m-,/{m, + m ; |.

[d] m,m 2 v,i
2/2(m, +m2); zero

;
one

;
yes.

•28. An elevator is moving up at 6.0 ft/s in a shaft. At the instant the elevator is

60 ft from the top, a ball is dropped from the top of the shaft. The ball re-

bounds elastically from the elevator roof, [a] To what height can it rise rela-

tive to the top of the shaft^ \h) Do the same problem assuming the elevatoi

is moving down at 6.0 ft/s.

29. A block of mass m t
= 2.0 ky slides along a frictionless table with a speed of

10 m/s. Directly in front of il and mm uiy in the same direction is ,i block ol

mass 1712 5.0 kg moving al $.0 m/s A massless spring with a spring con

stant A 1 120 N/m is attached to the backside ofms .is shown in Fig L0-22

figure 10-20
Problem 22

^WM <>
v;

«<

figure 10-21
Problem 24
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1 m i

figure 10-22

Problem 29



When the blocks collide, what is the maximum compression of the spring:

Assume that the spring does not bend and always obeys Hooke's law.

Answer: 0.25 m.

30. The two masses on the right of Fig. 10-23 are slightly separated and initially §
at rest; the left mass is incident with speed v . Assuming head-on elastic ^
collisions, [a] ii M ^ m, show that there are two collisions and find all final »

velocities; [b] if M > m, show that there are three collisions and find all

final velocities.

-.^->: :-^' f^^^^^^^—H': figure 10-23
Problem 30

31. Consider a situation such as that in the previous problem (10-30) but in

which the collisions now may be either all elastic, all inelastic, or some
elastic and some inelastic; also, the masses are now m, m' , and M. Show
that to transfer the maximum kinetic energy from m toM the intermediate

body should have a mass m' = VmM, that is, the geometric mean of the

adjacent masses. (It is interesting to note that this same relation exists be-

tween masses of successive layers of air in the exponential horn in acous-

tics. See "Energy Transfer in One-Dimensional Collisions of Many Ob-

jects" by John B. Hart and Robert B. Herrmann, American journal of

Physics, January, 1968.)

SECTION 10-6

32. Two vehicles A and B are traveling west and south, respectively, toward

the same intersection where they collide and lock together. Before the col-

lision A (total weight, 900 lb) is moving with a speed of 40 mi/h and B

(total weight, 1200 lb) has a speed of 60 mi/h. Find the magnitude and di-

rection of the velocity of the (interlocked) vehicles immediately after the

collision.

33. Two balls A and B, having different but unknown masses, collide. A is ini-

tially at rest when B has a speed v. After collision B has a speed v/2 and

moves at right angles to its original motion, (a) Find the direction in which
ball A moves after collision, [b] Can you determine the speed of A from the

information given? Explain.

Answer: [a] 117° from the final direction of B. [b] No.

$A. A billiard ball moving at a speed of 2.2 m/s strikes an identical stationary

ball a glancing blow. After the collision one ball is found to be moving at a

speed of 1.1 m/s in a direction making a 60° angle with the original line of

motion, [a] Find the velocity of the other ball. \b) Can the collision be in-

elastic, given these data?

35. An a-particle collides with an oxygen nucleus, initially at rest. The a-par-

ticle is scattered at an angle of 64° from its initial direction of motion and

the oxygen nucleus recoils at an angle of 51° on the other side of this initial

direction. What is the ratio, a-particle to nucleus, of the final speeds of

these particles? The mass of the oxygen nucleus is four times that of the

a-particle. Answer: 3.46.

36. A deuteron is a nuclear particle made up of one proton and one neutron. Its

mass is about 3.4 x 10 24
g. A deuteron, accelerated by a cyclotron to a speed

of 109 cm/s, collides with another deuteron at rest, [a] If the two particles

stick together head-on to form a helium nucleus, find the speed of the re-

sulting nucleus, [b] The helium nucleus then breaks up into a neutron with

X



a mass of about 1.7 x 10 -24 g and a helium isotope of mass 5.1 x 10 -24
g. If

the neutron is given off at right angles to the direction of the original

velocity with a speed of 5.0 x 108 cm/s, find the magnitude and direction

of the velocity of the helium isotope.

37. A certain nucleus, at rest, disintegrates into three particles. Two of them
are detected, with masses and velocities as shown in Fig. 10-24. [a] What is

the momentum of the third particle, which is known to have a mass of

12 x 10 2T kg: (£>) How much energy was involved in the disintegration

process? Answer: [a] (-1.0 i + 0.64 j)
x 10' 9 N-s. [b) 1.1 x 10 12

J.

38. In 1932 Chadwick, in England, demonstrated the existence and properties

of the neutron (one of the fundamental particles making up the atom) with

the device shown in Fig. 10-25. In an evacuated chamber, a sample of radio-

active polonium decays to yield a-rays |helium nuclei). These nuclei im-

pinge on a block of beryllium inducing a process whereby neutrons are

emitted. (In the reaction He and Be combine to form radioactive carbon,

which decays to stable carbon + neutrons.) The neutrons strike a film of

paraffin (CH4 ), releasing hydrogen nuclei which are detected in an ioniza-

tion chamber. In other words, an elastic collision occurs in which the mo-

mentum of the neutron is partially transferred to the hydrogen nucleus.

17 x 10
-27

kg

®—>vi
m i 6.0 x 10

6

m/s

m2 9> 8.0 x 10~ 27
kg

v2 V 8.0 x 106 m/s

figure 10-24
Problem 37

To pump
figure 10-25
Problem 38

a-rays

'.I

'•Polonium

a-ray source

Neutrons

^Beryllium
neutron source

-Paraffin H-nuclei source

1 .' B To

amplifiers

Ionization

chamber

[a] Find an expression for the maximum speed VH that the hydrogen

nucleus (mass mH ) can achieve. Let the incoming neutrons have mass m„
and speed v„. (Hint: Will more energy be transferred in a head-on collision

or in a glancing collision'')

[b] One of Chadwick's goals was to find the mass of his new particle. In-

spection of expression [a] which contains this parameter, however, shows

that two unknowns are present, v„ and m„ [vH is known; it can be measured

with the ionization chamber). To eliminate the unknown v„, he substituted

a paracyanogen (CN) block for the paraffin. The neutrons then underwent

elastic collisions with nitrogen nuclei instead of hydrogen nuclei. Of

course, expression [a] still holds if v.v is written for vH and mN for m,i- There-

fore if vH and vN are measured in separate experiments, vjV can be eliminated

between the two expressions for hydrogen and nitrogen to yield a value for

m„. Chadwick's values were

v„ = 3.3 x 10 9 cm/s,

vN = 0.47 x 10 9 cm/s.

What is his value for mn ? How does this compare with the established

value m„ = L .00867 u? (Take m n 1.0 u, mN - 14 u.)

39. A ball with an initial speed of 10 m/s collides clastically with two identical

balls whose centers are on .1 line perpendicular to the initial velocity and

which arc initially in contact with each other (Fig. 10-26). The first ball is

.iimcd directly at the contact point and all the halls are frictionless Find the

velocities oi all three balls after the collision Hint The directions of the



two originally stationary balls can be found by considering the direction of

the impulse they receive during the collision.)

Answer: v2 and v3 will be at 30° to v and will have a magnitude of 6.9 m/s.

Vi will be in the opposite direction to v and will have magnitude

2.0 m/s.

40. After a totally inelastic collision, two objects of the same mass and initial figure 10-26
speed are found to move away together at half their initial speed. Find the Problem 39
angle between the initial velocities of the objects.

41. Show that a slow neutron that is scattered through 90° in an elastic colli-

sion with a deuteron, initially at rest in a tank of heavy water, loses two-

thirds of its initial kinetic energy to the struck deuteron.

42. Show that, in the case of an elastic collision between a particle of mass mi
with a particle of mass m> initially at rest, {a) the maximum angle 6„,

through which mi can be deflected by the collision is given by cos2 6m = 1
—

m 2
2/mi 2

, so that S 6„, S tt/2, when mi > m 2; (b) 0i + 2 = tt/2, when mi =
m 2; [c] 9i can take on all values between and it, when mi < m 2 .

SECTION 10-7

43. A sphere of radius T\ impinges on a sphere of radius r2 . What is the cross

section for a contact collision' Answer: it[t\ + r2 )

2
.

44. A beam of slow neutrons strikes an aluminum foil 1.0 x 10 5 m thick. Some
neutrons are captured by the aluminum that becomes radioactive and de-

cays by emitting an electron (/3
_

) forming silicon:

n + Al27 ^ Al28 ^ Si28 + j8
-.

Suppose the neutron flux is 3.0 x 10 16 m^-s' 1 and the neutron capture cross

section is 0.23 b. How many transmutations per unit area will occur each

second'

45. A beam of fast neutrons impinges on a 5.0-mg sample of CuB5
, a stable iso-

tope of copper. A possibility exists that the copper nucleus may capture a

neutron to form Cu66
, which is radioactive and decays to Zn66

, which is

again stable. If a study of the electron emission of the copper sample im-

plies that 4.6 x 10" neutron captures occur each second, what is the neutron

capture cross section in barns for this process ? The intensity of the neutron

beam is 1.1 x 10 18 neutrons m^-s' 1
. Answer: 90 barns.

46. In a thick foil there are a great many layers of target particles so that the

number of projectile particles reaching a layer will depend on how many
have been scattered out by previous layers. Let the number of particles

reaching a layer at a depth s be N and the number lost by scattering from
that layer by —dN

;
then show that

dN——- = nerdsN
and

N = Noe'"73

where N is the number of particles incident on the face of the foil (s = 0)

of unit area and n is the number of scatterers per unit volume.

SECTION 10-8

47. The precise masses in the reaction

p + fW _> a + Q16

have been determined by mass spectrometer measurements and are

m„ =1.00783 u m„ = 4.00260 u

m, = 18.99840 u m = 15.99491 u

Calculate the Q of the reaction from these data and compare with the Q
calculated in Example 7 from reaction studies. Answer: 8.14 MeV.



2 48. An elementary particle called S -
, at rest in a certain reference frame,

N decays spontaneously into two other particles according to

a.

v + n.
00

2:

O The masses are

m± = 2340.5 m e

g nj„ =273.2 m e

U m„ = 1838.65 m«,

where m e is the electron mass, [a] How much kinetic energy is generated in

this process- [b] Which of the decay products \tt~ andn) gets the larger share

of this kinetic energy" Of the momentum-
O 49. The Q of the reaction in which a U236 nucleus at rest splits into just two

fragments of masses 132 u and 98 u is 192 MeV. [a] How much energy was
lost through radiation" \b) What is the speed of each fragment" (c) What is

the kinetic energy of each fragment"

Answer: [a] 5400 MeV. [b) v i32 = 1.09 x 10 7 m/s
;
v98 = 1.47 x 10 7 m/s.

(c) K132 = 81.7 MeV
;
K98 = 1 10 MeV.



11

rotational

kinematics
So far we have dealt mostly with the translational motion of single par-

ticles or of rigid bodies, that is, of bodies whose parts all have a fixed

relationship to each other. No real body is truly rigid, but many bodies,

such as molecules, steel beams, and planets, are rigid enough so that, in

many problems, we can ignore the fact that they warp, bend, or vibrate.

As Fig. 3-1 suggests, we say that a rigid body moves in pure translation

if each particle of the body undergoes the same displacement as every

other particle in any given time interval.

In this chapter, however, we are interested in rotation rather than

translation. For the time being we again restrict ourselves to single par-

ticles and to rigid bodies, which means that we shall not consider such

rotational motions as those of the solar system or of water in a spin-

ning beaker. We shall also deal only with rotation about axes that re-

main fixed in the reference frame in which we observe the rotation.

Figure 11-1 shows the rotational motion of a rigid body about a fixed

axis, in this case the z-axis of our reference frame. Let P represent a par-

ticle in the rigid body, arbitrarily selected and described by the position

vector r. We then say that: A rigid body moves in pure rotation if every

particle of the body (such as P in Fig. 1 1-1) moves in a circle, the centers

of which are on a straight line called the axis of rotation (the z-axis in

Fig. 11-1). If we draw a perpendicular from any point in the body to the

axis, each such line will sweep through the same angle in any given

time interval as another such line. Thus we can describe the pure rota-

tion of a rigid body by considering the motion of any one of the particles

(such as P) that make it up. (We must rule out, however, particles that

are on the axis of rotation. Why-)
The general motion of a rigid body is a combination of translation

11-1
ROTATIONAL MOTION

figure 11-1

A rigid body rotating about the

z-axis. Each point in the body, such

as P, describes a circle about

this axis.

215



and rotation however, rather than one of pure rotation. We can locate a

rigid body that is moving in pure translation by giving the three coordi-

nates x, y, z of any point in it (its center of mass, say) in a particular ref-

erence frame. For a body that rotates as it moves translationally we
need, in the most general case, three more coordinates, such as angles,

to specify the orientation of the body with respect to the reference

frame. Figure 11-2 (see also Fig. 9-1) shows a special case of rigid body

motion combining translation and rotation. The figure is an extension

of Fig. 3-1 in which the body now rotates as it moves translationally. To
locate this body we must not only locate point O in the body in the xy
reference frame but we must also say how the x'y' reference frame,

which is fixed in the body, is oriented with respect to the xy frame.

figure 11-2

A rigid body moving in combined translational and rotational motion as

seen from reference frame x, y. Notice that the reference frame fixed on the

body |x', y') changes its orientation with respect to x, y as the motion

proceeds. Compare with Figs. 3-1 and 9-1. This figure represents a special

case in that the translational motion occurs in two dimensions only (the xy
plane) and the rotational motion occurs about an axis that maintains a

fixed direction (the z'-axis).

As we saw in Chapter 9 we can describe the translational motion of

any system of particles — whether rigid or not — whether rotating or

not— by imagining that all of the mass M of the body is concentrated at

the center of mass and that F,. xt , the resultant of the external forces

acting on the body, acts at this point. The acceleration of the center of

mass is then given by Eq. 9- 10 or Fext = Ma,.m . It is very helpful to be able

to represent the translational motion of a rigid body by the motion of a

single point — its center of mass
;
all that is left is to determine its rota-

tional motion. We shall discuss such combined translational and ro-

tational motions in the next chapter. This will be simpler to do after

we have studied pure rotation about a fixed axis.

We now return, therefore, to the pure rotation of a rigid body about a

fixed axis (Fig. 11-1). First, we must describe the rotational motion. We
call this description rotational kinematics; we must define the variables

of angular motion and relate them to each other, iust as in particle

kinematics (see Chapter 4) we defined the variables of translational

motion and related them to each other. The next part ot our program is

to relate the rotational motion ol a body to the properties ot the body

and ol its environment. This is rotational dynamics. In this chaptei we



study the kinematics of rotation. We develop the dynamics of rotation

in the next chapter.

In Fig. 11-1 let us pass a plane through P at right angles to the axis of

rotation. This plane, which cuts through the rotating body, contains

the circle in which particle P moves. Figure 11-3 shows this plane, as

we look downward on it from above, along the z-axis in Fig. 11-1.

We can tell exactly where the entire rotating body is in our reference

frame if we know the location of any single particle (P) of the body in

this frame. Thus, for the kinematics of this problem, we need only con-

sider the (two-dimensional) motion of a particle in a circle.

The angle 6 in Fig. 11-3 is the angular position of particle P with

respect to the reference position. We arbitrarily choose the positive

sense of rotation in Fig. 11-3 to be counterclockwise, so that increases

for counterclockwise rotation and decreases for clockwise rotation.

It is convenient to measure in radians* rather than in degrees. By
definition is given in radians by the relation

6 = sir,

in which s is the arc length shown in Fig. 11-3.

Let the body of Fig. 1 1-3 be rotating counterclockwise. At time t t the

angular position of P is 0i and at a later time t 2 its angular position is 2 .

This is shown in Fig. 1 1-4, which gives the positions of P and of the po-

sition vector r at these times; the outline of the body itself has been

omitted in that figure for simplicity. The angular displacement of P
will be 02 — 0i = A0 during the time interval t2 — U = At. We define the

average angular speed a» of particle P in this time interval as

- 02-01
co =

t2 - U

A0
At'

We define the instantaneous angular speed w as the limit approached

by this ratio as At approaches zero:

a
,. A0 dO
lim t~ = ~3~'
At^o At dt

1 11)

For a rigid body all radial lines fixed in it perpendicular to the axis of

rotation rotate through the same angle in the same time, so that the

angular speed o» about this axis is the same for each particle in the body.

Thus (o is characteristic of the body as a whole. Angular speed has the

dimensions of an inverse time (T '); its units are commonly taken to be

radians/second (rad/s) or revolutions/second (rev/s).

If the angular speed of P is not constant, then the particle has an angu-

lar acceleration. Let o»i and o>2 be the instantaneous angular speeds at

the times U and t 2 respectively; then the average angular acceleration

a of the particle P is defined as

- OJ2 (n\ Aw
Atti - U

The instantaneous angular acceleration is the limit of this ratio as At

11-2
ROTATIONAL
KINEMATICS

-

THE VARIABLES

figure 11-3

A cross sectional view of the rigid

body of Fig. 11-1, showing point P
and vector r of that figure. Point P,

which is fixed in the rotating body,

rotates counterclockwise about the

origin in a circle of radius r.

figure 11-4

The reference line r (= OP), fixed in

the body of Figs. 11-1 and 11-3, is

displaced through angle

Ad (= 2 - 0i) in time At (= t2 - U).

* The radian is a purely geometrical unit having no physical dimension because it is the

ratio of two lengths. Since the circumference of a circle of radius r is 2-nr, there are 2tt rad

in a complete circle, that is, = 2nr/r = 2n. Therefore 2tt rad = 360°, v rad = 180°, and
1 rad s 57.3°.



approaches zero, or

a = lim -r—
Ar—0 ^t

day

dt'
;n-2)

Because w is the same for all particles in the rigid body, it follows

from Eq. 11-2 that a must be the same for each particle and thus a, like

a), is a characteristic of the body as a whole. Angular acceleration has

the dimensions of an inverse time squared (T 2
) ;

its units are commonly
taken to be radians/second2 |rad/s2

) or revolutions/second2 (rev/s2
).

The rotation of a particle (or a rigid body) about a fixed axis has a

formal correspondence to the translational motion of a particle (or a

rigid body) along a fixed direction. The kinematical variables are 0, o>,

and a in the first case and x, v, and a in the second. These quantities

correspond in pairs: to x, w to v, and a to a. Note that the angular

quantities differ dimensionally from the corresponding linear quanti-

ties by a length factor. Note, too, that all six quantities may be treated

as scalars in this special case. For example, a particle at any instant can

be moving in one direction or the other along its straight-line motion,

corresponding to a positive or a negative value for v : similarly a particle

at any instant can be rotating in one direction or another about its fixed

axis, corresponding to a positive or a negative value for o».

When, in translational motion, we remove the restriction that the

motion be along a straight line and consider the general case of motion
in three dimensions along a curved path, the linear variables x, v, and a

reveal themselves as the scalar components of the kinematic vectors

r, v, and a. In Section 11-4, we shall see to what extent the rotational

kinematic variables reveal themselves as vectors when we remove the

restriction of a fixed axis of rotation.

For translational motion of a particle or a rigid body along a fixed direc-

tion, such as the x-axis, we have seen (in Chapter 3) that the simplest

type of motion is that in which the acceleration a is zero. The next sim-

plest type corresponds toa = a constant (other than zero); for this mo-
tion we derived the equations of Table 3-1, which connect the kine-

matic variables x, v, a, and t in all possible combinations.

For the rotational motion of a particle or a rigid body around a fixed

axis the simplest type of motion is that in which the angular accelera-

tion a is zero (such as uniform circular motion). The next simplest type

of motion, in which a = a constant (other than zero), corresponds ex-

actly to linear motion with a = a constant (other than zero). As before,

we can derive four equations linking the four kinematic variables 0,

at, a, and t in all possible combinations. You can either derive these

angular equations by the methods used to derive the linear equations

(see Example 2) or you may write them down at once by substituting

corresponding angular quantities for the linear quantities in the linear

equations.

We list both sets of equations in Table 11-1, having chosen x„ =
and d = in these relations for simplicity. Here w is the angular speed

at the time t = 0. You should check these equations dimensionally

before verifying them. Both sets of equations hold not only for par-

ticles but also tin rigid bodies.

1 1 1] the angular quantities, we arbitrarily select one ol the two possible

directions ol rotation about the fixed axis as the direction in which o is

increasing. From Eq. 11-1 [id = do/clt) we see that it 6 is increasing with

11-3
ROTATION WITH
CONSTANT ANGULAR
ACCELERATION



Table 11-1

Motion with constant linear or angular acceleration

Translational Motion Rotational Motion
(Fixed Direction) (Fixed Axis)

13-12) v = v + at w = coo + at (11-3)

(3-14)
v + vX=

2
l

9-°° + °t (11-4)

(3-15) x = v t + iat2 = wn t + iat2 (11-5)

13-16) v2 = v 2 + lax co
2 = wo2 + lad (11-6)

time, at is positive. Similarly, from Eq. 11-2 [a — dw/dt), we see that if o>

is increasing with time, a is positive. There are corresponding sign con-

ventions for the linear quantities.

A grindstone has a constant angular acceleration a of 3.0 rad/s2
. Starting from

rest a line, such as OP in Fig. 1 1-5, is horizontal. Find [a] the angular displace-

ment of the line OP (and hence of the grindstone) and \b) the angular speed of

the grindstone 2.0 s later.

[a] a and f are given; we wish to find B. Hence, we use Eq. 1 1-5,

= co t + iat2
.

At t = 0, we have w = io = and a = 3.0 rad/s2
. Therefore, after 2.0 s,

8 = (0)(2.0 s) + i(3.0 rad/s2
)(2.0 s)

2 = 6.0 rad = 0.96 rev.

[b] a and t are given; we wish to find w. Hence, we use Eq. 1 1-3

o> = wo + at,

and

w = + (3.0 rad/s2
)(2.0 s) = 6.0 rad/s.

Using Eq. 1 1-6 as a check, we have

co
2 = w,,

2 + 2a8,

w2 = + |2)(3.0 rad/s2
)(6.0 rad) = 36 rad2/s2

,

oj = 6.0 rad/s.

EXAMPLE 1

figure 11-5

Example 1. The line OP is attached

to a grindstone rotating as shown
about an axis through O that is

fixed in the reference frame of the

observer.

Derive the equation w = w + at for constant angular acceleration.

(a) Starting from the definition of angular acceleration,

EXAMPLE 2

we have

dt

a dt = dc

or

j a dt= J dco.

But a is a constant, so that

aj dt = f dco.

If at t = we call the angular speed w , then

a P dt = f"



or

and

at = co — wo

co = co + at.

[b] We can also derive the result by making use of the fact that the average

acceleration equals the instantaneous acceleration when the acceleration is

constant. The average acceleration is

— CO — O)o
a =

t -t

For constant acceleration we have a = a. Letting r<> = 0, we obtain

co — co

or

t

co = coo + at.

Compare this derivation with that of the corresponding linear relation v=v + at

in Section 3-8.

The linear displacement, velocity, and acceleration are vectors. The
corresponding angular quantities may be vectors also, for in addition to

a magnitude we must also specify a direction for them, namely, the

direction of the axis of rotation in space. Because we considered rotation

only about a fixed axis, we were able to treat 0, w, and a as scalar quan-

tities. If the direction of the axis changes, however, we can no longer

avoid the question "are rotational quantities vectors!"' We can find out

only by seeing whether or not they obey the laws of vector addition.

Let us discuss first the angular displacement 0. The magnitude of the

angular displacement of a body is the angle through which the body

turns. Angular displacements, however, are not vectors because they do

not add like vectors. For example, give two successive rotations Bi and
f)> to a book which initially lies in a horizontal plane. Let rotation t be

a 90° clockwise turn about a vertical axis through the center of the book
as we view it from above. Let 6>2 be a 90° clockwise turn about a north-

south axis through the center of the book as we view it looking north.

In one case, apply operation
t first and then 6%. In the other case, apply

operation 2 first and then X . You should try this for yourself. Now, if

angular displacements are vector quantities, they must add like vectors.

In particular, they must obey the law of vector addition 0i + 2 = 0> + 0,,

which tells us that the order in which we add vectors does not affect

their sum. This law fails for finite angular displacements (see exercise

above and also Fig. 1 l-6a). Hence finite angular displacements are not

vector quantities.

Suppose that instead of 90° rotations we had made 3° rotations. The
result of 0i + 0j would still differ from the result of 6> + 0,, but the differ-

ence would be much smaller. In fact, as the two angular displacements

are made smaller, the difference between the two sums rapidly disap-

pears [Fig. 1 1 -6b,c). If the angular displacements are made infinitesimal,

the order of addition no longer affects the result. Hence infinitesimal

lai ill \p\a< ements are vectors.

Quantities defined in terms oi infinitesimal angular displacements

may themselves be vectors. For example, the angular velocity is

to = dO/dt Sin< e <lv is a vector and (It a scalar, the quotient is ,i ve< i>m

11-4
ROTATIONAL
QUANTITIES AS
VECTORS



figure 11-6

(a) A book rotated 0i (90° as shown
about an axis at right angles to the

page) and then 2 (90° as shown
about a north-south axis) has a

different final orientation than if

rotated first through 2 and then 6\.

This property is called the

noncommutivity of finite angles

under addition: 0, + 2 ^ 2 + 0i.

(b) The middle group is the same
except that the angular

displacements are smaller, being

45°. Although the final orientations

still differ, they are much nearer

each other, (c) The lower group

repeats the experiment for 20°

displacements. We see here that

0! + d2 = 02 + 0,. As 0,, 2 -> 0, the

final positions approach each other.

Finite angles under addition tend to

commute as the angles become very

small. Infinitesimal angles do
commute under addition, making it

possible to treat them as vectors.

Therefore the angular velocity is a vector. In Fig. 11-7a, for example, we
represent the angular velocity o> of the rotating rigid body by an arrow

drawn along the axis of rotation; in Fig. 1 \-7b we represent the rotation

of a particle (such as P in Fig. \\-7a) about a fixed axis in just the same
way. The length of the arrow is made proportional to the magnitude of

the angular velocity. The sense of the rotation determines the direction

figure 11-7

The angular velocity w of (a) a

rotating rigid body and (b) a

rotating particle, about a fixed axis.

(a) (b)



in which the arrow points along the axis. By convention, if the fingers

of the right hand curl around the axis in the direction of rotation of the

body, the extended thumb points along the direction of the angular

velocity vector. For the rigid body of Fig. 11-1, therefore, the angular

velocity vector will be in the positive z-direction. In Fig. 11-3, a> will

be perpendicular to the page pointing up out of the page, corresponding

to the counter-clockwise rotation. The angular velocity of the turntable

of a phonograph is a vector pointing down. Notice that nothing moves
in the direction of the angular velocity vector. The vector represents the

angular velocity of the rotational motion taking place in the plane per-

pendicular to it.

Angular acceleration is also a vector quantity. This follows from the

definition a = dtoldt, in which dta is a vector and dt a scalar. Later we
shall encounter other rotational quantities that are vectors, such as

torque and angular momentum.

A disk spins on a horizontal shaft mounted in bearings, with an angular speed

(o l of 100 rad/s as in Fig. ll-8a. The entire disk and shaft assembly are placed

on a turntable rotating about a vertical axis at w 2 = 30.0 rad/s, counterclockwise

as we view it from above. Describe the rotation of the disk as seen by an ob-

server in the room.

EXAMPLE 3

figure 11-8

Example 3. (a) A spinning disc on a

rotating turntable, (b) The angular

velocities add like vectors.

The disk is subject to two angular velocities simultaneously; we can de-

scribe its resultant motion by the vector sum of these vectors. The angular

velocity to t associated with the shaft rotation has a magnitude of 100 rad/s and

occurs about an axis that is not fixed but, as seen by an observer in the room,

rotates in a horizontal plane at 30 rad/s. The angular velocity to> associated with

the turntable is fixed vertically and has a magnitude of 30 rad/s.

The resultant angular velocity of the disk to is the vector sum of to, and o>2 .

The magnitude of to is

w = Vw, 2 + w-,
2 = V|100 rad/s)2 + (30.0 rad/s) 2

= 104 rad/s.

The direction of to is not fixed in our observer's reference frame but rotates at

the same angular rate as the turntable. The vector to does not lie in the hori-

zontal plane but points above it by an angle & (see Fig. 1 l-8b), where

= tan ' oto/o), = tan ' (30.0 rad/s)/(100 rad/s)

= tan ' 0.300= 16.7°

We can describe the motion i li the disk as a simple rotation about this new axis

whose direction in our observer's reference frame is changing with time as

described above) at an angular rate ol 104 rad/s. How would the situation change

if the dire< tion of rotation oi the disk oi ol the turntable were changed

'



In Sections 4-4 and 4-5 we discussed the linear velocity and accelera-

tion of a particle moving in a circle. When a rigid body rotates about a

fixed axis, every particle in the body moves in a circle. Hence we can

describe the motion of such a particle either in linear variables or in

angular variables. The relation between the linear and angular variables

enables us to pass back and forth from one description to another and

is very useful.

Consider a particle at P in the rigid body, a distance r from the axis

through O. This particle moves in a circle of radius r as the body rotates,

as in Fig. ll-9<3. The reference position is Ox. The particle moves

through a distance s along the arc when the body rotates through an

angle 6, such that

s = dr (11-7)

11-5
RELATION BETWEEN
LINEAR AND ANGULAR
KINEMATICS FOR A
PARTICLE IN CIRCULAR
MOTION-SCALAR
FORM

where 6 is in radians.

figure 11-9

(a) A rigid body rotates about a fixed

axis through O perpendicular to the

page. The point P sweeps out an arc

s which subtends an angle 6. (b) The
acceleration a of point P has

components aT (tangential) where

aT = ar and afi (radial) where

Or = v2/r = (t)
2i (« = angular speed).

(b)

Differentiating both sides of this equation with respect to the time,

and noting that r is constant, we obtain

ds^dO
dt dt

r

But ds/dt is the linear speed of the particle at P and dO/dt is the angular

speed a» of the rotating body so that

a>r. :n-8)

This is a relation between the magnitudes of the linear velocity and the

angular velocity; the linear speed of a particle in circular motion is the

product of the angular speed and the distance i of the particle from
the axis of rotation.

Differentiating Eq. 11-8 with respect to the time, we have

dv _ du>

dt~~dt
r-

But dv/dt is the magnitude of the tangential component of acceleration

of the particle (see Section 4-5) and dco/dt is the magnitude of the an-

gular acceleration of the rotating body, so that

aT = ar. [11-9)

Hence the magnitude of the tangential component of the linear acceler-

ation of a particle in circular motion is the product of the magnitude of



the angular acceleration and the distance r of the particle from the axis

of rotation.

We have seen that the radial component of acceleration is v2/r for a

particle moving in a circle. This can be expressed in terms of angular

speed by use of Eq. 11-8. We have

aR = — = co
2
i.

x
[11-10)

The resultant acceleration of point P is shown in Fig. 1 1-9 b.

Equations 11-7 through 11-10 enable us to describe the motion of one

point on a rigid body rotating about a fixed axis either in angular vari-

ables or in linear variables. We might ask why we need the angular vari-

ables when we are already familiar with the equivalent linear variables.

The answer is that the angular description offers a distinct advantage

over the linear description when various points on the same rotating

body must be considered. Different points on the same rotating body do

not have the same linear displacement, speed, or acceleration, but all

points on a rigid body rotating about a fixed axis do have the same an-

gular displacement, speed, or acceleration at any instant. By the use of

angular variables we can describe the motion of the body as a whole in

a simple way.

If the radius of the grindstone of Example 1 is 0.50 m, calculate [a) the linear or EX/%3MJ*IjE 4
tangential speed of a particle on the rim, (b) the tangential acceleration of a par-

ticle on the rim, and (c) the centripetal acceleration of a particle on the rim, at

the end of 2.0 s.

We have a = 3.0 rad/s2
, to = 6.0 rad/s after 2.0 s, and r = 0.50 m. Then,

[a] v = cor

= (6.0 rad/s)|0.50 m)
= 3.0 m/s (linear speed);

[b] a T =ar
= (3.0 rad/s2)(0.50 m)
= 1.5 m/s2 (tangential acceleration);

[c) a« = v2/r = to
2 r

= (6.0 rad/s) 2(0.50 m)
= 18 m/s2 (centripetal acceleration).

[d) Are the results the same for a particle halfway in from the rim, that is, at

r = 0.25 m?
The angular variables are the same for this point as for a point on the rim.

That is, once again

a = 3.0 rad/s2
, to = 6.0 rad/s.

But now r = 0.25 m, so that for this particle

v = 1.5 m/s, aT = 0.75 m/s2
, a K = 9.0 m/s2

.

Notice that the relations deduced in the previous section arc relations between

ai quantities, both the linear and angular variables being expressed in scalar

form Let us now use ve< toi methods, making an analysis essentially like that

ot Section 4-5 except that we now introduce the angular variables ["his will

illustrate, for a familiar special case the more general approach and prepare the

way tot situations in winch ve< tor methods are essential We continue to re

Sim i ourselves to rotation about a fixed axis

11-0
RELATION BETWEEN
LINEAR AND ANC HILAR
KINEMATICS FOR A
PARTICLE IN CIRCULAR
MOTION-VECTOR
FORM



Figure 1 1- 10a shows a particle P, rotating about a fixed axis through the

origin, at times t and t + At. The particle moves in a circle of constant radius i
}

beyond this there are no restrictions on its motion and in general <o and a may
have values that vary as the particle moves. We can express the restriction to a

constant radius by

r = u rr,

in which u r is a unit vector in the direction of r.

[11-11]

Ur(0

<lfrAu r

u r (t + At)/ \
/f^At)

Au

u 9 f« + A<)

MO
A0

(b) (c)

figure 11-10

(a) The particle P rotates through an

angle Ad in time At. The unit

vectors, in polar coordinates, are

shown at each point, (b) The change

in ur; note that Au r , as A0 —> 0, points

in the direction of u». (c) The change

in Ue; note that Au s , as Ad —» 0,

points in the direction of — u,.

Differentiating Eq. 11-11, remembering that r (but not r or u r , since their

directions change) is a constant, we have

dt

dt

du r

~dt
;il-12)

Now dxldt is v, the linear velocity of the particle. To evaluate du r/dt, consider

Fig. 11- 10b, which shows the unit vector u r for two different positions of P, cor-

responding to a rotation through a (small) angle A6*. Using the definition of an-

gular measure in radians we obtain the magnitude of the (vector) change Au r in

u r from

Au r (1) Ad,

in which the factor (1) reminds us that the two unit vectors in Fig. 1 l-10b have

unit length. The above equation will be correct if Ad is small enough so that we
can neglect the difference between the chord and the arc in the small triangle in

Fig. 1 1-lOb. The change in u r is a vector, Au r , whose magnitude is given by the

above equation; its direction, again assuming that A# is small enough, is given

by the unit vector u s . This follows because, if Au r in Fig. 1 1- 10b is translated to

point P in Fig. ll-lOa, we see that, as Att -* 0, it points in the direction of u 9 .

Thus we find

Au r = u«A0.

Dividing by At and allowing At to approach zero, we have

dedu r

~dt dt
u«o>.

Substituting these results into Eq. 11-12 yields, then,

v = u flajr.

The scalar relationship that corresponds to this is

v = cor

(11-13)

(ll-14a)

;

11- 14b)

and is one of the relationships, obtained before, connecting the linear speed v of

a particle in circular motion with its angular speed a>.

To find the relation between linear and angular acceleration we differentiate

Eq. 11- 14a, remembering that r is a constant although u H and w vary. We have

dv d(x> dun

dt dt dt
111-15)



Now d\/dt = a, the linear acceleration of the particle and dioldt = a, its angular

acceleration. From Fig. 1 1- 10c, guided by the derivation of Eq. 11-13, you should

be able to prove that

due

dt
-u rw. 111-16)

The minus sign comes in because when we translate Au« in Fig. 1 1- 10c to point

P, we see that, as A# —* 0, it points radially inward, in the direction opposite

to u r .

Making these substitutions into Eq. 11-15 yields

Uear — u rco
z
r. [11-17)

Thus, as we know from Section 4-5, a has a radial (or centripetal) component a fl

and a tangential component a r . Their magnitudes, from Eq. 11-17, are

and (using Eq. 11- 14b)

Qt = ar

aR = <o
2r = v2

/r.

|ll-18a)

[ll-18b]

The last is the familiar result derived in Section 4-4. In Supplementary Topic I

we derive the relations between the linear and angular kinematic variables for a

particle free to move in a plane but not restricted to circular motion. Equations

11- 14*3 and 11-17 will prove to be special cases of the more general relationships

derived there.

Equations 11- 14a and 11-17 are relations between the linear kinematic vari-

ables in vector form and the angular kinematic variables in scalar form. We
should be able to derive relationships in which each set of variables is expressed

in vector form. Let us do so now. This will be especially useful in cases where

the axis of rotation is not fixed.

Figure 11-11 shows the vectors r, v, a r , a fl , <o, and a for the rotating particle

of Fig. 1 1-7 b. The angular quantities are on the axis of rotation, pointing in the

direction given by the right-hand rule of page 22. We declare — and shall prove

— that the relationships we seek are

and

in which

to x r

a = a r + 3.r,

ar = a x r and aR = to x v.

(11-19)

;n-20fl)

[11-20/7)

In Section 2-4 (which you may wish to reread) we defined the vector product

of two vectors. If c = a x b, then the magnitude of c is ab sin 4>, where 4> is the

angle between a and b. In applying this part of the definition to Eqs. 11-19 and

11-20 we note (see Fig. 11-11) that to and r, to and v, and a and r are each mutu-

ally perpendicular; thus the angle 4> for each of these three pairs of vectors is

90°. In Eq. 1 1-19 we have, for magnitudes

v = wt sin 90° = (or,

which is exactly Eq. 1 1-14/'. In Eqs. 1 1-20/? we have, for magnitudes

and

Or = tov = (o\(or] = orr

flr = ar.

These relations agree with Eqs. 1 I -IS/' and a exactly.

It remains to be seen whether directions are correctly given by Eqs. 1 1-19 and

1 1-2()/» For tin vector product c a x b, Fig. 2-12 shows thai the direction oi

c is found by sweeping a into b through the (smaller] angle between them with

the ringers oi the righl band; the extended right thumb then points in the direc

figuro 11-11

The directions of the vectors r, v,

At, a«, (o and a for a particle

rotating in a circle about the z-axis.



tion of c. You can readily check that, in Fig. 11-11, the directions of the vectors

v, a r and a« are indeed correctly given by Eqs. 11-19 and ll-20i>.

1

.

In Section 11-1 we stated that, in general, six variables are required to locate

a rigid body with respect to a particular reference frame. How many vari-

ables are required to locate the body of Fig. 11-2 with respect to the x-y

frame shown in that figure? If this number is not six, account for the dif-

ference.

2. An irregular body is free to rotate about its center of mass which is placed

at the origin of a reference frame. How would you specify its orientation ?

3. Could the angular quantities 0, a>, and a be expressed in terms of degrees

instead of radians in the kinematical equations'
1

4. Explain why the radian measure of angle is equally satisfactory for all sys-

tems of units. Is the same true for degrees?

5. If a car's speedometer is set to read at a speed proportional to the rotational

speed of its rear wheels, is it necessary to correct the reading when snow

tires replace regular ones'

6. How could you express simply the relationship between the angular veloci-

ties of a pair of gears which are coupled?

7. A wheel is rotating about an axis through its center perpendicular to the

plane of the wheel. Consider a point on the rim. When the wheel rotates

with constant angular velocity, does the point have a radial acceleration?

A tangential acceleration? When the wheel rotates with constant angular

acceleration, does the point have a radial acceleration? A tangential ac-

celeration? Do the magnitudes of these accelerations change?

8. Suppose you were asked to determine the equivalent distance traveled by a

phonograph needle in playing, say, a 12-in., 33i rpm record. What informa-

tion do you need? Discuss from the points of view of reference frames {a)

fixed in the room, [b] fixed on the rotating record, and (c) fixed on the record

arm.

9. [a] Describe the vector that would represent the angular velocity of the earth

rotating about its axis, [b] Describe the vector that would represent the an-

gular velocity of the earth rotating about the sun.

10. It is convenient to picture rotational vectors as lying along the axis of rota-

tion. Is there any reason why they could not be pictured as merely parallel

to the axis, but located anywhere? Recall that we are free to slide a displace-

ment vector along its own direction or translate it sideways without chang-

ing its value.

11. In a centrifuge particles will tend to separate from the fluid in which they

are suspended if their density (mass/volume) differs from that of the fluid.

Discuss the dynamical principles upon which the operation of a centrifuge

depends. View the situation from both an inertial (laboratory) frame and a

noninertial (rotating) frame.

12.* A marksman stands at the center of a merry-go-round firing at a target

fixed to a post on its outer perimeter. How, if at all, must the man take into

account the (constant) angular velocity of the merry-go-round if he is to hit

the target? What if the positions of marksman and target were reversed?

13.* A man on a merry-go-round rotating at constant angular velocity w re-

leases a cake of ice that he had been holding fixed to the merry-go-round at

a radial distance r from the center. Describe the motion of the ice in the

reference frame of [a) a ground observer and (b) the man on the merry-go-

round. Neglect frictional forces but describe all other forces.

14.* A man on a rotating merry-go-round kicks a cake of ice outward along a

radial line. What is its subsequent motion as seen by an observer [a) on the

* See Supplementary Topic I.

questions



merry-go-round and [b] on the ground' Assume that frictional forces may be

neglected.

SECTION 11-2

1. What is the angular speed of [a] the second hand of a watch; [b] of the minute
hand- Answer: [a] 0.10 rad/s. [b] 1.7 x 10 3 rad/s.

2. A phonograph record on a turntable rotates at 33 rev/min. What is the

linear speed of a point on the record at the needle at [a] the beginning and

[b] the end of the recording' The distances of the needle from the turntable

axis are 5.9 and 2.9 in., respectively, at these two positions.

problems

figure 11-12

Mirror

3. One method of measuring the speed of light makes use of a rotating toothed

wheel. A beam of light passes through a slot at the outside edge of the

wheel, as in Fig. 11-12, travels to a distant mirror, and returns to the wheel

just in time to pass through the next slot in the wheel. One such toothed

wheel has a radius of 5.0 cm and 500 teeth at its edge. Measurements taken

when the mirror was 500 m from the wheel indicated a speed of light of

3.0 x 10 5 km/s. [a] What was the (constant) angular speed of the wheel?

[b] What was the linear speed of a point on its edge?

Answer: [a] 3.8 x 103 rad/s. [b] 190 m/s.

4. If an airplane propeller of radius 5.0 ft (1.5 m) rotates at 2000 rev/min and

the airplane is propelled at a ground speed of 300 mi/h (480 km/h), what is

the speed of a point on the tip of the propeller, as seen by [a] the pilot and

[b] an observer on the ground 7

5. The angular position of a point on the rim of a rotating wheel is described

by 6 = 4.0t — 3.0t 2 + r
3

, where is in radians and t in seconds. What is the

average acceleration for the time interval which begins at t = 2.0 s and ends

at t = 4.0 s? Answer: 12 rad/s 2
.

6. The angle turned through by the flywheel of a generator during a time in-

terval t is given by

6 = at + bt :i - ct\

where a, h, and c are constants. What is the expression for its angular ac-

celeration'

7. A wheel rotates with an angular acceleration a given by

a = 4at3 - 3bt2
,

where ( is the time and a and b are constants. If the wheel has an initial

angular speed w„, write the equations for [a) the angular speed and (/?) the

angle turned through as functions of time.

Answer: [a] w„ + at" - bi\ [b] f>„ f- w„t + fltV5 - fet'/4.

K. A planet P revolves around the sun S in a circular orbit, with the sun at the

center, which is coplanar with and concentric to. the circulai orbit of the

earth £ around the sun /' and E revolve in the same direction. The times

required foi the revolution ol /' and /: around the sun are Hp and /
. Lei I -.



be the time required for P to make one revolution around the sun relative

to E: show that l/Ts = \ITE - l/TP . Assume TP > TE .

9. A solar day is the time interval between two successive appearances of the

sun overhead at a given longitude, that is, the time for one complete rota-

tion of the earth relative to the sun. A sidereal day is the time for one com-

plete rotation of the earth relative to the fixed stars, that is, the time in-

terval between two successive overhead observations of a fixed direction in

the heavens called the vernal equinox, (a) Show that there is exactly one

less (mean) solar day in a year than there are (mean| sidereal days in a year.

[b] If the (mean) solar day is exactly 24 hours, how long is a (mean) sidereal

day-
1 Answer: [b] 23 h 56 min.

SECTION 11-3

10. The angular speed of an automobile engine is increased from 1200 rev/min

to 3000 rev/min in 12 s. (a) What is its angular acceleration, assuming it to

be uniform? [b] How many revolutions does the engine make during this

time?

1 1. A phonograph turntable rotating at 78 rev/min slows down and stops in 30 s

after the motor is turned off. [a] Find its (uniform) angular acceleration.

(b) How many revolutions did it make in this time?

Answer: [a] -0.27 rad/s2
. [b] 20.

12. A heavy flywheel rotating on its axis is slowing down because of friction in

its bearings. At the end of the first minute its angular velocity is 0.90 of its

angular velocity w at the start. Assuming constant frictional forces, find

its angular velocity at the end of the second minute.

13. While waiting to board a helicopter, you notice that the rotor's motion

changed from 300 rev/min to 225 rev/min in one minute, [a] Find the aver-

age angular acceleration during the interval, [b] Assuming that this accelera-

tion remains constant, calculate how long it will take for the rotor to stop.

(c) How many revolutions will the rotor make after your second observa-

tion? Answer: [a] -0.13 rad/s2
. [b] 4.0 min. (c) 340.

14. A wheel has a constant angular acceleration of 3.0 rad/s2
. In a 4.0-s interval,

it turns through an angle of 120 rad. Assuming the wheel started from rest,

how long had it been in motion at the start of this 4.0-s interval?

15. A uniform disk rotates about a fixed axis starting from rest and accelerating

with constant angular acceleration. At one time it is rotating at 10 rev/s.

After completing 60 more complete revolutions its angular speed is 15

rev/s. Calculate [a] the angular acceleration, \b) the time required to com-
plete the 60 revolutions mentioned, (c) the time required to attain the 10

rev/s angular speed, and (d) the number of revolutions from rest until the

time the disk attained the 10 rev/s angular speed.

Answer: (a) 1.04 rev/s2
. [b) 4.8 s. (c) 9.6 s. (d) 48.

16. A flywheel completes 40 revolutions as it slows from an angular speed of

1.5 rad/s to a complete stop. Assuming uniform acceleration, [a] what is the

time required for it to come to rest? [b] What is the angular acceleration?

(c) How much time is required for it to complete the first one-half of the

40 revolutions?

17. An automobile traveling 60 mi/h (97 km/h) has wheels of 30 in. (76 cm)

diameter, (a) What is the angular speed of the wheels about the axle? [b) If

the car is brought to a stop uniformly in 30 turns, what is the angular ac-

celeration? (c) How far does the car advance during this braking period?

Answer: [a) 70 rad/s (71 rad/s). [b] -13 rad/s2 (-13 rad/s2
). (c) 240 ft (72 m).

18. A body moves in the x-y plane such that x = R cos cut and y = R sin cut. Here

x and y are the coordinates of the body, t is the time, and R and w are con-

stants, [a] Eliminate t between these equations to find the equation of the

curve in which the body moves. What is this curve? What is the meaning of

the constant o>? [b] Differentiate the equations for x and y with respect to

the time to find the x and y components of the velocity of the body, vx and



Vy. Combine vx and vy to find the magnitude and direction of v. Describe

the motion of the body, (c) Differentiate vx and vy with respect to the time

to obtain the magnitude and direction of the resultant acceleration.

19. Wheel A of radius rA = 10 cm is coupled by a belt B to wheel C of radius

tc = 25 cm, as shown in Fig. 1 1-13. Wheel A increases its angular speed from
rest at a uniform rate of nil rad/s2

. Determine the time for wheel C to reach

a rotational speed of 100 rev/min, assuming the belt does not slip.

Answer: 17 s.

SECTION 11-5

20. [a] What is the angular speed about the polar axis of a point on the earth's

surface at a latitude of 45°N? [b] What is the linear speed' (c) How do these

compare with the similar values for a point at the equator?

21. The earth's orbit about the sun is almost a circle, [a] What is the angular

velocity of the earth (regarded as a particle) about the sun and \b) its average

linear speed in its orbit? (c) What is the acceleration of the earth with re-

spect to the sun?

Answer: [a] 2.0 x 10 7 rad/s. (b) 3.0 x 10 4 m/s. |c) 6.0 x 10" 3 m/s2
.

22. What is the angular speed of a car rounding a circular turn of radius 360 ft

1 1 10 m) at 30 mi/h (48 km/h)?

23. What is the acceleration of a point on the rim of a 12-in. (30 cm) diameter

record rotating at 33.3 rev/min? Answer: 6.1 ft/s2 (1.8 m/s2
).

24. What is the ratio of the acceleration, associated with the earth's rotation, of

a point on the equator, to the acceleration of the earth itself, associated with

its motion around the sun? Assume a circular orbit.

25. The flywheel of a steam engine runs with a constant angular speed of 150

rev/min. When steam is shut off, the friction of the bearings and of the air

brings the wheel to rest in 2.2 h. [a] What is the average angular accelera-

tion of the wheel? [b] How many rotations will the wheel make before com-

ing to rest? (c) What is the tangential linear acceleration of a particle distant

50 cm from the axis of rotation when the flywheel is turning at 75 rev/min?

\d) What is the magnitude of the total linear acceleration of the particle in

part (c)?

Answer: [a) -2.0 x 10" 3 rad/s2
. (b) 104 rev. (c) -1.0 mm/s2

. [d] 31 m/s2
.

26. A rigid body, starting at rest, rotates about a fixed axis with constant an-

gular acceleration a. Consider a particle a distance r from the axis. Express

[a) the radial acceleration and \b) the tangential acceleration of this particle

in the body in terms of a, r and the time t. (c) If the resultant acceleration of

the particle at some instant makes an angle of 60° with the tangential ac-

celeration, what total angle has the body turned through to that instant?

B

figure 11-13

Problem 19

SECTION 11-6

27. Derive Eq. 11-20 by differentiation of Eq. 11-19.

28.* An insect of mass 8.0 x 10 2 g walks out with a constant speed of 1.6 cm/s
along a radial line marked on a phonograph turntable rotating at a constant

angular velocity of 33i rev/min. Find [a) the velocity and [b) the accelera-

tion of the insect as seen by the ground observer when the insect is 12 cm
from the axis of rotation, (c) What must the minimum coefficient of friction

be to allow the insect to get all the way to the edge of the turntable (radius =
16 cm) without slipping?

29.* A virus particle, mass 1.0 x 10 7
g, in solution in a centrifuge is, at a par-

ticular moment, at a distance of 6.5 cm from the axis of rotation and moving
radially outward at a relatively constant speed of 2.0 mm/s. The centrifuge

is rotating at 55,000 rev/min. Discuss the motion quantitatively, giving the

magnitude of all forces and accelerations as viewed from a reference frame

[a] rotating with the centrifuge and b\ fixed in the laboratory.

ft ntary Topil I
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rotational

dynamics I
In Chapter 1 1 we considered the kinematics of rotation. In this chap-

ter, following the pattern of our study of translational motion, we study

the causes of rotation, a subject called rotational dynamics. Rotating

systems are made up of particles and we have already learned how to

apply the laws of classical mechanics to the motion of particles. For

this reason rotational dynamics should contain no features that are

fundamentally new. In the same way rotational kinematics contained

no basic new features, the rotational parameters 6, a>, and a being re-

lated to corresponding translational parameters x, v, and a for the par-

ticles that make up the rotating system. As in Chapter 11, however, it

is very useful to recast the concepts of translational motion into a new
form, especially chosen for its convenience in describing rotating

systems.

We restricted our kinematical studies in Chapter 1 1 to a single but

important special case, the rotation of a rigid body about an axis that is

fixed in the reference frame in which we make our measurements. In

studying rotational dynamics we start from a more fundamental point of

view, that of a single particle viewed from an inertial reference frame.

Later we shall generalize to systems of many particles, including the

special case of a rigid body rotating about a fixed axis. In Chapter 13 we
shall discuss the rotation of rigid bodies about axes that are not fixed in

an inertial reference frame.

12-1
INTRODUCTION

In translational motion we associate a force with the linear accelera- 12"2
tion of a body. In rotational motion, what quantity shall we associate TORQUE ACTING
with the angular acceleration of a body? It cannot be simply force be- ON A PARTICLE
cause, as experiment with a heavy revolving door teaches us, a given 231



force (vector) can produce various angular accelerations of the door de-

pending on where the force is applied and how it is directed; a force

applied to the hinge line cannot produce any angular acceleration,

whereas a force of given magnitude applied at right angles to the door at

its outer edge produces a maximum acceleration.

We shall call the rotational analogue of force torque and shall now
define it for the special case of a single particle observed from an in-

ertial reference frame. Later we shall extend the torque concept to sys-

tems of particles (including rigid bodies) and shall show that torque is

intimately associated with angular acceleration.

If a force F acts on a single particle at a point P whose position with

respect to the origin O of the inertial reference frame is given by the

displacement vector r (Fig. 12-1), the torque r acting on the particle

with respect to the origin O is defined as

t = r x F.

Torque is a vector quantity. Its magnitude is given by

t = rF sin 8,

[12-1]

\\2-2a)

where 8 is the angle between r and F; its direction is normal to the plane

formed by r and F. The sense is given by the right-hand rule for the

vector product of two vectors, namely, one swings r into F through the

smaller angle between them with the curled fingers of the right hand;

the direction of the extended thumb then gives the direction of r.

Torque has the same dimensions as force times distance, or in terms

of our assumed fundamental dimensions, M, L, T, it has the dimensions

ML 2T~ 2
. These are the same as the dimensions of work. However,

torque and work are very different physical quantities. Torque is a

vector and work is a scalar, for example. The unit of torque may be the

newton-meter (N • m) or pound-foot (lb • ft), among other possibilities.

Notice (Eq. 12-1) that the torque produced by a force depends not

only on the magnitude and on the direction of the force but also on the

point of application of the force relative to the origin, that is, on the

vector r. In particular, when particle P is at the origin, so that the line

of action of F passes through the origin, r is zero and the torque t about

the origin is zero.

We can also write the magnitude of t (Eq. 12- 2a) either as

or as

t= [r sin 8) F = Fr±,

t = r[F sin 8) — rF±,

\\2-2b)

(12-2c)

in which, as Fig. 1 2-2a shows, r± (= r sin 8) is the component of r at right

angles to the line of action of F, and F± [= F sin 8) is the component of F

at right angles to r. Torque is often called the moment of force and r± in

Eq. \2-2b is called the moment arm. Equation 12-2c shows that only

the component of F perpendicular to r contributes to the torque. In par-

ticular, when 8 equals or 180°, there is no perpendicular component

[F i
= F sin 8 = 0); then the line of action of the force passes through the

origin and the moment arm r A about the origin is also zero. In this case

both Eq. 12-2/? and Eq. 12-2c show that the torque t is zero.

If, as in Fig. 1 2-2/?, we reverse the direction of F, the magnitude of t

remains unchanged but the direction of t is reversed. Similarly, if, as in

L2-2c, we reverse r, thereby changing the point of application ol F,

the magnitude of t remains unchanged but the direction of r is again

reversed

: 'WS ;-.•• •

11111™

figure 12-1

A force is applied to a particle P,

displaced r relative to the origin.

The force vector makes an angle 8

with the radius vector r. The
torque t about O is shown. Its

direction is perpendicular to the

plane formed by r and F with the

sense given by the right-hand rule.



(b)

180° - e

(d)

figure 12-2

The plane shown is that defined by

r and F in Fig. 12-1. (a) The
magnitude of t is given by FiL (Eq.

ll-lb) or by rFL (Eq. 12-2c). (b)

Reversing F reverses the direction

of t but leaves its magnitude

unchanged, (c) Reversing r also

reverses the direction of x but

leaves its magnitude unchanged.

(d) Reversing F and r leaves both

the direction and magnitude of t

unchanged. The directions of t are

represented by Q (perpendicularly

out of the figure, the symbol

representing the tip of an arrow) and

by ® (perpendicularly into the

figure, the symbol representing the

tail of an arrow).

If, as in Fig. \2-2d, we reverse both r and F, then both the magnitude

and the direction of t remain unchanged. These results follow formally

from the facts that: (1) sin 6 = sin (180° - 6), so that Eq. 12-2<3 for the

magnitude of t is unaffected; (2) reversing the direction of one vector in

a vector product (either r or F) reverses the direction of the product; and

(3) reversing the directions of both vectors in a vector product (both r

and F) leaves the direction of the product unchanged. You should verify

the directions of t shown in Fig. 12-2, using the right-hand rule.

We have found linear momentum to be useful in dealing with the

translational motion of single particles or of systems of particles (in-

cluding rigid bodies). For example, linear momentum is conserved in

collisions. For a single particle the linear momentum is p = mv (Eq.

9-ll)
;
for a system of particles it is P = Mvcm (Eq. 9-15) in which M is

the total system mass and vcm is the velocity of the center of mass. In

rotational motion, what is the analog of linear momentum? We call it

angular momentum and we define it below for the special case of a

single particle. Later we shall broaden the definition to include systems
of particles and shall show that angular momentum, as we define it, is

as useful a concept in rotational motion as linear momentum is in

translational motion.

Consider a particle of mass m and linear momentum p at a position

r relative to the origin O of an inertial reference frame (Fig. 12-3). We
define the angular momentum 1 of the particle with respect to the

origin O to be

l = rxp. (12-3)

Note that we must specify the origin O in order to define the position

vector r in the definition of angular momentum.
Angular momentum is a vector. Its magnitude is given by

1 = rp sin 0, (12-4a)

12-3
ANGULAR MOMENTUM
OF A PARTICLE



where is the angle between r and p; its direction is normal to the plane

formed by r and p. The sense is given by the right-hand rule, namely,

one swings r into p, through the smaller angle between them, with the

curled fingers of the right hand; the extended right thumb then points

in the direction of 1.

We can also write the magnitude of 1 either as

or as

1 = (r sin 0) p = pr±,

1 = i[p sin 0) = rp L ,

(12-42?)

(12-4c)

in which i^ [= i sin 0) is the component of r at right angles to the line of

action of p and p x [= p sin 0) is the component of p at right angles to r.

Angular momentum is often called moment of (linear) momentum and
r_ in Eq. ll-4b is often called the moment arm. Equation 12-4c shows
that only the component of p perpendicular to r contributes to the angu-

lar momentum. When the angle between r and p is or 180°, there is

no perpendicular component (p x = p sin = 0); then the line of action

of p passes through the origin and r± is also zero. In this case both

Eqs. 12-4£> and 12-4c show that the angular momentum 1 is zero.

We now derive an important relation between torque and angular

momentum. We have seen that F = d[m\)/dt = dp/dt for a particle. Let

us take the vector product of r with both sides of this equation, ob-

taining

dp
r x F = t x

dt

But r x F is the torque, or moment of a force, about O. We can then

write

dp

dt'
r = r x 12-5)

Next we differentiate Eq. 12-3 and obtain

d\ = d_

dt dt
(r xp).

Now the derivative of a vector product is taken in the same way as

the derivative of an ordinary product, except that we must not change

the order of the terms. We have

d\ dt dp
, x p + r x .

dt dt
v

dt

But dt is the vector displacement of the particle in the time dt so that

dr/dt is the instantaneous velocity v of the particle. Also, p equals mv,
so that we can rewrite the equation as

Now v x mv — 0, because the vector product of two parallel vectors is

zero. Therefore,

dt dt
112-6)

Inspection of Eqs. 12-5 and 12-6 shows that

r = d\/dt,
1
12-7)

wliu h states that the tunc rate o) < hange o) the angular momentum of

figure 12-3

A particle of mass m is at point P
displaced r relative to the origin,

and has linear momentum p. The
vector p makes an angle with the

radius vector r. The angular

momentum 1 of the particle with

respect to origin O is shown. Its

direction is perpendicular to the

plane formed by r and p with the

sense given by the right-hand rule.



a particle is equal to the torque acting on it. This result is the rota-

tional analog of Eq. 9-12, which stated that the time rate of change of

the linear momentum of a particle is equal to the force acting on it,

that is, that F = dp/dt.

Equation 12-7, like all vector equations, is equivalent to three scalar

equations, namely,

rx = [dl/dt),, t„ = [dlyldt) yi tz = [dljdt),. (12-8)

Hence, the x-component of the applied torque is given by the x-com-

ponent of the change with time of the angular momentum. Similar re-

sults hold for the y- and z-directions.

A particle of mass m is released from rest at point a in Fig. 12-4, falling parallel

to the (vertical) y-axis. [a] Find the torque acting on m at any time t, with re-

spect to origin O. \b) Find the angular momentum of m at any time t, with

respect to this same origin, (c) Show that the relation t— dl/dt (Eq. 12-7) yields

a correct result when applied to this familiar problem.

[a] The torque is given by Eq. 12-1 or t = r X F, its magnitude being given by

t = rF sin 8.

In this example r sin f) = b and F = mg so that

t = mgb = a constant.

Note that the torque is simply the product of the force {mg) times the moment
arm \b). The right-hand rule shows that t is directed perpendicularly into the

figure.

[b] The angular momentum is given by Eq. 12-3 or 1 = r x p, its magnitude

being given by

1 = rp sin 6.

In this example r sin = b and p = mv = m[gt) so that

1 = mgbt.

The right-hand rule shows that 1 is directed perpendicularly into the figure,

which means that 1 and t are parallel vectors. The vector 1 changes with time

in magnitude only, its direction always remaining the same in this case.

[c] Since dl, the change in 1, and x are parallel, we can replace the vector rela-

tion t = dl/dt by the scalar relation

t = dl/dt.

Using the expressions for r and 1 from [a) and [b] above we have

EXAMPLE 1

\j7F(=mg),p(=mv)

figure 12-4

Example 1. A particle of mass m
drops vertically from point a. The
torque and the angular momentum
about O are directed perpendicularly

into the figure, as shown by the

symbol ® at O.

mgb = -j (mgbt) = mgb,

which is an identity. Thus the relation t = dl/dt yields correct results in this

simple case. Indeed, if we cancel the constant b out of the first two terms above

and if we substitute for gt the equivalent quantity v, we have

d
, img = -^[mv).

Since mg = F and mv = p, this is the familiar result F = dp/dt. Thus, as we indi-

cated earlier, relations such as t = dl/dt. though often vastly useful, are not

new basic postulates of classical mechanics but are rather the reformulation of

the Newtonian laws for rotational motion.

Note that the values of t and 1 depend on our choice of origin, that is, on b.

In particular, if b = 0, then t = and 1 = 0.



So far we have talked only about single particles. Let us now consider 12-4
a system of many particles. To calculate the total angular momentum SYSTEMS OF PARTICLES
L of a system of particles about a given point, we must add vectorially

the angular momenta of all the individual particles of the system about

this same point. For a system containing n particles we have, then,

L = U +

1

2 + • • • + ln =§ '«»

in which the (vector) sum is taken over all particles in the system.

As time goes on, the total angular momentum L of the system about

a fixed reference point (which we choose, as in our basic definition of 1

in Eq. 12-3, to be the origin of an inertial reference frame) may change.

This change, dL/dt, can arise from two sources: (1) torques exerted on

the particles of the system by internal forces between the particles and

(2) torques exerted on the particles of the system by external forces.

If Newton's third law holds in its so-called strong form, that is, if the

forces between any two particles not only are equal and opposite but

are also directed along the line joining the two particles, then the total

internal torque is zero because the torque resulting from each internal

action-reaction force pair is zero.

Hence the first source contributes nothing. For our reference point,

therefore, only the second source remains, and we can write

Texi = dLldt, (12-9)

where Tex t stands for the sum of all the external torques acting on the

system. In words, the time rate of change of the total angular momen-
tum of a system of particles about the origin of an inertial reference

frame is equal to the sum of the external torques acting on the system.

Later, for convenience, in situations in which no confusion is likely to

arise, we shall drop the subscript on Text-

Equation 12-9 is the generalization of Eq. 12-7 to many particles.

When we have only one particle, there are no internal forces or torques.

This relation (Eq. 12-9) holds whether the particles that make up the

system are in motion relative to each other or whether they have fixed

spatial relationships, as in a rigid body.

Equation 12-9 is the rotational analog of Eq. 9-17

F ext =dP/dt (9-17)

which tells us that for a system of particles (rigid body or not) the re-

sultant external force acting on the system equals the time rate of

change of the linear momentum of the system.

As we have derived it, Eq. 1 2-9 holds when t and L are measured with

respect to the origin of an inertial reference frame. We may well ask

whether it still holds if we measure these two vectors with respect to

an arbitrary point (a particular particle, say) in the moving system. In

general, such a point would move in a complicated way as the body or

system of particles translated, tumbled, and changed its configuration

and Eq. 12-9 would not apply to such a reference point. However, if the

reference point is chosen to be the center of mass of the system, even

though this point is not fixed in our reference frame, then Eq. 12-9 does

hold.* This is another remarkable property of the center of mass. Thus
we can separate the general motion <»t a system of particles into the

I'roblcm 10 of this chaptei and K k Symun, Mechonn s id ed Addison-Wesle)

Publishing Co., 197.' So tion 4.2.



translational motion of its center of mass (Eq. 9-17) and rotational mo-

tion about its center of mass (Eq. 12-9).

We shall now confine our attention to an important special case of a

system of particles, a rigid body. In a rigid body the particles in the sys-

tem always maintain the same positions with respect to one another.

In studying the rotation of a rigid body we shall consider first the spe-

cial case, often encountered, in which the axis of rotation is fixed* in

an inertial reference frame. Later we shall investigate more general

systems and motions.

Let us now imagine a rigid body rotating with angular speed w about

an axis that is fixed in a particular inertial frame, as in Fig. 11-1. Each

particle in such a rotating body has a certain amount of kinetic energy.

A particle of mass m at a distance r from the axis of rotation moves in a

circle of radius r with an angular speed a> about this axis and has a linear

speed v = &>r. Its kinetic energy therefore is imv2 = \mr2
(x>

2
. The total

kinetic energy of the body is the sum of the kinetic energies of its par-

ticles.

If the body is rigid, as we assume in this section, a> is the same for all

particles. The radius r may be different for different particles. Hence the

total kinetic energy K of the rotating body can be written as

K = i[mir{2 + m 2r2
2 + j

2 = |(2 m,r;

2)w2

The term 2 miii 2 is the sum of the products of the masses of the par-

ticles by the squares of their respective distances from the axis of rota-

tion. If we denote this quantity by /, then

1=1 m,r. ;i2-10)

is called the rotational inertia, or moment of inertia, t of the body with

respect to the particular axis of rotation.

Note that the rotational inertia of a body depends on the particular

axis about which it is rotating as well as on the shape of the body and

the manner in which its mass is distributed. Rotational inertia has the

dimensions ML 2 and is usually expressed in kg • m2 or slug • ft
2

.

In terms of rotational inertia we can now write the kinetic energy of

the rotating rigid body as

il0J2 .K (12-11)

This is analogous to the expression for the kinetic energy of translation

of a body, K = jMv2
. We have already seen that the angular speed w is

analogous to the linear speed v. Now we see that the rotational inertia

J is analogous to the mass, or the translational inertia M. Although the

12-5
KINETIC ENERGY OF
ROTATION AND
ROTATIONAL INERTIA

* As stated in Section 12-4, we can separate the general motion of a system of particles

into translational motion of its center of mass and rotational motion about its center of

mass. Hence the considerations of this chapter apply also to rotations about an axis that

is not fixed in an inertial reference frame, provided (1) the axis passes through the center

of mass and (2) the moving axis always has the same direction in space, that is, the axis

at one instant is parallel to the axis at any other instant. Although we shall often refer to

a "fixed axis" in what follows we shall always mean to include this special case of a

moving axis.

tThe term moment of inertia is widely used for this second moment of mass even

though there are first, third, and other moments of mass. We choose to emphasize the

term rotational inertia, however, chiefly because / (the rotational inertia) plays the same
role, we shall see, in rotational motion as M (the mass, or the translational inertia) plays

in translational motion.



figure 12-5

An experiment to show that

I„ < h < Ic- The three lead bodies

have the same mass M but the mass
is distributed differently about the

axis of rotation.

mass of a body does not depend on its location, the rotational inertia of

a body does depend on the axis about which it is rotating.

We should understand that the rotational kinetic energy given by

Eq. 12-11 is simply the sum of the ordinary translational kinetic energy

of all the parts of the body and not a new kind of energy. Rotational

kinetic energy is simply a convenient way of expressing the kinetic

energy for a rotating rigid body.

Equations 12-10 and 12-11 show that the rotational energy of a body,

for a given angular speed <x>, depends not only on the mass of the body

but also on the way that mass is distributed around the axis of rotation.

The experiment suggested in Fig. 12-5 makes this convincing. The
figure shows three identical aluminum shafts, to each of which is at-

tached a body of mass M, made of lead. In (a) the mass is very close to

the shaft so that the quantities r, in Eq. 12-10 for the particles that make
up the body are relatively small, in [b] the particles are, on the average,

farther from the shaft and in (c), in which the body is a flywheel, they

are still farther, corresponding to still larger values of r,.

Now let us twist each handle until each shaft, starting from rest, is

spinning at the same measured angular speed w. We know from experi-

ence that we shall need to do relatively little work on shaft [a], some-

what more work on shaft [b], and still more on shaft [c). In fact, if we
were not certain which body was attached to which shaft we could

label the shafts with confidence using this technique. Since the work
done on each shaft is equal to the kinetic energy 4/w- imparted to each

shaft, the experimental result, that Ka < Kb < Kr when each shaft has

the same angular speed w, leads to the conclusion that I„ < Ib < Ic . This

is just what we expect from the defining equation for / (Eq. 12-10). We
shall sec in Section 12-6 that just as the mass M, which we may call the

translational inertia, is a measure of the resistance a body offers to a

change in its translational motion, so /, the rotational inertia, is a

measure of the resistance a body offers to a change in its rotation. il

motion about a given axis.

( i insider a body consisting of two spherical masses ol 5.0 kg each connected by HXA 1^1 1*

I

jWj !£

.i light rigid rod 1.0 m Long (Fig. 1 2-6). Treat the spheres as point particles and

neglect the mass ol the rod Determine the rotational inertia oi momenl ol



inertia) of the body [a] about an axis normal to it through its center at C, and

[b] about an axis normal to it through one sphere.

[a] If the axis is normal to the page through C, we have

Ic = 2 niiTi2 = m a r a
2 + m b r b

2

= (5.0 kg)(0.50 m) 2 + (5.0 kg)(0.50 m) 2 = 2.5 kg • m2
.

[b] If the axis is normal to the page through A or B, we have

U =m a r„
2 + m bi b

2 = (5.0 kg)|0 m) 2 + (5.0 kg)(1.0 m) 2 = 5.0 kg • m2
,

IB = m a ra
2 + m bib

2 = (5.0 kg)(1.0 m) 2 + (5.0 kg)(0 m) 2 = 5.0 kg • m2
.

Hence the rotational inertia of this rigid dumbell model is twice as great about

an axis through an end as it is about an axis through the center.

5 kg 5 kg

1 meter

figure 12-6

Example 2. Calculating the

rotational inertia of a dumbell.

For a body that is not composed of discrete point masses but is instead

a continuous distribution of matter, the summation in / = 2 m,r;2 be-

comes an integration. We imagine the body to be subdivided into in-

finitesimal elements, each of mass dm. We let r be the distance from

such an element to the axis of rotation. Then the rotational inertia is

obtained from

/ - / r2 dm, 112-12)

where the integral is taken over the whole body. The procedure by

which the summation 2 of a discrete distribution is replaced by the in-

tegral / for a continuous distribution is the same as that discussed for

the center of mass in Section 9- 1

.

For bodies of irregular shape the integrals may be hard to evaluate.

For bodies of simple geometrical shape the integrals are relatively easy

when an axis of symmetry is chosen as the axis of rotation.

Let us illustrate the procedure for an annular cylinder (or ring) about

the cylinder axis (Fig. 12-7). The most convenient mass element is an

infinitesimally thin cylinder shell of radius r, thickness dr, and length

L. If the density of the material, that is, the mass per unit volume, is

called p, then

dm = p dV,

where dV is the volume of the cylindrical shell of mass dm. We have

so that

dV= [Itti dr)L,

dm = InLpr dr.

Then the rotational inertia about the cylinder axis is

/ = r 2 dm = IttL
Ri

pr3 dr.

Here Ri is the radius of the inner cylindrical wall and R 2 is the radius

of the outer cylindrical wall.

If this body did not have a uniform constant density, we would have
to know how p depends on r before we could carry out the integration.

Let us assume for simplicity that the density is uniform. Then

figure 12-7

Calculating the rotational inertia

of an annular cylinder.

/ = 2ttLp r3 dr = 2nLp
«i

P7T[R./ RS)L
R22 + Rt 2



The mass M of the annular cylinder is the product of its density p by

its volume tt[R> 2 — R{2 )L, or

M = Ptt[RS - RS)L.

The rotational inertia of the annular cylinder (or ring) of mass M,
inner radius Ri and outer radius R>, is therefore

I = WiRr + RS)

about the cylinder axis.

If the inner radius is zero, .R, equals zero, and we have a solid cylinder

|or disk). Then

I = iMR 2

about the cylinder axis, where R is the radius of the solid cylinder of

mass M.
A hoop can be thought of as a very thin-walled hollow cylinder. In

that case

and

R x
= R, = R,

I = MR 2

is the rotational inertia of a hoop of mass M and radius R about the

cylinder axis.

This result for the thin hoop is obvious since every mass point in the

hoop is the same distance R from the central axis. For the solid cylinder

(or disk) having the same mass as the hoop, the rotational inertia (or

moment of inertia) would naturally be less than that of the hoop, be-

cause most of the cylinder (or disk) is less than a distance R from the

axis.

The rotational inertias about certain axes of some common solids (of

uniform density) are listed in Table 12-1. Each of these results can be

derived by integration in a manner similar to that of our illustration.

The total mass of the body is denoted byM in each equation.

There is a simple and very useful relation between the rotational

inertia / of a body about any axis and its rotational inertia 7cm with re-

spect to a parallel axis through the center ofmass. IfM is the total mass
of the body and h the distance between the two axes, the relation is

I = Icm + Mh 2
. 112-13)

The proof of this relation (parallel-axis theorem) follows. Let C be the center of

mass of the arhitrarily shaped body whose cross section is shown in Fig. 12-8.

figure 12-8

Derivation of the parallel-axis

theorem. Knowing the rotational

inertia about an axis through C, we
can find its value about a parallel

axis through P.

*cm



Table 12-1

Hoop about

cylinder axis

I=MR 2

1 = MR Z

1 = MH L

Solid cylinder

about cylinder

axis

Axis

c
Vy Thin rod about

axis through

center 1 to

length

T
Ml 2

1 ~ 12
e

Solid sphere

about any
diameter

Annular cylinder

(or ring) about

cylinder axis

Solid cylinder

(or disk) about a

central diameter

Axis^ \ Thin rod about

/^/1 axis through oney end 1 to length

T Ml 2

1 ~ 3 f

Axis)

Thin

spherical shell

about any

diameter

h

*§&?•'•.. .-'•-:•'-sjjaB
2R

1

J

, 2MR 1-

1 ~ 3

Hoop about any

diameter

Axis

i R
V Hoop about any

;
tangent line

, 3MH-
~ 2

/

The center of mass has coordinates x(m and ycm . We choose the x-y plane to in-

clude C, so that zcm equals zero. Consider an axis through C at right angles to the

plane of the paper and another axis parallel to it through P at [xcm + a] and (ycm +
b). The distance between the axes is h = Va 2 + b 2

. Then the square of the dis-

tance of a particle from the axis through C is xi2 + y,
2

, where x, and y, measure
the coordinates of a mass element m, relative to the axis through C. The square

of its distance from an axis through P is (x,- — a) 2 + (y, — b
)

2
. Hence the rotational

inertia about an axis through P is

/ = 2mi[(xi-fl) 2 + (yi-fa) 2
]

= S irii[xi
2 + y,-

2
) -2a 2 mum - 2b 2 m,yi + {a

2 + b 2
) I m,-.

From the definition of center of mass,

X m,-Xj = X rriiyt = 0,

so that the two middle terms are zero. The first term is simply the rotational



inertia about an axis through the center of mass 7,.m and the last term is Mh 2
.

Hence it follows that / = 7cm + Mh 2
.

With the aid of this formula several of the results of Table 12-1 can be

deduced from previous results. For example, if) follows from (e), and (/)

follows from (i) with the aid of Eq. 12-13. The formula will prove to be

especially useful in problems that combine rotational and translational

motion.

In this section we continue to study the special case of a rigid body con-

fined to rotate about an axis that is fixed* in an inertial reference frame.

First we shall review the concept of torque as applied to such a rigid

body
;
then we shall show how the torque is related to the angular ac-

celeration of the body about this axis.

Suppose that we apply a torque t to one of the particles in a rigid body.

Since all the particles of a truly rigid body maintain a fixed spatial rela-

tionship to all the other particles that make up the body, the torque may
be said to act on the rigid body as a whole. In general, the vector t will

not lie along the axis around which the body is free to rotate. We are

not concerned in this section with the actual torques applied to the

body but only with the components of these torques that lie along the

axis.t Only these components can cause the body to rotate about this

axis. Torque components perpendicular to the axis tend to turn the axis

from its fixed position. We have specifically assumed, however, that the

axis maintains a fixed direction. The body may, for example, be attached

to a shaft that is held in a fixed position by bearings at each end; if an

applied torque has a component at right angles to the shaft, tending to

turn it, the bearings will automatically apply an equal and opposite

counter-torque to the shaft, canceling the effect of this component.

In Fig. 12-9 (compare Fig. 11-3) we show a section through a rigid

body that is free to rotate about the z-axis of an inertial reference frame.

A force F, taken for convenience to be in the x-y plane of the section,

acts on a particle at point P in the body, the position of P with respect

to the rotational axis |the z-axis) being defined by the vector r. The
torque acting on the particle at P may be said to act on the rigid body

as a whole and is given by Eq. 1 2- 1 , or

t = r x F.

Because we have chosen r and F to lie in the x-y plane, the torque t

will point along the z-axis. The right-hand rule shows that it points

perpendicularly out of the plane of Fig. 12-9. If r and F did not lie in the

plane of the figure, t would not be parallel to the z-axis and we would

concern ourselves here only with the component of t along this axis.

The magnitude of t is given by Eq. 12-2 or

t= rF sin

which, as we have seen, can also be written as t = rF± or t = Fr ± .

ROTATIONAL
DYNAMICS OF A
RIGID BODY

figure 12-9

A force F acts on the particle P in

a rigid body, exerting a torque

r = r x F on the body, with respect

to an axis through O at right angles

to the plane of the figure. The
moment arm r

L
is also shown, as is

the torque t, which is a vector

emerging perpendicularly from the

page.

* Sec the footnote on page 237.

t As for any other vector, we can speak of the vectoi component ol a torque in any given

direction such .is .i given axis Foi torque and foi othei angulai quantities we also

often speak of the component around a given direction oi axis I he meaning is the same



A wagon wheel is free to rotate about a horizontal axis through O. A force of

10 lb is applied to a spoke at the point P, 1.0 ft from the center. OP makes an

angle of 30° with the horizontal (x-axis) and the force is in the plane of the

wheel making an angle of 45° with the horizontal (x-axis). What is the torque

on the wheel'

The angle between the displacement vector r from O to P and the applied

force F (Fig. 12-10) is 6, where

= 45° -30°= 15°.

Then the magnitude of the torque is

t = tF sin 6

= (1.0 ft)(10 lb)(sin 15°) = 2.6 lb • ft.

It is clear that we can obtain this same result from t = rF± or t = Frx as well

(see Eqs. 12-2). The torque (t = r x F) is a vector pointing out © along the axis

through O having a magnitude 2.6 lb • ft.

We now investigate the relationship between the torque applied to

the rigid body of Fig. 12-9 and the angular acceleration of this body. Let

us observe the rigid body for an infinitesimal time dt, during which it

will rotate through an infinitesimal angle dd. We have seen earlier that

we can describe the rotation of a rigid body about a fixed axis by exam-

ining the motion of any single point fixed in the body, such as P in

Fig. 12-9. For convenience, then, we ignore the body itself in Fig. 12-11

and focus our attention on the representative point P and on the vector

r which locates point P with respect to the axis of rotation.

During the time dt, the point P will move an infinitesimal distance

ds along a circular path of radius i as the body rotates through an in-

finitesimal angle dd, where

ds = i dd.

The work dW done by this force during this infinitesimal rotation is

dW = ¥• ds = F cos </> ds = [F cos </>)(/ dd),

where F cos $ is the component of F in the direction of ds.

The term [F cos 4>)r, however, is the magnitude of the instantaneous

torque exerted by F on the rigid body about the axis perpendicular to the

page through O, so that

EXAMPLE 3

dW dd. ;i2-i4)

This differential expression for the work done in rotation (about a fixed

axis) is equivalent to the expression dW — F dx for the work done in

translation (along a straight line).

To obtain the rate at which work is done in rotational motion (about

a fixed axis), we divide both sides of Eq. 12-14 by the infinitesimal time
interval dt during which the body is displaced through dd, obtaining

dW
dt

dd

or

1

dt

P = TCO,

giving the instantaneous power P. This last expression is the rotational

analog of P = Fv for translational motion (along a straight line).

If now a number of forces F b F 2 , etc., are applied to the body in the

figure 12-10

Example 3

\ ,P(t + dt)

figure 12-11

In time dt point P in the rigid body

of Fig. 12-9 moves a distance ds

along the arc of a circle of radius r.

The rigid body (not shown) and the

vector r that locates point P in it

each rotate through an angle dd

during this interval.



plane normal to its axis of rotation, the work done by these forces on

the body in a rotation dd will be

dW = Fi cos 0,ri dd + F2 cos (/>2r2 dd + • • •
,

= |t, + t2 + • • •) dd = T dd,

where r t d6 equals dsi, the displacement of the point at which Fi is ap-

plied, and c£i is the angle between Fi and dsi, etc., and where r is now the

magnitude of the component of the resultant torque along the axis

through O. In computing this sum each torque is considered positive

or negative according to the sense in which it alone would tend to rotate

the body about its axis. We can arbitrarily call the torque associated

with a force positive if the effect of the force, acting alone, is to produce

a counterclockwise rotation; then the torque is negative if the effect is

to produce a clockwise rotation.

There is no internal motion of particles within a truly rigid body. The
particles always maintain a fixed position relative to one another and

move only with the body as a whole. Hence there can be no dissipation

of energy within a truly rigid body. We can therefore equate the rate at

which work is being done on the body to the rate at which its kinetic

energy is increasing. The rate at which work is being done on the rigid

body is

dw de
,

-dF
= T

dt
= T0J - (lz - 15

'

The rate at which the kinetic energy of the rigid body is increasing is

But / is constant because the body is rigid and the axis is fixed. Hence

ft
iiIo>>) = ilf

t
[<»

2
)
= *"%£ = '*>« (12-16)

Equating the right-hand members of Eqs. 12-15 and 12-16, we obtain

to) = lao),

or

T = Ia. (12-17)

Equation 12-17 refers to the rotational motion of a rigid body about a

fixed axis. The torque t, the angular velocity to, and the angular acceler-

ation a are all constrained to point along this axis, in one direction or

the other. The equivalent translational case is that in which the force F

acting on a body, its velocity v, and its acceleration a all point along a

given straight line, in one direction or the other.

The above six quantities are vectors, but when they are directed along

a fixed line, they can have only two directions. By taking one of these

directions as + and the other as —, we can treat these vectors algebraic-

ally and deal with their magnitudes only. Thus, in deriving Eq. 12-17

(t = la), we have simply transformed Newton's second law (F = Ma),

written in scalar form suitable to describe rectilinear motion, into rota-

tional terms. This suggests that just as we associate a force with the

linear acceleration of a body, so we may associate a torque with the an-

gular acceleration of a body about a given axis. The rotational inertia / is

a measure of the resistance a body offers to having its rotational motion

changed by a given torque iust as the translational inertia, or mass, M is



a measure of the resistance a body offers to having its translational

motion changed by a given force.

In Table 12-2 we compare the translational motion of a rigid body

along a straight line with the rotational motion of a rigid body about a

fixed axis.

Table 12-2

Rectilinear Motion

Displacement

Velocity

Acceleration

Mass (translational inertia)

Force

Work
Kinetic energy

Power
Linear momentum

v =

a =

dx
dt

dv
dt

M
F = Ma
W= JF dx
iMv2

P = Fv
Mv

Rotation about a Fixed Axis

Angular displacement

Angular velocity

Angular acceleration

Rotational inertia

Torque
Work
Kinetic energy

Power
Angular momentum

dO

duj
a =

~dT

i

t = la

W= Jrdd
|/w2

P= TW

1(0

™gV

The rotation of a rigid body about a fixed axis (to which t — la applies)

is not the most general kind of rotary motion in that the body may not

be rigid and the axis may not be fixed in an inertial reference frame. In

this general case Eq. 12-9, or Tex t
= dL/dt, applies. As we have already

pointed out, this is equivalent to Newton's second law for the general

translational motion of a system of particles, namely, Eq. 9-17, or

F ext = dP/dt.

In the rest of this chapter we confine ourselves to the rotations of

rigid bodies about fixed axes. In Chapter 13 we shall consider some more
general kinds of rotary motion.

figure 12-13

Example 4. A steady downward
force T produces rotation of the

disk. Example 5. Here T is supplied

by the falling mass m.

A uniform disk of radius R and mass M is mounted on an axle supported in

fixed frictionless bearings, as in Fig. 12-12. A light cord is wrapped around the

rim of the wheel and a steady downward pull T is exerted on the cord. Find the

angular acceleration of the wheel and the tangential acceleration of a point on

the rim.

The torque about the central axis is t= TR, and the rotational inertia of the

disk about its central axis is / = iMR 2
. From

we have

or

t = la,

TR = {iMR 2 )a,

IT
MR

If the mass of the disk is taken to be M = 2.50 kg, its radius R = 0.20 m, and
the force T= 5.0 N, then

(2)15.0 N)
= 20 rad/s'.

(2.50 kg)(0.20 m)

The tangential acceleration of a point on the rim is given by

a = Ra = (20 rad/s2 )(0.20 m) = 4.0 m/s2
.

EXAMPLE 4



Suppose that we hang a body of mass m from the cord in the previous problem.

Find the angular acceleration of the disk and the tangential acceleration of a

point on the rim in this case.

Now, let T be the tension in the cord. Since the suspended body will acceler-

ate downward, the magnitude of the downward pull of gravity on it, mg, must
exceed the magnitude of the upward pull of the cord on it, T. The acceleration a

of the suspended body is the same as the tangential acceleration of a point on

the rim of the disk. From Newton's second law

mg ma.

The resultant torque on the disk is TR and its rotational inertia is -kMR 2
, so that

from

= Ia

we obtain

TR = }MR 2a.

Using the relation a = Ra, we can write this last equation as

2T= Ma.

Solving the first and last equations simultaneously leads to

2m

and

a =

T

M + 2m

Mm ^

M + 2m/

If now we let the disk have a mass M = 2.50 kg and a radius R = 0.20 m as

before, and we let the suspended body weigh 5.0 N, we obtain

Img (2)(5.0 N|

M + 2m (2.50 kg) + 2(5/9.8) kg
2.85 m/s2

,

a (2.85 m/s2
)

R 0.20 m 14.3 rad/s2
.

Notice that the accelerations are less for a suspended 5.0 N body than they

were for a steady 5.0 N pull on the string (Example 4). This corresponds to the

fact that the tension in the string supplying the torque is now less than 5.0 N,

namely

T =
Mmg _ (2.50 kg)(5.0 N)

M + 2m (2.50 +1.0) kg
3.6 N.

The tension in the string must be less than the weight of the suspended body if

the body is to accelerate downward.

EXAMPLES

Assuming that the disk of Example 5 starts from rest, compute the work done

by the applied torque on the disk in 2.0 s. Compute also the increase in rota-

tional kinetic energy of the disk.

Since the applied torque is constant, the resulting angular acceleration is

constant. The total angular displacement in constant angular acceleration is

obtained from Eq. 11-5,

6

in which

so that

to =

= w„t + iat2
,

14.3 rad/s2
, £ = 2.0 s,

# = + (i)| 14 i i.ul/s2 ||2.0 s)
2 28.6 rad

onstani torque tin- work done in .1 finite angulai displacement is

EXAMPLE «



in which

and

Therefore

W = T[02
- di),

t=TR = (3.6 N)(0.20 m) = 0.72 N • m,

02 - 6>i = = 28.6 rad.

W = (0.72 N • m)(28.6 rad) = 20.5 J.

This work must result in an increase in rotational kinetic energy of the disk.

Starting from rest the disk acquires an angular speed o>. The rotational energy is

ilw2 = i[iMR2
)(o

2
. To obtain w we use Eq. 11-3,

in which

so that

Then

u> = coo + at,

wo = 0, t = 2.0 s, a = 14.3 rad/s2
,

w = + (14.3 rad/s2
)(2.0 s) = 28.6 rad/s.

|/w2 = ||)(2.50 kg)(0.20 m)2(28.6 rad/s) 2 = 20.5 J,

as before. Hence the increase in kinetic energy of the disk is equal to the work
done by the resultant force on the disk, as it must be.

Show that the conservation of mechanical energy holds for the system of Ex-

ample 5.

The resultant force acting on the system is the force of gravity on the sus-

pended body. This is a conservative force. Viewing the system as a whole, we
see that the suspended body loses potential energy U as it descends,

U = mgy,

where y is the vertical distance through which the block descends. At the same
time the suspended body gains kinetic energy of translation and the disk gains

kinetic energy of rotation. The total gain in kinetic energy is

imv2 + }I<x>
2

,

where v is the linear speed of the suspended mass. We must show then that

mgy = imv2 + ilo)2 .

For the linear motion starting from rest we have v2 = lay. From Example 5,

we obtained a = 2 mgl[M + 2m). Hence

mgy
mgv*

2a
^) = imv<

M + 2m
2m

\{M + 2m)v2
.

We also know that w = v/R and / = \MR 2
. Substituting these relations into

the right-hand side of the conservation equation, we obtain

imv2 + |/w2 = imv2 + MWR 2 ){vz/R 2
)

The mechanical energy is therefore conserved.

MM + 2m)v2
.

EXAMPLE 7

Derive the relation L = Iw, shown in Table 12-2, for the angular momentum of EXAMPLE 8
a rigid body confined to rotate about a fixed axis.

Starting from the scalar relation t = la and the definition of a (= d(o/dt), we
may write

r = la = Hdoj/dt) = d[Iw)/dt,

in which the last step is justified by the fact that / is a constant for a given rigid

body and a specified (fixed) axis of rotation.



Next we use the vector relation Text = dL/dt (Eq. 12-9) and write the corre-

sponding relation for the scalar components, r and dL, of Text and dL along the

fixed axis of rotation, obtaining

- = dL/dt.

Simply by comparing the two equations above we obtain the relation sought,

namely

L = Iw. [12-18)

Like Eq. 12-17 [t = la), this is a scalar relation holding for the rotation of a rigid

body about a fixed axis. L is the component along that axis of the vector angular

momentum L of the rigid body and / must refer to that same axis.

Equation 1 2- 1 8 is the rotational analog of the expression P = Mv for the linear

momentum of a rigid body of mass M in pure translational motion with linear

speed v. It gives the angular momentum about a fixed axis of a rigid body having

rotational inertia / and angular speed w about that same axis.

Up until now we have considered only bodies rotating about some fixed

axis. If a body is rolling, however, it is rotating about an axis and also

moving translationally. Therefore it would seem that the motion of

rolling bodies must be treated as a combination of translational and

rotational motion. It is also possible, however, to treat a rolling body as

though its motion is one of pure rotation. We wish to illustrate the

equivalence of the two approaches.

Consider, for example, a cylinder rolling along a level surface, as in

Fig. 12-13. At any instant the bottom of the cylinder is at rest on the

surface, since it does not slide. The axis normal to the diagram through

the point of contact P is called the instantaneous axis of rotation. At
that instant the linear velocity of every particle of the cylinder is di-

rected at right angles to the line joining the particle and P and its magni-

tude is proportional to this distance. This is the same as saying that the

cylinder is rotating about a fixed axis through P with a certain angular

speed to, at that instant. Hence, at a given instant the motion of the

body is equivalent to a pure rotation. The total kinetic energy can, there-

fore, be written as

K = iW, (12-19)

where h- is the rotational inertia about the axis through P.

Let us now use the parallel axis theorem, which tells us that

iP = ;cm + mr>,

where Icm is the rotational inertia of the cylinder of massM and radius R
about a parallel axis through the center of mass. Equation 12-19 now
becomes

K = ih-mco
2 + WR 2

to
2

.
i

12-20)

The quantity Rto is the speed with which the center of mass of the cylin-

der is moving with respect to the fixed point P. Let Rco = vrm . Equation

12-20 then becomes

K = #cm0? + ±Mvcm2 . ;i2-2i]

Now notice that the speed of the center of mass with respect to P is

the same as the speed of /' with respect to the center ot mass. Hence,

the angular speed to ol the centei of mass about /' as seen by someone
at /' is the same as the angular speed of a particle at /' about C as seen

12-7
THE COMBINED
TRANSLATIONAL AND
ROTATIONAL MOTION
OF A RIGID BODY

figure 12-13

A rolling body may at any instant

be thought of as rotating about a

perpendicular axis through its

point of contact P.



by someone at C (moving along with the cylinder). This is equivalent

to saying that any reference line in the cylinder turns through the same
angle in a given time whether it is observed from a reference frame fixed

with respect to the surface on which the cylinder is rolling or from a

frame moving translationally with respect to this fixed frame. We can

therefore interpret Eq. 12-21, which was derived on the basis of a pure

rotational motion, in another way
;
that is, the first term, i/cma)

2
, is the

kinetic energy the cylinder would have if it were merely rotating about

an axis through its center of mass, without translational motion; and

the second term, }Mvcm
2

, is the kinetic energy the cylinder would have

if it were moving translationally with the speed of its center of mass,

without rotating. Notice that there is now no reference at all to the in-

stantaneous axis of rotation. In fact, Eq. 12-21 applies to any body that

is moving and rotating about an axis perpendicular to its motion

whether or not it is rolling on a surface.

The combined effects of translation of the center of mass and rota-

tion about an axis through the center of mass are equivalent to a pure

rotation with the same angular speed about an axis through the point

of contact of a rolling body.

To illustrate this result simply, let us consider the instantaneous

speed of various points on the rolling cylinder. If the speed of the center

of mass (as seen by an observer fixed with respect to the surface) is vcm ,

the instantaneous angular speed about an axis through P is a» = vvm/R.

A point Q at the top of the cylinder will therefore have a speed wlR =
2vcm at that instant. The point of contact P is instantaneously at rest.

Hence, from the point of view of pure rotation about P, the situation is

as shown in Fig. 12-14.

Now let us regard the rolling as a combination of translation of the

center of mass and rotation about the cylinder axis through C. If we con-

sider translation only, all points on the cylinder have the same speed

vcm , the speed of the center of mass. This is shown in Fig. 12- 15a. If we
consider the rotation only, the center is at rest, whereas the point Q at

the top has a speed ojR in the x-direction and the point P at the bottom
of the cylinder has a speed ojR in the —x-direction. This is shown in

Fig. 12- 15b. Now let us combine these two results. Recalling that

w = Vcm/R, we obtain

figure 12-14

Since Q and C have the same
angular velocity about P, therefore

Q, being twice as far from P, moves
with twice the linear velocity of C.

for the point Q

for the point C

for the point P

v=vcm + wR = vcm + -j^R = 2vcm ,

v = vcm + = vcm ,

v=vcm - o)R = v,cm n R — 0.

Q o)R = vcm

i>

(a) (b)

figure 12-15

(a) For pure translation, all points

move with the same velocity, (b)

For pure rotation about C, opposite

points move with opposite velocities.

(c) Combined rotation and

translation is obtained by adding

together corresponding vectors in

(a) and fb).

(e)



This result, shown in Fig. 12- 15c is exactly the same as that obtained

from the purely rotational point of view, Fig. 12-14.

Consider a solid cylinder of mass M and radius R rolling down an inclined plane

without slipping. Find the speed of its center of mass when the cylinder reaches

the bottom.

The situation is illustrated in Fig. 12-16. We can use the conservation of

energy to solve this problem. The cylinder is initially at rest. In rolling down
the incline the cylinder loses potential energy of an amount Mgh, where h is

the height of the incline. It gains kinetic energy equal to

ihmo2 + iMv2
,

where v is the linear speed of the center of mass and w is the angular speed about

the center of mass at the bottom.

We have then the relation

EXAMPLE 9

in which

Hence

Mgh = |/cma,
2 + iMv2

,

/em = \MR 2 and oj =

Mgh = HiMR')(j\
2

+ iMv2 = (| + j)Mv2
,

v2 = igh or v = Vigli.

The speed of the center of mass would have been v— Vlgh if the cylinder had

slid down a fnctionless incline. The speed of the rolling cylinder is, therefore,

less than the speed of the sliding cylinder, because for the rolling cylinder, part

of the lost potential energy has been transformed into rotational kinetic energy,

leaving less available for the translational part of the kinetic energy. Although
the rolling cylinder arrives later at the bottom of the incline than an identical

sliding cylinder started at the same time down a frictionless, but otherwise

identical, incline, both arrive at the bottom with the same amount of energy;

the rolling cylinder happens to be rotating as it moves, whereas the sliding one
does not rotate as it moves.

figure 12-16

Example 9. A cylinder rolling down
an incline.

Notice that static friction is needed to cause the cylinder to rotate. Remem-
bering that friction is a dissipative force, how can you justify using the conserva-

tion of mechanical energy in this problem'

The previous result was derived In use ol energy methods, Solve the same prob EXAIrll'EE 10
lem usniK only dynamical methods

The fori 1 diagram is shown m Fig. 12-17. Mg is the weight oi the cylinder



figure 12-17
Example 10. Dynamic solution of

the motion of a cylinder rolling

down an incline.

acting vertically down through the center of mass,* N is the normal force ex-

erted by the incline on the cylinder, and f is the force of static friction acting

along the incline at the point of contact.

The translational motion of a body is obtained by assuming that all the ex-

ternal forces act at its center of mass. Using Newton's second law, we obtain

N — Mg cos = for motion normal to the incline,

and

Mg sin — f = Ma for motion along the incline.

The rotational motion about the center of mass follows from

t = Icma.

Neither N nor Mg can cause rotation about C because their lines of action pass

through C, and they have zero moment arms. The force of friction has a moment
arm R about C, so that

But

so that

/,,

m

+MR 2

Icma.

and
a

f = Icma/R = Ma/2.

Substituting this into the second translational equation, we find

a = \g sin 6.

That is, the acceleration of the center of mass for the rolling cylinder [$g sin 0)

is less than the acceleration of the center of mass for the cylinder sliding down
the incline [g sin 6).

This result holds at any instant, regardless of the position of the cylinder

along the incline. The center of mass moves with constant linear acceleration.

To obtain the speed of the center of mass, starting from rest, we use the relation

so that

las,

v2 = 2(|g sin 0) s = ig- s = igh

or

Vigh.

* In drawing the vector diagram for this problem we tacitly assume that the total weight

of the body can be thought of as acting at the center of mass. We saw in Section 9-2 that

this is justified for analyzing the translational motion. However, later in the problem we
use this result in analyzing the rotational motion as well. We shall justify this procedure

in Section 14-3, where it is shown that the weight of a body can be considered to act at

its center of mass for both translational and rotational motion.



This result is the same as that obtained before by the energy method. The
energy method is certainly simpler and more direct. However, if we are inter-

ested in knowing what the forces are, such as N and f, we must use a dynamical

method.

This method determines the minimum force of static friction needed for

rolling:

f = Ma/2 = |M/2)(|g sin 0) = iMg sin 9.

What would happen if the force of static friction between the surfaces were less

than this value:

A sphere and a cylinder, having the same mass and radius, start from rest and EXi\MJ*EE
roll down the same incline. Which body gets to the bottom first?

For a sphere Icm equals %MR 2
. Using the dynamical method we obtain

Mg sin 8 — f = Ma,

fR = Icma = (iMR 2
)la/R),

or

f=iMa and a = jg sin 6,

translation of cm,

rotation about cm,

sphere.

For the cylinder (Example 10)

a = |g sin 6, cylinder.

Hence the acceleration of the center of mass of the sphere is at all times greater

than the acceleration of the center of mass of the cylinder. Since both bodies

start from rest at the same instant, the sphere will reach the bottom first.

Which body has the greater rotational energy at the bottom" Which body has

the greater translational energy at the bottom?

Note carefully that neither the mass nor the radius of the rolling object

enters the previous results. How then would we expect the behavior of cylin-

ders of different mass and radii to compare-1 How would we expect the behavior

of spheres of different mass and radii to compare? How would the behavior of a

cylinder and sphere having different masses and radii compare?

A uniform solid cylinder of radius i and mass m is given an initial angular

velocity w (l and then dropped on a flat horizontal surface. The coefficient of

kinetic friction between the surface and the cylinder is fik. Initially the cylinder

slips but after a time r pure rolling begins, [a] What is the velocity V the center

of mass at the time t? \b) What is the value of r?

[a) Figure 12-18 shows the forces that act on the cylinder.

The acceleration a of the center of mass is constant, since all the forces are

constant, so that for the translational motion we can write

EXAMPLE 12

AN(=-mg)

)W(Vr-Vi\
F = ma = m — r

\ t -0 / ^
Here, V, = and Vs = V. the velocity at t when pure rolling begins. Also, the wmmiwwX- wetter,
resultant force F is Aum#, so that

V.kmg = mV/t. (12-22)
iigurc 12-18

The angular acceleration a about an axis through the center of mass is also Example 12
i i instant (why?), so that for the rotational motion we can write

( (0/
- U)t \

o}/= m = V/r, the angular veloi n\ .it time f and on tt) . Also, the magtii



tude of the resultant torque t is /** mg r. The torque causes an angular decelera-

tion so that

(jikmg i = [\mi2
\

cop — V/r
112-23)

If we eliminate t from our two equations (e.g., divide Eq. 12-23 by Eq. 12-22)

and solve for V (please do the algebra), we obtain

V = |w«r.

Note that V does not depend on the value of m, g, or fik. What, however, if

any of these quantities were zero?

[b] By eliminating V from Eqs. 12-22 and 12-23 we can solve for f (please do

the algebra) and find

t =
3fJ-kg

It is worth noting that in this problem neither mechanical energy, linear

momentum, nor angular momentum are conserved, but the changes in momen-
tum and angular momentum are directly related because the force of friction is

responsible for both.

M
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1. What are the dimensions of angular momentum? Can you find any sig-

nificance in the fact that they are the same as those of energy multiplied by

time?

2. Is the vector product of two vectors necessarily an axial vector?*

3. Can the mass of a body be considered as concentrated at its center of mass

for purposes of computing its rotational inertia?

4. About what axis would a uniform cube have its minimum rotational

inertia?

5. If two circular disks of the same weight and thickness are made from metals

having different densities, which disk, if either, will have the larger rota-

tional inertia about its central axis?

6. The rotational inertia of a body of rather complicated shape is to be deter-

mined. The shape makes a mathematical calculation from / r2 dm exceed-

ingly difficult. Suggest ways in which the rotational inertia could be

measured experimentally.

questions

figure 12-19

Question 7

Five solids are shown in cross section (Fig. 12-19). The cross sections have

equal heights and maximum widths. The axes of rotation are perpendicular

to the sections through the points shown. The solids have equal masses.

Which one has the largest rotational inertia about a perpendicular axis

through the center of mass? Which the smallest?

See Supplementary Topic II.



figure 12-20
Question 8
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8. In Fig. 12-20a a meter stick, half of which is wood — the other half steel — is

pivoted at the wooden end at O and a force is applied to the steel end at a.

In Fig. 12-20fr the stick is pivoted at the steel end at O' and the same force

is applied at the wooden end at a'. Does one get the same angular accelera-

tion in each case? Explain.

9. A person can distinguish between a raw egg and a hard-boiled one by spin-

ning each one on the table. Explain how. Also, if you stop a spinning raw

egg with your fingers and release it very quickly, it will resume spinning.

Why?

Torque has the same dimensions as work or energy. Is torque, therefore,

work or energy"

Comment on each of these assertions about skiing, [a] In downhill racing

one wants skis that do not turn easily, [b] In slalom racing, one wants skis

that turn easily, [c] Therefore, the rotational inertia of downhill skis should

be larger than that of slalom skis. (See "The Physics of Ski Turns" by J. I.

Shonie and D. L. Nordick in The Physics Teacher, December 1972.)

Considering that there is low friction between skis and snow and that the

skier's center of mass is about over the center of the skis, how does a skier

exert torques to turn or to stop a turn? (See "The Physics of Ski Turns" by

}. I. Shonie and D. L. Nordick in The Physics Teacher, December 1972.)

Do the expressions for a and T in Example 5 give reasonable results for the

special cases in which g — 0, M = 0, M —» «>, m = 0, and m —» °°?

14. The total momentum of a system of particles does not depend on the mo-
tions of the particles relative to the center of mass of the system. Can a

similar statement be made about the total kinetic energy of a system of

particles?

A cylindrical drum, pushed along by a board from an initial position shown
in Fig. 12-21, rolls forward on the ground a distance 7/2, equal to half the

length of the board. There is no slipping at any contact. Where is the board

then? How far has the man walked?

For storing wind energy or solar energy, flywheels have been suggested. The
amount of energy that can be stored in a flywheel depends on the density

and tensile strength of the material making up the flywheel and for a given

weight one wants the lowest density strong material available. (See "Fly-

wheels" by R. F. Post and S. F. Post, Scientific American, December 1973.)

Can you make this plausible?

1 7. A solid wooden sphere rolls down two different inclined planes of the same
height but different angles of inclines. Will it reach the bottom with the

same speed in each case? Will it take longer to roll down one incline than

the other? If so, which one and why?

18. Two heavy disks are connected by a short rod of much smaller radius. The
system is placed on an inclined plane so that the disks hang over the sides

and the system rolls down on the rod without slipping (Fig. 12-22). Near the

bottom of the incline the disks touch the horizontal table top and the sys-

tem takes off with greatly increased translational speed. Explain carefully.

IV When a logger cuts down a trie he makes a cut on the side facing the direc

tion in which he wants it to fall. Explain why. Would it be salt.' to Stand

directly behind the tree on the opposite side of the fall

20. Considei a straight stick standing on end on frictionless] ice Wlut would
be the path of its cent< i ol mass it it falls?

is

16

figure 12-21

Question 15

figure 12-22

Question 18



21.

22.

23.

A yo-yo is resting on a horizontal table and is free to roll (Fig. 12-23). If the

string is pulled by a horizontal force such as F,, which way will the yo-yo

roll!' What happens when the force F 2 is applied (its line of action passes

through the point of contact of the yo-yo and table) ? If the string is pulled

vertically with the force F3, what happens?

You are looking at the wheel of an automobile traveling at constant speed.

Some one says to you: "The top of the wheel is moving twice as fast as the

axle but the bottom is not moving at all." Can you accept this statement?

Discuss.

State Newton's three laws of motion in words suitable for rotating bodies.

SECTION 12-2

1. (a) Given that r = ix + \y + kz and F = iFx + )F,, + kFz , find the torque t =
r x F. (b) Show that if r and F lie in a given plane, then t has no component

in that plane.

Answer: {a) i[yFz - zFy ) + \[zFx - xFz ) + k[xFu - yFx).

2. Show that the angular momentum about any point of a single particle mov-

ing with constant velocity remains constant throughout the motion.

m
figure 12-23
Question 21

problems
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SECTION 12-3

3. A particle P with mass 2.0 kg has position r and velocity v as shown in Fig.

12-24. It is acted on by the force F. All three vectors lie in a common plane.

Presume that r = 3.0 m, v = 4.0 m/s, and F = 2.0 N. Compute [a) the angular

momentum of the particle and (b) the torque acting on the particle. What
are the directions of these two vectors-

Answer, (a) 12 kg • m2/s
;
out of page, [b] 3.0 N • m

;
out of page.

4. If we are given r, p, and 6, we can calculate the angular momentum of a

particle from Eq. \2-4a. Sometimes, however, we are given the components
(x, y, z) of r and [px, py, p z ) of p instead, {a) Show that the components of 1

along the x-, y-, and z-axes are then given by

h = ypz - zp,„

l y
= zpx - xpz ,

lz = xpy - yps.

\b) Show that if the particle moves only in the x-y plane, the resultant

angular momentum vector has only a z-component.

5. [a] In Example 1, express F and r in terms of unit vectors and compute t.

Do the same in Example 3. (b) In example 1, express p and r in unit vectors

and compute 1.

Answer: [a) r = +kmgb
;
2.6 k, lb • ft. [b] 1 = +kmgbt.

SECTION 12-4

6. In Fig. 12-25 are shown the lines of action and the moment arms of two
forces about the origin O. Imagine these forces to be acting on a rigid body
pivoted at O, all vectors shown being in the plane of the figure, and find the

magnitude and the direction of the resultant torque on the body.

7. Two particles, each of mass m and speed v, travel in opposite directions

along parallel lines separated by a distance d. Show that the vector angular

momentum of this system of particles is the same no matter what point is

taken as the origin.

8. Three particles, each of mass m, are fastened to each other and to a rotation

axis by three light strings each with length 1 as shown in Fig. 12-26. The
combination rotates around the rotational axis with angular velocity w in

such a way that the particles remain in a straight line, {a) Calculate the

rotational inertia of the combination about O. [b] What is the angular mo-

figure 12-24
Problem 3

figure 12
Problem 6

O
figure 12

Problems 8

26
13



mentum of the middle particle-
1

(c) What is the total angular momentum of

the three particles
1

Express your answers in terms of m. 1. and w.

9. Starting from Newton's third law, prove that the resultant internal torque

on a system of particles is zero.

10. Relation between the Resultant External Torque and the Angular Mo-
mentum of a System of Particles about the Center of Mass of the System.

Let rcm be the position vector of the center of mass C of a system of par-

ticles with respect to the origin O of an inertial reference frame, and let r,-'

be the position vector of the ith particle, of mass m,, with respect to the

center of mass C. Hence r, = rcm + r,' (see Fig. 12-27). Now define the total

angular momentum of the system of particles relative to the center of mass
C to be L' = ^ r/ x p,', where p/ = m, dii'/dt.

i

{a) Show that p,' = mtdii/dt - m,drcm/<ir = p, — mjVcm . (b) Show next

that dL'Idt = Y r,' x dpt'ldt. (c) Combine the results of [a] and [b] and,

using the definition of center of mass and Newton's third law, show that

T'ex,
= dL'Idt, where T'cxt is the sum of all the external torques acting on the

system about its center of mass.

figure 12-

Problem 10

27

SECTION 12-5

11. Assume the earth to be a sphere of uniform density, [a) What is its rota-

tional kinetic energy- Take the radius of the earth to be 6.4 x 103 km and

the mass of the earth to be 6.0 x 1024 kg. [b] Suppose this energy could be

harnessed for our use. For how long could the earth supply 1.0 kW of power

to each of the 4.2 x 10 9 persons on earth
1

Answer: \a) 2.6 x 1029
J. [b) 2.0 x 10 9 yr.

12. The oxygen molecule has a total mass of 5.30 x 10~26 kg and a rotational

inertia of 1 .94 x 10 46 kg • m2 about an axis through the center perpendicular

to the line joining the atoms. Suppose that such a molecule in a gas has a

mean speed of 500 m/s and that its rotational kinetic energy is two-thirds

of its translational kinetic energy. Find its average angular velocity.

13. Presume that the strings in Problem 8 are all replaced with uniform rods,

each of mass M. [a] What is the total rotational inertia of the system about

O 1

|£>) What is the rotational kinetic energy of the system
1

Answer: [a] 14 ml2 + 9 Ml 2
, (h) (7 m + 9 M/2)7 2w2

.

14. [a] Show that a solid cylinder of mass M and radius R is equivalent to a

thin hoop of mass M and radius R/Vl, for rotation about a central axis.

[b] The radial distance from a given axis at which the mass of a body could

be concentrated without altering the rotational inertia of the body about

that axis is called the radius of gyration. Let k represent radius of gyration

and show that

k = VTfM.

15.

16.

17.

This gives the radius of the "equivalent hoop" in the general case.

A thin rod of length / and mass m is suspended freely from one end. It is

pulled aside and swung about a horizontal axis, passing through its lowest

position with an angular speed oj. How high does its center of mass rise

above its lowest position-
1

Neglect friction and air resistance.

Answer: l
2
co

2/6 g.

[a] Prove that the rotational inertia of a thin rod of length 1 about an axis

through its center perpendicular to its length is / = r^Ml 2
. (See Table 12-1.)

I/7) Use the parallel-axis theorem to show that / = iMl- when the axis of

rotation is through one end perpendicular to the length ot the rod,

</ Show that the sun 1
, ol the rotational inertias of a plane laminar body

about any two perpendicular axes in the plane ol the body is equal to the

rotational inertia ol the bod) about an axis through then point ol intei

section perpendicular to the plane b) Apply tins to a circular disk to find

its rotational inertia about a diameter as axis. Answei J<) MR 2
/4.



18. Show that the rotational inertia of a rectangular plate of sides a and b

about an axis perpendicular to the plate through its center is T2M(a 2 + b2
).

19. A meter stick is held vertically with one end on the floor and is then allowed

to fall. Find the speed of the other end when it hits the floor, assuming that

the end on the floor does not slip. Answer: 5.4 m/s.

20. A tall chimney cracks near its base and falls over. Express [a] the radial and

[b] the tangential linear acceleration of the top of the chimney as a function

of the angle made by the chimney with the vertical, (c) Can the resultant

linear acceleration exceed g? [d] The chimney cracks up during the fall.

Explain how this can happen. (See 'More on the Falling Chimney' by Albert

A. Bartlett, in The Physical Teacher, September, 1976.)

SECTION 12-6

21. An automobile engine develops 100 hp (7.5 x 104 W) when rotating at a

speed of 1800 rev/min. What torque does it deliver?

Answer: 290 ft • lb (400 N • m).

22. Calculate [a] the torque, [b] the energy, and (c) the average power required

to accelerate the earth from rest to its present angular speed about its axis

in one day.

23. A pulley having a rotational inertia of 1.0 x 10 4 g • cm2 and a radius of 10 cm
is acted upon by a force, applied tangentially at its rim, that varies in time

as F = 0.50 t + 0.30 t
2

, where F is in newtons and f is in seconds. If the

pulley was initially at rest, find its angular velocity after 3.0 seconds.

Answer: 5.0 x 102 rad/s.

24. A wheel of mass M and radius of gyration k (see Problem 14) spins on a

fixed horizontal axle passing through its hub. The hub rubs the axle of

radius a at only the topmost point, the coefficient of kinetic friction being

(ik- The wheel is given an initial angular velocity w () . Assume uniform de-

celeration and find [a) the elapsed time and [b) the number of revolutions

before the wheel comes to a stop.

25. A uniform steel rod of length 1.20 m and mass 6.40 kg has attached to each

end a small ball of mass 1.06 kg. The rod is constrained to rotate in a hori-

zontal plane about a vertical axis through its midpoint. At a certain instant

it is observed to be making 39.0 rev/s. Because of axle friction it comes to

rest 32.0 s later. Compute, assuming a constant frictional torque, [a] the

angular acceleration, [b\ the retarding torque exerted by axle friction, (c)

the total work done by the axle friction, and [d] the number of revolutions

executed during the 32.0 s. (e) Suppose, however, that the frictional torque

is known not to be constant. Which, if any, of the quantities {a), (£>), (c), or

[d] can still be computed without requiring any additional information? If

such exists, give its value.

Answer: [a] -7.67 rad/s2
. (b| -11.7 N • m. (c) 4.58 x 104

J. (d) 624 rev.

(e) The total work done
;
4.58 x 104

}.

26. The angular momentum of a flywheel having a rotational inertia of 0.125

kg • m2 (9.22 x 10 2 slug • ft
2

) decreases from 3.0 (2.21) to 2.0 (1.48) kg • m2/s

(slug • ft
2
/s) in a period of 1.5 s. [a] What is the average torque acting on the

flywheel during this period? [b) Assuming a uniform angular acceleration,

through how many revolutions will the flywheel have turned? (c) How
much work was done? [d] What was the average power supplied by the fly-

wheel?

27. In an Atwood's machine (Fig. 5-9) one block has a mass of 500 g and the

other a mass of 460 g. The pulley, which is mounted in horizontal friction-

less bearings, has a radius of 5.0 cm. When released from rest the heavier

block is observed to fall 75 cm in 5.0 s. What is the rotational inertia of the

pulley? Answer: 1.4 x 10 2 kg m2
.

28. A uniform spherical shell rotates about a vertical axis on frictionless bear-

ings (Fig. 12-28) A light cord passes around the equator of the shell, over a



pulley, and is attached to a small object that is otherwise free to fall under

the influence of gravity. What is the speed of the object after it has fallen

a distance h from rest?

29. A 6.0-lb block is put on a plane inclined 30° to the horizontal and is attached

by a cord parallel to the plane over a pulley at the top to a hanging block

weighing 18 lb. The pulley weighs 2.0 lb and has a radius of 0.33 ft. The
coefficient of kinetic friction between block and plane is 0.10. Find [a] the

acceleration of the hanging block and [b) the tension in the cord on each

side of the pulley. Assume the pulley to be a uniform disk.

Answer: [a) 19 ft/s2 . [b] T, 8 = 7.6 lb
;
T6 = 7.0 lb.

M.R

figure 12-28
Problem 28

SECTION 12-7

30. A hoop of radius 10 ft (3.0 m) weighs 320 lb (mass = 150 kg). It rolls along a

horizontal floor so that its center of mass has a speed of 0.50 ft/s (0.15 m/s).

How much work has to be done to stop it?

31. An automobile has a total mass of 1700 kg. It accelerates from rest to

40 km/h in 10 s. Each wheel has a mass of 32 kg and a radius of gyration

(see Problem 14) of 0.30 m. Find, for the end of the 10-s interval, [a] the

rotational kinetic energy of each wheel about its axle, [b] the total kinetic

energy of each wheel; (c) the total kinetic energy of the automobile.

Answer: [a) 990 }. \b) 3000 }. (c) 1.1 x 10 5
J.

32. Show that a cylinder will slip on an inclined plane of inclination angle if

the coefficient of static friction between plane and cylinder is less than

i tan 6.

33. A 10-ft-long ladder rests against a wall and makes an angle of 60° with the

horizontal floor. If it starts to slip, where is the instantaneous axis of rota-

tion :

Answer: 5.0 ft horizontally from the wall and 5V3 ft vertically above the

ground.

34. A sphere rolls up an inclined plane of inclination angle 30°. At the bottom

of the incline the center of mass of the sphere has a translational speed of

16 ft/s. \a) How far does the sphere travel up the plane? \b) How long does it

take to return to the bottom?

35. A body of radius R and mass m is rolling horizontally without slipping with

speed v. It then rolls up a hill to a maximum height h. If h = 3 v2/4 g, [a) what

is the body's rotational inertia 7 [b] What might the body be?

Answer: [a] imR 2
. [b] A solid circular cylinder.

36. A small sphere rolls without slipping on the inside of a large hemisphere

whose axis of symmetry is vertical. It starts at the top from rest, {a) What is

its kinetic energy at the bottom? What fraction is rotational? What transla-

tional : \b) What normal force does the small sphere exert on the hemi-

sphere at the bottom? Take the radius of the small sphere to be r. that of

the hemisphere to be R, and let m be the mass of the sphere.

37. A uniform disk, of mass M and radius R, lies on one side initially at rest on

a frictionless horizontal surface. A constant force F is then applied tangen-

tially at its perimeter by means of a string wrapped around its edge. De-

scribe the subsequent (rotational and translational) motion of the disk.

Answer: a = 2 F/MR : a = F/M.

38. A tape of negligible mass is wrapped around a cylinder of mass M. radius R.

The tape is pulled vertically upward at a speed that just prevents the center

of mass from falling as the cylinder unwinds the tape, {a) What is the ten-

sum in the tape />) How much work has been done on the cylinder once it

has rea< bed .in angular velocity a>\ \c) What is the length ol tape unwound
in this time?

39. A cylinder of length 2 and radius R has a weight W Two cords are wrapped

around the cylindei one near each end, and the cord ends are attached to

hooks on the ceiling ["he cylinder is held horizontally with the two cords

exactly verti< al and is then released I ig I -

1

29). Find [a) the tension in each



N.

cord as they unwind and (b) the linear acceleration of the cylinder as it falls.

Answer: (a) WIS. [b] 2 g/3.

40. A homogeneous sphere starts from rest at the upper end of the track shown
in Fig. 12-30 and rolls without slipping until it rolls off the right-hand end.

If H = 204 ft and h = 64 ft and the track is horizontal at the right-hand end, H
determine the distance to the right of point A at which the ball strikes the

horizontal base line.

41. A length /of flexible tape is tightly wound. It is then allowed to unwind

as it rolls down a steep incline that makes an angle with the horizontal,

the upper end of the tape being tacked down (Fig. 12-31). Show that the tape figure 12-30
unwinds completely in a time T = V3 1/g sin 0. Problem 40

42. A small solid marble of mass m and radius r rolls without slipping along

the loop-the-loop track shown in Fig. 12-32, having been released from rest

somewhere on the straight section of track, (a) From what minimum height

above the bottom of the track must the marble be released in order that it

just stay on the track at the top of the loop- (The radius of the loop-the-loop

is R ; assume R » r.) (b) If the marble is released from height 6 R above the

bottom of the track, what is the horizontal component of the force acting

on it at point Q -
1

43. A yo-yo is made from two uniform disks of radius R and combined mass m.
The short shaft connecting the disks has a very small radius r. A string of

length [L + R) is wrapped around the shaft several times by an expert yo-yo figure 12-31

operator, who releases it with zero speed. Assume the string is vertical at Problem 41

all times, (a) What is the tension in the string during the descent and subse-

quent ascent of the yo-yo? [b) How long does it take the yo-yo to return to

the operator's hands"

Answer: (a) mgR 2/{R 2 + 2r2
), ascent and descent, [b) -VL(2 r2 + R 2

)/g.

44. A uniform solid cylinder of radius R is given an angular velocity w about

its axis and is then dropped vertically onto a flat horizontal table. The table

is not frictionless, so the cylinder begins to move as it slips. What is the

velocity of the center of mass of the cylinder when pure rolling sets it?

45. A solid cylinder of weight 50 lb (mass = 23 kg) and radius 3.0 in (7.6 cm) has

a light thin tape wound around it. The tape passes over a light, smooth
fixed pulley to a 10-lb (mass = 4.5 kg) body, hanging vertically (Fig. 12-33). figure 12-32

If the plane on which the cylinder moves is inclined 30° to the horizontal, Problem 42

find (a) the linear acceleration of the cylinder down the incline and [b) the

tension in the tape, assuming no slipping.

Answer: (a) 1.4 ft/s2 (0.47 m/s2
). [b] 11 lb (48 N).

46. A billiard ball is struck by a cue as in Fig. 12-34. The line of action of the

applied impulse is horizontal and passes through the center of the ball. The
initial velocity v of the ball, its radius R, its mass M, and the coefficient of

friction /jl between the ball and the table are all known. How far will the

ball move before it ceases to slip on the table"

tv

Sfl

O
r-

figure 12-33
Problem 45

figure 12-34
Problem 46
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rotational

dynamics II

and the

conservation

of angular
momentum

In Chapter 12 we discussed the dynamics of the rotational motion of a | *{.|

rigid body about an axis that was fixed in an inertial reference frame. We INTRODUCTION
saw that the scalar relation t = la (Eq. 1 2- 1 7), in which only torque com-
ponents along the axis of rotation were considered, was sufficient to

solve dynamical problems in this special case.

In this chapter we shall first consider the rotation of a rigid body

about an axis that is not fixed in an inertial reference frame. To solve

dynamical problems in this more general case we shall use the general

(vector) relation for rotational motion, namely,

T=dL/dt (12-9)

in which we have dropped the subscript on Text for convenience.

Later we shall consider once more the rotation of particles and rigid

bodies about fixed axes. This time, however, we specifically examine
the action of torques which have components at right angles to the axis.

Our point of departure here will not be Eq. 12-17 (t = 7a) but again the

more general Eq. 12-9 (t = dL/dt).

Finally we shall consider systems on which no external torques act

and shall introduce the important principle of conservation of angular

momentum

Figure 13- la shows a top spinning about its axis of symmetry, the point I J{-2
of the top being fixed at the origin O of an inertial reference frame. We THE TOP
know from experience that the axis of such a rapidly spinning top will

move around the vertical axis, sweeping out a cone This motion is

en I led pro ession Lei us see it we can predict this motion from the pun

2«0



figure 13-1

(a) A precessing top, showing the

angular momentum L, the weight

rag and the vector r which locates

the center of mass, (bj The cone

swept out by the precessing axis of

the top. The angular velocity of

precession o>,, is shown pointing

vertically upward.

ciples of classical mechanics and, in particular, if we can calculate o>,„

the angular speed of the precessional motion.

At the instant shown in Fig. 13- la the top has an angular velocity to

about its own axis. It also has an angular momentum L about this same
axis* the axis making an angle 6 with the vertical.

Two forces act on the top, an upward force on the pivot at O and the

pull of gravity, or weight, which acts downward at the center of mass.

The upward force passes through O and thus can exert no torque about

that point because its moment arm is zero. The weight mg, however,

exerts a torque about O given by

r = rxF = rx mg,

where r locates the center of mass with respect to the pivot. This equa-

tion requires that t be perpendicular to the plane formed by r and mg;
application of the right-hand rule shows that its direction is as shown in

Fig. 13- la. Note that t, as well as L and r, rotates about the axis at angu-

lar speed o>,, as the top precesses.

When a torque acts on a rigid body it changes the angular momentum
of that body according to the fundamental relation (Eq. 12-9)

dL/dt. (Eq. 12-9)

Being a vector, L can change in magnitude, in direction, or in both.

Equation 12-9 shows that the change in L (that is, dL) must point in the

direction of t. Figure 13- la shows us that t is at right angles to L; thus

the change in L brought about by the action of the torque must also be

at right angles to L.

To examine the matter quantitatively let us observe the top for a time
At. During this interval a change in L of

AL = t At I13-1]

is predicted by Eq. 12-9 (if At is small enough). This change AL, which,

like t, is at right angles to L, is displayed in Fig. 13- lb where we see the

* The vector to always points along the (fixed) axis of rotation of a spinning body but, in

general, the vector L does not (see Section 13-3). For bodies with symmetry about the ro-

tational axis, however, both (o and L point along this axis, assuming that the axis is fixed.

We can assume that at and L are coaxial for the spinning top of Fig. 13- la if w » a)p , that

is, if the precession rate is relatively slow so that the axis, although not fixed, changes
direction only slowly.



cone swept out by the precessing axis of the top
;
the top itself is omitted

here for clarity.

The angular momentum of the top at the end of the time interval At

is the vector sum of L and AL. Since AL is perpendicular to L and is

assumed to be very small in magnitude compared to it, the new angular

momentum vector has the same magnitude as the old one but a differ-

end direction. Hence the head of the angular momentum vector swings

around in a horizontal circle as time goes on (Fig. 13- lb). Since this

vector always lies along the axis of rotation of the top, we have qualita-

tively accounted for the precession of the top.

The angular speed of precession a>,, follows from Fig. 13- lb in which

oip = A<f>/At.

But, since AL « L, we have (see Eq. 13-1),

A(f) = ALU sin 6 = t At/L sin

or

Since (Fig. 13-la)

we have finally

oi„ = A<j>/At = tIL sin d. (13-2a)

t = rmg sin (180° — 6) = rmg sin 6

co„ = mgr/L. (13-2b)

Notice that the precessional angular velocity is independent of 6 and

varies inversely as the magnitude of the angular momentum. If the

angular momentum is large, the precessional angular velocity will be

small.

We can express Eq. 13-2b in vector form. We start by rewriting Eq. \3-2a as

t = co,,L sin 6.

Now w,, is a vector pointing vertically upward in Fig. 13- lb, and in that figure

is the angle between ta,, and L. We recognize the right side of the above equation

as the magnitude of the vector product o>,, x L and we see that this equation

gives the magnitude of t in the vector relation

T=fe>,, xL. (13-3)

This is the general vector expression relating the precessional angular velocity

to t and to L; you should show that Eq. 13-2£> may be derived readily from it.

Application of right-hand rule to Fig. 13- 1 b shows that the order of factors on the

right side of Eq. 13-3 is correct, that is, &>,, x L gives the correct direction as well

as the correct magnitude for t.

A student holds a rim-loaded bicycle wheel, rotating at a relatively high angular E^A^II'IjK I

speed cm, with its shaft horizontal as in Fig. 13-2<3. Her physics instructor now
asks her to turn the shaft rapidly (for a time At) so that the shaft points at a

small angle A0 above the horizontal as in Fig. 13-2b. The instructor also asks the

student to keep the shaft in a vertical plane at all times. What torques must the

student exert on the shaft if she is to follow these instructions!'

The student will be well aware from the strain in her wrists that she must

exert a torque on the shaft simply to hold it in a horizontal position. This torque,

which is needed to counteract the turning effect of the force oi gravity thai acts

.it the center oi mass, is directed along a horizontal axis and emerges perpendicu

larly out of the plane ol Fig 13 2, The student must supply tins torque whethei

oi no( the wheel is rotal mg.



If now the student turns the shaft of the spinning wheel upward, she will find

that the wheel will swerve around to her right, perhaps rather violently, so that

she will have failed to keep the shaft in a vertical plane. If she is to keep the shaft

in this plane while she is tilting it upward, she must exert a torque on the shaft

(about an almost vertical axis) tending to turn it to her left to counteract this

effect. Let us see why this is so.

In tilting the shaft one changes its angular momentum L, in time At, by an

amount AL, as Fig. 13-2b shows. During this interval, then, the student must
exert an average torque on the wheel given from Eq. 12-9 as

T = AL/Af

;

the magnitude of t is given by

t = AL/At = L sin AO/At.

This average torque t has the same direction as AL, that is, it is approximately

vertically upwards if the angle AM in Fig. 13-26 is not too large. We can see that

such a torque would tend to turn the shaft to the left if the wheel was not rotat-

ing. This torque must be supplied by the student as she is tilting the shaft of the

spinning wheel upward; if she fails to do so, the shaft will not remain in a ver-

tical plane.

You should experiment with such a spinning wheel yourself, working out the

relationships between the vectors L, AL, and t. If one is not available you can

experiment with a toy gyroscope, although this fails to give the kinesthetic

appreciation of t = dL/dt that is provided by a rim-loaded, rapidly spinning

wheel.

There is an analogy between the experiment of Fig. 13-2 and another experi-

ment in which the student is asked to swing a heavy weight (attached to a stout

cord) around in a horizontal circle at constant speed. In this latter experiment

the student, during a time At, must change the direction of the linear momen-
tum P of the weight, leaving its magnitude unchanged. To do so, she must sup-

ply a force that points at right angles to P (in the direction of AP), that is, radially

inward. In the experiment of Fig. 13-2 the student must, during a time At,

change the direction of the angular momentum L of the wheel, leaving its

magnitude unchanged. To do so she must supply a torque that points at right

angles to L (in the direction of AL), that is, vertically upward.*

figure 13-2

(a) A student holds a heavy,

rim-loaded, rapidly spinning bicycle

wheel by the shaft and (b) tilts the

shaft upward from the horizontal

through a small angle.

In this section it is our purpose to examine the relationship between the

angular momentum and the angular velocity for particles and rigid

bodies rotating about an axis fixed in an inertial reference frame.

First we consider a single particle of mass m moving with speed v in

a circle about the z-axis of an inertial reference frame as in Fig. 13-3. Its

angular velocity to points upward and can be taken to lie along the

z-axis. Its angular momentum 1 with respect to the origin O of the

reference frame is given by Eq. 12-3, or

1 = r x p,

13-3
ANGULAR
MOMENTUM
AND ANGULAR
VELOCITY

* This analogy is explored by A.

1958. See also Problem 5.

E. Benfield, American [ournal of Physics, September



figure 13-3

fa) A particle of mass m rotating

with speed v in a circle of radius a

about the z-axis of an inertial

reference frame. The angular

momentum about O, 1 |= r x p), is

shown; for convenience, this vector

is also shown translated to the

center of the circle, (b) The same
configuration, showing 1 and its

components and also the centripetal

force F and the torque r about O.

where r and p (= m\) are shown in the figure. The vector 1 is perpendicu-

lar to the plane formed by r and p, which means that 1 is not parallel to

to. Note that 1 has a (vector) component l z which is parallel to o», but it

has another
|
vector) component l ± which is perpendicular toco. Note

too, that if we choose our origin to lie in the plane of the circulating

particle, then 1 is parallel to co.

The perhaps unexpected result that 1 and &> are not parallel in this

simple case may cause some concern. However, this result is quite in

accord with the general relationship t = dl/dt for a torque acting on a

single particle. The vector 1 is changing with time as the particle motion

proceeds, the change being entirely in direction and not in magnitude,

just as it was for the precessing top in the preceding section. Since the

right side of the preceding relationship (= dl/dt) has a nonzero value, the

left side (=t) must also have a nonzero value; that is, a torque must act

on the particle with respect to origin O.

There is indeed such a torque. For if the particle moves in a circle, a

centripetal force F must act on it, as in Fig. 13-3/r We may imagine that

F is provided by the tension in a light cord that ties the rotating particle

to the z-axis. The torque about O is provided by F and is given by Eq.

12-1.

t = r x F.

The torque t is tangent to the circle (perpendicular to the plane formed

by r and F) and in the direction shown in Fig. 13-3/7, as you may verify

from the right-hand rule.

Show that the moving particle of Fig. 13-3 satisfies the relation t = dl/dt quan

titatively.

The proof is along the same lines as that of Section 13-2 for the spinning top

because from a v& toi point of view, the two problems are identical. In each

< .isc we have the precession of an angular momentum vector [L for the top and 1

foi the particle oi Fig. L3 3) about a vertical axis, at a rate which we called io,,

tin the top and which we call «> for the particle In each case we have a torque

which is always at right angles to the plane formed by L (or I) and to,, |or at).

Thus since the two problems are formally identical it suffices to inquire

EXAMPLE 2



whether the rotating particle of Fig. 13-3 obeys the vector equation for preces- S
sion (t = at,, x L

;
Eq. 13-3). This equation was derived for the precessing top

directly from — and is directly equivalent to— the relation t = dL/dt (Eq. 12-9).

We can write the relation t = co,, x L in terms of magnitudes as

t = oil sin (90° -0) = <ol cos 0, (13-3)

in which we have substituted a> for <u,, and 1 for L and have noted in Fig. 13-3a

that the angle between to and 1 is 90° — 6. For r and 1, again using the notation

of Fig. 13-3a, we can write

x = Ft sin (90° 4- 8) = [ma>2
(r sin 0)](r)(cos 6)

and

l = rp sin 90° = r[mv) = (r)|m)[w|r sin «)],

in which r sin 8 is the radius a of the circle in which the particle moves, (90° + 8)

is the angle between r and F, and 90° is the angle between r and p. Substituting

these two expressions into Eq. 13-3 yields

moj2r2 sin 8 cos 8 = oj(mwr2 sin 8) cos 6,

which is an identity. In terms of magnitudes we have proved our point. Refer to

Fig. 13-3 and make certain that the direction of t is that of dl/dt (Eq. 12-7), or

alternatively ofwxl (Eq. 13-2b).

Let us now investigate the relationship between \z and to for the par-

ticle of Fig. 13-3. From Example 2 we have

I = mr2
oj sin 8.

From Fig. 13-3b we see that

lz = 1 sin 8 = mcor2 sin2
8.

Now i sin 8 — a, the radius of the circle in which the particle moves.

This leads to

h = ma2
oj, (13-4)

in which ma 2
is the rotational inertia / of the particle with respect to

the z-axis. Thus

l, = Ia>, (13-5)

which is to be compared with Eq. 12-18 [L = Ia>) for the rotation of a

rigid body about a fixed axis. Note that the vector relation 1 = /to is not

correct in this case because 1 and to do not point in the same direction.

However, l z and to do, so that we could write Eq. 13-5 in vector form

as lz = leu.

Now let us add another particle of mass m to the system of Fig. 13-3.

In particular, let us add this particle in the same orbit, moving with the

same speed, but always at a diametrically opposite point, on the other

side of the axis of rotation. The angular momentum l-> with respect to O
for this second particle will have the same magnitude as that of l x for

the first particle and it will make the same angle (90° — 8) with the

z-axis, but it will have a different orientation around that axis. As Fig.

13-4a shows, U will lie in a plane formed by at and by li but will be on
the opposite side of the z-axis from li. The vectors li and l> include an
angle of 180° -18.

The total angular momentum L of the system of two particles is the

vector sum of the angular momenta of the separate particles, that is,

L = li 4- L. The resultant vector L, as Fig. 13-4i> shows, points along the

z-axis (in the direction of at) and is constant in magnitude. Note that



figure 13-4

(a) Two particles of mass m
rotating as in Fig. 13-3 but

maintaining diametrically opposite

positions, (b) A cross section through

the two particles, showing that the

total angular momentum L (= 1, + 12 )

for the two-particle system points

along the axis of rotation, in the

same direction as w.

this statement is true no matter where the origin O is located along the

axis of rotation.

The fact that L = a constant (in both magnitude and direction), for

this two-particle system, means that dL/dt = 0, which in turn (Eq. 12-9)

means that t = for this system. Convince yourself (Fig. 13-3b will be

helpful) that this is the case, the torques for the two particles about O
being equal in magnitude but oppositely directed so that the torque

acting on the two-particle system is zero.

The fact that to and L point in the same direction in this problem but

did not for the case of a single particle can be traced to the fact that, in

the two-particle system, the particles have the same mass and are in

diametrically opposite positions at the same distance from the rotation

axis.

We can now extend our system to a rigid body, made up of many par-

ticles. If the body is symmetric about the axis of rotation, by which we
mean that for every mass element in the body there must be an identical

mass element diametrically opposite the first element and at the same
distance from the axis of rotation, then the body can be regarded as

made up of sets of particle pairs of the kind we have been discussing.

Since L and at are parallel for all such pairs, they are also parallel for

rigid bodies that possess this kind of symmetry. Note that, in Table

12-1, all the systems except / and / meet this criterion.

For such symmetrical rigid bodies L and at are parallel and we can

write Eq. 12-18 [L — Iw) in vector form as

L = Ioj. [13-61

I )o not forget, however, that, if L stands for the total angular momen-
tum, then Eq. 13-6 applies only to bodies that have symmetry* about

We I

'simplified the symmetry requirement. Every rigid body no matter bow
irregular its shape has three perpendicular axes through its center of mass, about ea< b

of which L and i» have the same dire< 1 1 1 ui being related by L Iw. These axes are < -ill! d

the principal axes The axis •
. t revolution is always .i principal axis as are

axes ,ii righi angles to it through the centei oi mass in general howevei 1 and <•< poinl

in different direct foi axes that an not principal axes See Arnold Sommerfeld

Mecht iv Acadi New x*orl 1964 paperback edition!



the (fixed) rotational axis. If L stands for the vector component of

angular momentum along the rotational axis (that is, for Lz), then Eq.

13-6 is equivalent to Eq. 12-8 and holds for any rigid body, symmetrical

or not, that is rotating about a fixed axis.

In Example 5, Chapter 12, find the acceleration of the falling mass by direct

application of Eq. 12-9 (t = dL/dt).

The system of Fig. 12-12, consisting of the wheel M and the mass m is acted

on by two external forces, the downward pull of gravity mg acting on mass m
and the upward force exerted by the bearings of the shaft of the cylinder, which

we take as our origin. The tension in the cord is an internal force and does not

act from the outside on the system (wheel + weight). Only the first of these ex-

ternal forces exerts a torque about the origin and its magnitude is [mg)R.

The angular momentum of the system about the origin at any instant is

L = Ico + [mv)R,

in which Iw is the angular momentum of the (symmetrical) disk and [mv)R is

the angular momentum (= linear momentum x moment arm) of the falling mass

about the origin. Both these contributions to L point in the same direction,

namely, perpendicularly out of the plane of Fig. 12-12.

Applying t = dL/dt (in scalar form) yields

[mg)R = -r [I(o + mvR)

= I{da/dt) + mR[dv/dt)

= Ia + mRa.

Since a = aR and / = \MR 2
, this reduces to

mgR = {iMR 2 )[a/R) + mRa
or

Img

EXAMPLE 3

M + 2m

A simple example of an unsymmetrical rotating rigid body is a dumbbell-type

rod whose bar makes an angle 6 with the fixed axis of rotation passing through

its center of mass. The rod rotates at a constant angular velocity w about this

axis, the vector to thus pointing along this axis, as shown in Fig. 13-5. Experi-

ence tells us that such a system is "unbalanced" or "lop-sided," and if it were

not securely fastened to the vertical shaft near C. it would break away from the

shaft at high angular velocities. It would tend to move until the angle H becomes
90°, in which limiting position the system would then be symmetrical about

the shaft.

[a] Show qualitatively that in the unsymmetrical case, shown in Fig. 13-5, L
and (o are not parallel.

Each particle of mass m has an angular momentum with respect to C given

by r x p for that particle. At the instant shown the upper particle is moving into

the page at right angles to it, and the lower particle is moving out of the page at

right angles to it. The momentum vectors of the two masses are therefore equal

but opposite, and so are their position vectors with respect to C. Hence, by ap-

plication of the right-hand rule in r x p, we find that 1 is the same for each par-

ticle and that their sum, the total angular momentum vector L of the dumb-
bell, is as shown in the figure, at right angles to the bar in the plane of the page.

Hence L and to are not parallel at this instant. It is clear that as the dumbbell
itself rotates, the angular momentum vector, while constant in magnitude,

rotates around the fixed axis of rotation.

EXAMPLE 4

Bearing

Fixed axis

F "ir^*— Bearing

figure 13-5

Example 4.



\b) The fact that L and to do not point in the same direction is perfectly con-

sistent with the fundamental relation r= dL/dt. We have seen twice before |see

Section 13-2 and Example 1) that an angular momentum vector of constant

magnitude that rotates around a fixed axis must have associated with it a torque

7 that is at right angles to the plane formed by L and cj. At the instant shown in

Fig. 13-5 this plane is the plane of the figure. Is there such a torque in this prob-

lem and if so, where does it come from'

There is indeed such a torque and it arises from the unbalanced sideways

forces exerted by the bearings on the shaft and transmitted by the shaft to the

dumbbell bar. At the instant shown in the figure the upper end of the dumbbell

would tend to move outward to the right. The shaft would be pulled to the

right against the upper bearing, which in turn exerts a force F on the shaft that

points to the left. Similarly, the lower end of the dumbbell tends to move out-

wards to the left. The shaft would be pulled to the left against the lower bearing,

which in turn exerts a force —F on the shaft that points to the right. The torque

t about C as a result of these forces points perpendicularly out of the page, at

right angles to the plane formed by L and o>, and in the right direction to ac-

count for the rotary motion of L (you should check this).

The forces F and —F lie in the plane of Fig. 13-5 at the instant shown. As the

dumbbell rotates, these forces, and therefore the torque t, rotate with it, so that

t always remains at right angles to the plane formed by o> and L (compare with

Fig. 13-1) The rotating forces F and —F cause a "wobble" in the upper and lower

bearings. The bearings and their supports must be made strong enough to pro-

vide these forces. For a symmetrical rotating body there is no bearing wobble

and the shaft rotates smoothly.

Bearing wobble and internal strains can cause serious practical problems

when objects, such as turbine rotors, are made to rotate at high speeds. Al-

though designed to be symmetrical, such rotors, because of small errors of

blade placement, etc., may be slightly unsymmetrical. They may be restored

to symmetry by the addition or removal of metal at appropriate places; this is

done by spinning the wheel in a special device such that bearing wobble can be

measured quantitatively and the appropriate corrective measure computed and

indicated automatically. We are all familiar with lead weights placed at stra-

tegic points on automobile tire rims to reduce wobble at high speeds due to

unbalance.

In Chapter 12, we found that the time rate of change of the total angular

momentum of a system of particles about a point fixed in an inertial

reference frame (or about the center of mass) is equal to the sum of the

external torques acting on the system, that is,

Text = dL/dt. (12-9)

Suppose now that Text = ;
then dL/dt — so that L = a constant.

When the resultant external torque acting on a system is zero, the

total vector angular momentum of the system remains constant. This

is the principle of the conservation of angular momentum.
For a system of n particles, the total angular momentum L about

some point is

L = 1, +1 2 + • • +1„.

When the resultant external torque on the system is zero, we have

L = a constant = L», (13- 7
)

where L„ is the constant total angular momentum vector. The angular

momenta ol the individual particles may change, but then vectoj sum
L remains constant in the absence ol a net external torque.

Angular momentum is ,i vectoi quantit) so that Eq. 13 7 is equiva

13-4
CONSERVATION OF
ANGULAR MOMENTUM



lent to three scalar equations, one for each coordinate direction through

the reference point. The conservation of angular momentum therefore

supplies us with three conditions on the motion of a system to which

it applies.

For a system consisting of a rigid body rotating about an axis (the

z-axis, say) that is fixed in an inertial reference frame, we have

Ibti, 13-6)

where L, is the component of the angular momentum along the rotation

axis and / is the rotational inertia for this same axis. It is possible for

the rotational inertia / of a rotating body to change by rearrangement

of its parts. If no net external torque acts, then L, must remain constant

and, if / does change, there must be a compensating change in a>. The
principle of conservation of angular momentum in this case is expressed

as

Ioj = I (oo = a constant. ;i3-8)

Equation 13-8 holds not only for rotation about a fixed axis but also

about an axis through the center of mass of the system that moves so

that it always remains parallel to itself (see footnote, p. 237).

Acrobats, divers, ballet dancers, ice skaters, and others often use this

principle. Because I depends on the square of the distance of the parts

of the body from the axis of rotation, a large variation is possible by

extending or pulling in the limbs. Consider the diver* in Fig. 13-6. Let

us assume that as he leaves the diving board he has a certain angular

speed Wd about a horizontal axis through the center of mass, such that

he would rotate through half a turn before he strikes water. If he wishes

to make a one and one-half turn somersault instead, in the same time,

he must triple his angular speed. Now there are no external forces acting

figure 13-6

A diver leaves the diving board

with arms and legs outstretched

and with some initial angular

velocity. Since no torques are

exerted on him about his center of

mass, L [= I(o) is constant while he

is in the air. When he pulls his arms

and legs in, since L decreases, a>

increases. When he again extends

his limbs, his angular velocity drops

back to its initial value. Notice the

parabolic motion of his center of

mass, common to all

two-dimensional motion under the

influence of gravity.

* See "The Mechanics of Swimming and Diving" by R. L. Page in The Physics Teacher,
February 1976, for an interesting biomechanical analysis.



on him except gravity, and gravity exerts no torque about his center of

mass. His angular momentum therefore remains constant, and hu)a = Ia>.

Since w = 3a> () , the diver must change his rotational inertia about the

horizontal axis through the center of mass from the initial value I to

a value /. such that / equals i/o. This he does by pulling in his arms and

legs toward the center of his body. The greater his initial angular speed

and the more he can reduce his rotational inertia, the greater the num-
ber of revolutions he can make in a given time.

We should notice that the rotational kinetic energy of the diver is not

constant. In fact, in our example, since

and

it follows that

Id) = /oOJo

I < h,

Hoj 2 > |/„a>„2

and the diver's rotational kinetic energy increases. This increase in

energy is supplied by the diver, who does work when he pulls the parts

of his body together.

In a similar way the ice skater and ballet dancer can increase or de-

crease the angular speed of a spin about a vertical axis. A cat manages to

land on its feet after a fall by using the same principles, the tail serving

as a useful, but unessential, extra appendage.

A small object of mass m is attached to a light string which passes through

a hollow tube. The tube is held by one hand and the string by the other. The
object is set into rotation in a circle of radius ii with a speed Vi. The string is

then pulled down, shortening the radius of the path to r 2 (Fig. 13-7). Find the

new linear speed v 2 and the new angular speed w> of the object in terms of the

initial values v, and w, and the two radii.

The downward pull on the string is transmitted as a radial force on the object.

Such a force exerts a zero torque on the object about the center of rotation. Since

no torque acts on the object about its axis of rotation, its angular momentum in

that direction is constant. Hence

initial angular momentum = final angular momentum,

and

mviix = mvjfj,

v2
= Vi PA

Since r, > r2 , the object speeds up on being pulled in.

In terms of angular speed, since v
x equals co,r, and v-> equals w 2r 2 ,

and

mr,-o>i

0)2

mi-Sio-i

Oil,

so that there is an even greater increase in angular speed over the initial value

(see Problem 31). What effect does the force of gravity (the object's weight!

have <m this analysis'

EXAMPLE 5

figure 13-7

Example 5. A mass at the end oi a

cord moves in a circle of radius i\

with angular speed o)\. The cord

passes down through a tube. F

supplies the centripetal force.

A student sits on a stool that is free to rotate about a vertical axis. He holds Ins EXA.^II'I jE O
arms extended horizontally with an 8 lb J5.6 N> weight in each hand. The
instructor sets him rotating with an angulai speed oi >0 rev/s Assume that

tin Hon is negligible and exerts no torque about the vertical axis ol rotation



Assume that the rotational inertia of the student remains constant at 4.0 slug •

ft2 (= 5.4 kg • m 2
) as he pulls his hands to his sides and that the change in rota-

tional inertia is due only to pulling the weights in. Take the original distance

of the weights from the axis of rotation to be 3.0 ft (= 0.9 1 m) and their final dis-

tance 0.50 ft |= 0. 15 m). Find the final angular speed of the student.

The only external force is gravity acting through the center of mass, and that

exerts no torque about the axis of rotation. Hence the angular momentum is

conserved about this axis and

initial angular momentum = final angular momentum,

Zotoo = Id).

We have

l * student ' 'weights/

h = 4.0 + 2 (^] (3.0)
2 = 8.5 slug • ft

2 (= 1 1.6 kg • m 2
),

32,

8.0\
7 = 4.0 + 2

(!£)
Q " = 4. 1 slug • ft

2 (= 5.6 kg • m 2
),

a>o = 0.50 rev/s = it rad/s.

Therefore

to = -? wo = -r-r tt rad/s = 2. 1 7r rad/s = 1 .0 rev/s.
/ 4.1

The final angular speed is approximately doubled.

If we had allowed for the decrease in I caused by the arms being pulled in, the

final angular speed would have been much greater.

What change would friction make? Is kinetic energy conserved as the student

pulls in his arms and then puts them out again, assuming there is no friction?

Explain.

A classroom demonstration that illustrates the vector nature of the law of con- EXAMPLE T
servation of angular momentum is worth considering.

A student stands on a platform that can rotate only about a vertical axis. In

his hand he holds the axle of a rim-loaded bicycle wheel with its axis vertical.

The wheel is spinning about this vertical axis with an angular speed w,,, but the

student and platform are at rest. The student tries to change the direction of

rotation of the wheel. What happens?

Let us choose as the system the student plus platform plus wheel. The initial

total angular momentum of this system is 7 g>o, arising from the spinning wheel,

In being the rotational inertia of the wheel about its axis and &> pointing ver-

tically upward. Figure l3-8a shows the initial condition.

The student next turns the axis of the wheel through an angle from the

vertical (to do this he must supply a torque; see Example 1. This torque, how-
ever, is internal to the system as we have defined it). Since there is no external

component of torque on the system about the vertical axis, the vertical compo-
nent of angular momentum of the system must be conserved. The wheel, how-
ever, is now spinning about an axis making an angle with the vertical so that

it contributes a vertical component of angular momentum of only I <oo cos 6

to the system. Hence the student and platform must supply the additional

angular momentum about the vertical axes, and they begin to rotate about a

vertical axis. This extra vertical angular momentum /,,&>,, when added to

/ncoo cos 6 must equal the initial vertical angular momentum of the system
7 too. That is,

/pto,, = 7 too(l — cos 6).



A

A

Jowo
*

(a)

Io wo\. lowo cos 9

(b)

-Towo +

A

JpWp = Jowo

(c)

figure 13-8

Example 7. fa) The initial angular

momentum of the system is shown.
In (b), the wheel has been tilted an
angle 8. Since no external torque in

the vertical direction has been
exerted on the system, the angular

momentum in that direction must
be conserved. The deficit,

1 1 — cos 0)/oojo , is made up by

rotation of the student and platform.

In (c), the wheel has been tilted

180°. The deficit is now 2/ ojn, which
is now, as before, made up by the

student and platform.

This is shown in Fig. 13-8b. /,, is the rotational inertia of student and platform

with respect to the vertical axis, and a>,, is their angular speed about this axis.

If the student turns the wheel through an angle = 180°, the student and plat-

form acquire a vertical angular momentum of 2/ <do. The total vertical angular

momentum of the system is still being conserved at the initial value Io<o0l as

shown in Fig. 13-8c.

Consider now the angular momentum of the wheel alone. As the student

turns the axis of the wheel through an angle he exerts a torque on it which

lasts for the time At that it takes to reorient the shaft. The vertical component

of the reaction to this "torque-impulse" acts on the student and accounts for

the vertical angular momentum acquired by him and the platform.

The wheel, held with its shaft fixed at an angle with the vertical axis, pre-

cesses about this axis just like the top of Fig. 13-1. As for the top, a horizontal

torque, which always remains at right angles to the plane defined by the vertical

axis and the axis of the wheel, must be provided, in this case by the student.

The precise analysis of the motion of this system depends only on the ap-

plication of the equation t = dL/dt and the vector nature of the quantities in-

volved. You might want to work this out in more detail, as an exercise.

The conservation of angular momentum principle holds in atomic and nuclear

physics as well as in celestial and macroscopic regions. Because Newtonian
mechanics does not hold in the atomic and nuclear domain, this conservation

law must be more fundamental than Newtonian principles. In our derivation of

this principle we must have made more rigid assumptions than we needed to.

This is true even in the framework of classical mechanics. Note the key role

played by Newton's third law in our deduction of this conservation principle.

This law was used to justify the assumption that the sum of the internal torques

was zero. It was necessary to assert not only that the action and reaction forces

were equal and opposite (the "weak" form of the third law) but also that these

forces were directed along the line joining the two particles (the "strong" form of

the third law). The strong form is known to be violated in some electromagnetic

interactions. However, the assumption that the sum of the internal torques in a

system of particles is zero can be proven on the basis of a much less stringent

requirement than that the third law should hold

The law of conservation of angular momentum, as we have formulated it

holds tor a system ot bodies whenever the bodies can be treated as particles that

is whenever effects due to the rotation ot the individual bodies can be neglected

When the individual bodies have rotation the conservation oi angular momen-
tum print Lple is still valid providing we include the angular momentum asso

13-5
SOME OTHER ASPECTS
OF THE CONSERVATION
OF ANGULAR
MOMENTUM

Seel Gerjuoy, American Journal of Physics, Vol. 17,477 1949



ciated with this rotation. However, the bodies then are no longer simple par-

ticles whose motion can be described by particle dynamics.

In atomic and nuclear physics we find that the "elementary particles" such

as electrons, protons, mesons, neutrons, etc. (see Appendix I) have angular

momentum associated with an intrinsic spinning motion, as well as with or-

bital motion about some external point. When we use the law of conservation

of total angular momentum we must include this spin angular momentum in

the total. A fundamental aspect of atomic, molecular, and nuclear systems is

that their angular momenta can take on only definite discrete values, rather

than a continuum of values. Angular momentum is said to be quantized. Hence,

angular momentum plays a central role in the description of the behavior of

such systems (see Problems 9 and 10). These ideas will be developed in later

chapters.

If we were to regard the sun, planets, and satellites as particles having no

intrinsic spinning motion, the angular momentum of the solar system would

turn out not to be constant. But these bodies do have intrinsic rotations; in

fact, tidal forces convert some of the intrinsic spinning angular momentum

Table 13-1

Summary of equations for rotary motion

Eq. No. Equation Remarks

I. Defining Equations

12-1 t = r x F Torque on a particle about a point O, due to a

resultant force F

Text = 2t« = 2(r,- x F,) Resultant external torque on a system of parti-

cles about a point O
12-3 l = rXp Angular momentum of a particle about a

point O
L = XI, = S|r, x p,-| Resultant angular momentum of a system of

particles about a point O

II. General Relations

12-7 t= dl/dt The law of motion for a single particle acted

on by a torque. It is the rotational analog of

F = dp/dt (Eq. 9-12). Equation 12-7 holds only

if t and 1 are measured with respect to any
point O fixed in an inertial reference frame

12-9 Text = dL/dt The law of motion for a system of particles

acted on by a resultant external torque Text-

It is the rotational analog of F = dV/dt (Eq.

9-7). Equation 12-9 holds only if Tex t
and L

are measured with respect to [a] any point O
fixed in an inertial reference frame or [b] the

center of mass of the system

III. Special Case of a Rigid Body Rotating about an Axis Fixed in an

Inertial Reference Frame (see footnote, p. 237)

12-17 r = la a is constrained to lie along the axis
;

/ must
also refer to this axis and t must be the scalar

component of Text directed along this same
axis. It is the rotational analog of F = Ma for

rectilinear motion
12-18 L = Id) io is constrained to lie along the axis

;
/ must

also refer to this axis and L must be the scalar

component along this axis of the total angular

momentum. If the rotation axis has special

symmetry (that is, if it is a principal axis,- see

footnote, p. 266), then L and w are both axially

directed. It is the rotational analog of P = Mv
for rectilinear motion



into orbital angular momentum of the planets and satellites. When we use the

law of conservation of the angular momentum, we must include this spin

angular momentum in the total. The conservation of angular momentum plays

a key role in the evaluation of theories of the origin of the solar system, the

contraction of giant stars, and other problems in astronomy. We will consider

some astronomical applications in Chapter 16.

The basis for this rather simple way of analyzing the total angular momen-
tum of atomic or astronomical systems is a theorem (see Problem 15) that the

total angular momentum L of any system with respect to the origin of an

inertial reference frame may be computed by adding the angular momentum
with respect to its center of mass [spin angular momentum) to the angular

momentum arising from the motion of the center of mass with respect to the

origin [orbital angular momentum).
The conservation laws of total energy, of linear momentum, and of angular

momentum are fundamental to physics, being valid in all modern physical

theories. We shall have occasion to use them many times in later chapters.

The subject of the rotary motions of particles and rigid bodies is reason-

ably complicated, so much so in fact that a completely general treat-

ment is beyond our scope here. It seems advisable to collect in one place

all equations dealing with rotational dynamics and to comment on the

conditions under which they can be used. We do this in Table 13-1 (see

previous page.)

13-6
ROTATIONAL DYNAMICS
-A REVIEW

We have encountered many vector quantities so far, including position, dis-

placement, velocity, acceleration, force, momentum, and angular momen-
tum. Which of these are defined independent of the choice of the origin in

the reference frame"

\a) In Example 1, why would merely turning the shaft up send the wheel to

the student's right' [b\ If the student is anchored to the floor of a large space-

ship that is drifting in a region free from gravity, in what way, if any, would
this affect her performance of the experiment ?

If the top of Fig. 13- 1 were not spinning, it would tip over. If its spin angular

momentum is large compared to the change caused by the applied torque,

the top precesses. What happens in between when the top spins slowly"

A Tippy-Top, having a section of a spherical surface of large radius on one

end and a stem for spinning it on the opposite end, will rest on its spherical

surface with no spin but flips over when spun, so as to stand on its stem. Ex-

plain. (See "The Tippy-Top" by George D. Freier, The Physics Teacher,

January 1967.) If you can't find a Tippy-Top, use a hard-boiled egg; the

"stand-on-end" behavior of the spinning egg is most easily followed if you

put an ink mark on the "pointed" end of the egg.

A famous physicist |R. W. Wood), who was fond of practical jokes, mounted

a rapidly spinning flywheel in a suitcase which he gave to a porter with

instructions to follow him. What happens when the porter is led quickly

around .i corner? Explain in terms of t = dL/dt.

A single-engine airplane must be "trimmed" to fly level. (Trimming con-

sists of raising one aileron and lowering the opposite one.) Why is this

necessary : Is this necessary on a twin-engine plane under normal i mum
St, III'

The propeller oi an aircraft rotates clockwise as seen from the real When
the pilot pulls upward out of a steep dive he finds it necessary to appl) lefi

ruddei .it the bottom ol the dive it he is to maintain lus heading. Explain

Why does a long bai help a tightrope walkei to keep hei balance?

questions



10

11

12.

9. You are walking along a narrow rail and you start to lose your balance. If

you start falling to the right, which way do you turn your body to regain

balance-' Explain.

Describe, in terms of t = dL/dt, the rotational dynamics of the wheels on a

fast train going around a curve.

Can you suggest a simple theory to explain the stability of a moving

bicycle? (See "The Stability of the Bicycle" by David E. H. Jones, Physics

Today, April 1970.)

Explain, in terms of angular momentum and rotational inertia, exactly how
one "pumps up" a swing. (See "Pumping on a Swing" by P. L. Tea and H.

Falk, American Journal of Physics, December 1968; "The Child's Swing"

by B. F. Gore, American Journal of Physics, March 1970; "On Initiating the

Motion in a Swing" by J. T. McMullan, American Journal of Physics, May
1972 and "How Children Swing" by S. M. Curry, American Journal of

Physics, October 1976.)

13. In order to get a billiard ball to roll without sliding from the start the cue

must hit the ball not at the center (that is, a height above the table equal to

the ball's radius R) but exactly at a height i R above the center. Explain.

(See Arnold Sommerfeld, Mechanics, Volume I of Lectures on Theoretical

Physics, Academic Press, New York (1964 paperback edition), pp. 158-161,

for a supplement on the mechanics of billiards. See also "Some Pitfalls in

Demonstrating Conservation of Momentum" by H. L. Armstrong, Ameri-

can Journal of Physics, January 1968.)

14. There are points on a bat where, if the ball is hit there, your hands will

sting and the bat might break. Explain. (See "Batting the Ball" by P. Kirk-

patrick, American Journal of Physics, August 1963.)

15. Assume that a uniform rod rests in a vertical position on a surface of negli-

gible friction. The rod is then given a horizontal blow at its lower end.

Describe the motion of the center of mass of the rod and of its upper end-

point.

16. A cylinder rotates with angular speed o> about an axis through one end, as in

Fig. 13-9. Choose an appropriate origin and show qualitatively the vectors

L and <o. Are these vectors parallel? Do symmetry considerations enter

here?

17. Consider the motion of a football tumbling through the air. Is the angular

momentum with respect to the center of mass of the football conserved in

flight? Does the magnitude or the direction of the angular velocity change

with respect either to axes fixed in space or in the body?

18. In Chapter 1 the melting of the polar icecaps was cited as a possible cause of

the variation in the earth's time of rotation. Explain.

19. Many great rivers flow toward the equator. What effect does the sediment

they carry to the sea have on the rotation of the earth?

20. A man turns on a rotating table with an angular speed w. He is holding two
equal masses at arm's length. Without moving his arms, he drops the two
masses. What change, if any, is there in his angular speed? Is the angular

momentum conserved? Explain.

21. In Example 5, if the string is released suddenly back to where the object can

travel in a circle of radius i\, will the object return to its original speed?

What happens if one repeatedly pulls down on and suddenly releases the

string? Explain the behavior in terms of work-energy and torque-angular

momentum considerations.

22. A circular turntable rotates at constant angular velocity about a vertical

axis. There is no friction and no driving torque. A circular pan rests on the

turntable and rotates with it: see Fig. 13-10. The bottom of the pan is

covered with a layer of ice of uniform thickness, which is, of course, also

rotating with the pan. The ice melts but none of the water escapes from the

pan. Is the angular velocity now greater than, the same as, or less than the

original velocity? Give reasons for your answer.

qm
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Bearings Fixed axis

figure 13-9

Question 16

figure 13-10

Question 22
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SECTION 13-1

1. The time integral of a torque is called the angular impulse. Starting from

t = dL/dt, show that the resultant angular impulse equals the change in

angular momentum. This is the rotational analog of the linear impulse-

momentum theorem.

SECTION 13-2

2. A top is spinning at 30 Hz (cycles/s) about an axis making an angle of 30°

with the vertical. Its mass is 0.50 kg (3.4 x 10 2 slug) and its rotational

inertia is 5.0 x 10 4 kg • m2 (3.7 x 10 4 slug • ft
2
). The center of mass is 4.0

cm (1.6 in. I from the pivot point. If the spin is clockwise as seen from above,

what is the magnitude and direction of the angular velocity of precession :

3. A gyroscope consists of a rotating disc of 0.50-m radius suitably mounted at

the center of a 0.1 2-m axle so that it can spin and precess freely. Find the

rate of precession (in rev/min) if the axle is supported at one end and is

horizontal, and the gyroscope's spin rate is 1000 rev/min.

Answer: 43 rev/min.

4. The gyroscope of Problem 3 is modified by attaching a small weight to the

distant end of the axle. Find the new rate of precession (in rev/min) as a

function of the ratio r = (mass of added weight)/(mass of gyroscope disc).

SECTION 13-3

5. Start from Eq. 1 l-20b, a fl = to X v, for a particle in circular motion and show
that the force required for uniform circular motion is F = o> x p. Compare
this to Eq. 13-2b. t = to,, x L, and explain how the precessing spinning top

can be regarded as a rotational analog to uniform circular motion.

6. Two wheels, A and B, are arranged by a belt system as in Fig. 13-11. The
radius of B is three times the radius of A. What would be the ratio of the

rotational inertias LJIh if [a] both wheels have the same angular momenta"
[b] both wheels have the same rotational kinetic energy"

7. Show that L = lot for the two-particle system of Fig. 13-4.

8. Figure 13-12 shows a symmetrical rigid body rotating about a fixed axis.

The origin of coordinates is fixed for convenience at the center of mass.

Prove, by summing over the contributions made to the angular momentum
by all of the mass elements m, into which the body is divided, that L = lot,

where L is the total angular momentum.

9. [a] Assume that the electron moves in a circular orbit about the proton in a

hydrogen atom. If the centripetal force on the electron is supplied by an
electrical force e2/477e (1r

2
, where e is the magnitude of the charge of an elec-

tron and of a proton, r is the orbit radius, and e is a constant, show that the

radius of the orbit is

r =
47re„mv2

where m is the mass of the electron and v is its speed.

[b] Assume now that the angular momentum of the electron about the

nucleus can only have values that are integral multiples n of hUn, where
h is a constant called Planck's constant. Show that the only electronic

orbits possible are those with a radius

r =
nh

Ittwv

(c) Combine these results to eliminate v and show that the only orbits

i 'insistent with both requirements have radii

n'ejj-

-me-

Hence the allowed radii are proportional to the square oi the integers

n = 1, 2, 3, etc. When n I / is smallest and lias the value 0.528 - 10 '"

meter.

problems

figure 13-11

Problem 6

figure 13-12

Problem 8



10. In 1913, Niels Bohr postulated that any mechanical rotating system with
JJ

rotational inertia I can have an angular momentum whose values can take E M

on only integral multiples of a particular number h/lir = 1.054 x 10 34
J

• s.

In other words, Etc ^
L = Iu> = n{h/2TT),

where n is any positive integer or zero. We say that L is quantized because

it is no longer allowed to have any value whatsoever, [a] Show that this

postulate restricts the kinetic energy the rotating system can have to a set ^.

of discrete values, that is, that the energy is quantized, [b) Consider the 2-S— ^
so-called rigid rotator, consisting of a mass m constrained to rotate in a

circle of radius R. With what angular speeds could the mass rotate if the

postulate were correct? What values of kinetic energy may it assume?

|c) Draw an energy-level diagram of some sort indicating how the spacing

between the energy levels varies as n increases. It might look something figure 13-13

like Fig. 13-13. Certain low-energy diatomic molecules behave like a rigid Problem 10

rotator.

11. Using data in the appendix, find [a] the angular momentum of the earth's

spin about its own axis, (b) the angular momentum of the earth's orbital

motion about the sun.

Answer: [a] 7.1 x 1033 kg • m 2
/s. (b) 2.7 x 1040 kg • m2

/s.

12. A stick has a mass 0.30 slug (4.4 kg) and a length 4.0 ft (1.2 m). It is initially

at rest on a frictionless horizontal plane and is struck perpendicularly by a

horizontal impulsive force of impulse 3.0 lb • s ( 13 N • s) at a distance 7=1.5

feet (0.46 m) from the center. Determine the subsequent motion.

13. The moon revolves about the earth in such a way that we always see the

same face of the moon, [a] How are the spin and orbital parts of the angular

momentum of the moon related? [b] By how much would its spin angular

momentum have to change if we were to be able to see all the moon's sur-

face during the course of a month?

Answer: (a) L spiJL orbital
= i(R,„/Re-m) 2 in which R„, is the lunar radius and

Re-in is the earth-moon distance, [b) Increase or decrease by | of

present value.

14. A cylinder rolls down an inclined plane of angle 0. Show, by direct applica-

tion of Eq. 12-9 (t = dL/dt), that the acceleration of its center of mass is

ig sin 6. Compare this method with that used in Example 10 of Chapter 12.

15. Relation between the Total Angular Momentum of a System of Particles

and the Orbital and Spin Angular Momenta. The total angular momentum
of a system of particles relative to the origin O of an inertial reference frame

is given by L = 2r,- x p„ where t; and p, are measured with respect to O.

[a] Use the relations t, = r,.m + r,' and p f
= mjV

c
.m + p,' of Problem 10 of

Chapter 12 to express L in terms of the positions r,' and momenta p,' rela-

tive to the center of mass C. [b] Use the definition of center of mass and the

definition of angular momentum L' with respect to the center of mass
(problem 10 of Chapter 12) to obtain L = L' + r,.m x Mv,.m . (c) Show how this

result can be interpreted as regarding the total angular momentum to be

the sum of spin angular momentum (angular momentum relative to the

center of mass) and orbital angular momentum (angular momentum of the

motion of the center of mass C with respect to O if all the system's mass
were concentrated at C).

16. A thin rectangular sheet, of length a and width b, rotates about one of its

diagonals with constant angular speed w, the axis being fixed in an inertial

reference frame. Find the direction and the magnitude of the angular

momentum L with respect to an origin at the center of mass.

17. The axis of the cylinder in Fig. 13-14 is fixed. The cylinder is initially at

rest. The block of mass M is initially moving to the right without friction

with speed vi. It passes over the cylinder to the dotted position. When it

first makes contact with the cylinder, it slips on the cylinder, but the fric-

tion is large enough so that slipping ceases before M loses contact with the



J
M \

V2-t> figure 13-14

Problem 17

cylinder. The cylinder has a radius R and a rotational inertia /. Find the

final speed v2 in terms of V\, M, I, and R. This can be done most easily by

using the relation between impulse and change in momentum.
Answer: vj[l + I/MR 2

).

18. A stick, length 1, lies on a frictionless horizontal table. It has a mass M and

is free to move in any way on the table. A hockey puck m, moving as shown
in Fig. 13-15, with speed v collides elastically with the stick, [a] What
quantities are conserved in the collision- (b) What must be the mass m of

the puck so that it remains at rest immediately after the collision?

19. At what point below the suspension at one end of a uniform rod of length

2 L. hanging vertically, should you strike it to start its oscillatory motion
without imparting an initial horizontal reaction force at the point of

suspension-' Answer: 4 L/3.

20. Two cylinders having radii R t and R2 and rotational inertias U and I-,, re-

spectively, are supported by fixed axes perpendicular to the plane of Fig.

13-16. The large cylinder is initially rotating with angular velocity wo. The
small cylinder is moved to the right until it touches the large cylinder and is

caused to rotate by the frictional force between the two. Eventually, slip-

ping ceases, and the two cylinders rotate at constant rates in opposite

directions, [a) Find the final angular velocity w2 of the small cylinder in

terms of I x , l>, R h R>, and &» . [b) Is total angular momentum conserved in

this case?

2 1

.

A billiard ball, initially at rest, is given a sharp impulse by a cue. The cue is

held horizontally a distance h above the centerline as in Fig. 13-17. The ball

leaves the cue with a speed vn and, because of its "forward english," even-

tually acquires a final speed of f

v

. Show that

h = iR.

where R is the radius of the ball.

22. In Problem 21, imagine F to be applied below the centerline. [a] Show that

it is impossible, with this "reverse english," to reduce the forward speed to

zero, without rolling having set in, unless h = R. [b] Show that it is impos-

sible to give the ball a backward velocity unless F has a downward, vertical

component.

Af

Center

figure 13-15

Problem 18

figure 13-16
Problem 20

figure 13-17

Problem 21

SECTION 13-4

23. A man stands on a frictionless rotating platform which is rotating with an

angular speed of 1.0 rev/s (Hz); his arms are outstretched and he holds a

weight in each hand. With his hands in this position the total rotational

inertia of the man, the weights, and the platform is 6.0 kg • m-\ If by draw-

ing in the weights the man decreases the rotational inertia to 2.0 kg • m 2
,

{a) what is the resulting angular speed of the platform? \b) By how much is

the kinetic energy increased? Answer: [a) 3.0 Hz. (/?) By a factor of 3.

24. Two skaters, each of mass 50 kg, approach each other along parallel paths

separated by 3.0 m. They have equal and opposite velocities of 10 m/s. The
lust skater carries a long light pole, 3.0 m long and the second skater grabs

the end of it as he passes. (Assume frictionless ice.) [a] Describe quanti-

tatively the motion of the skaters after they are connected by the pole.

By pulling on the pule, the skaters reduce then distance apart to 1.0 m.

What is their motion then- [c] Compare the kinetic energy ol the system m
parts \a) and ,/>). Wluic dues the change come from?



25. A wheel is rotating with an angular speed of 800 rev/min on a shaft whose

rotational inertia is negligible. A second wheel, initially at rest and with

twice the rotational inertia of the first, is suddenly coupled to the same

shaft, [a] What is the angular speed of the resultant combination of the

shaft and two wheels? [b) Account for any changes in rotational kinetic

energy experienced by this system.

Answer: [a] 267 rev/min. [b] The system loses two-thirds of its kinetic

energy.

26. With center and spokes of negligible mass, a certain bicycle wheel has a

thin rim of radius 1.14 ft and weight 8.36 lb; it can turn on its axle with

negligible friction. A man holds the wheel above his head with the axis

vertical while he stands on a turntable free to rotate without friction; the

wheel rotates clockwise, as seen from above, with an angular speed 57.7

rad/s, and the turntable is initially at rest. The rotational inertia of wheel-

plus-man-plus- turntable about the common axis of rotation is 1.54 slug • ft
2

.

[a) The man's hand suddenly stops the rotation of the wheel (relative to the

turntable). Determine the resulting angular velocity (magnitude and

direction) of the system, [b) The experiment is repeated with noticeable

friction introduced into the axle of the wheel, which, starting from the

same initial angular speed (57.7 rad/s) gradually comes to rest (relative to

the turntable) while the man holds the wheel as described above. (The turn-

table is still free to rotate without friction.) Describe what happens to the

system, giving as much quantitative information as the data permit.

27. The rotor of an electric motor has a rotational inertia /,„ = 2 x 10" 3 kg m2

about its central axis. The motor is mounted parallel to the axis of a space

probe having a rotational inertia lv = 12 kg • m2 about its axis. Calculate the

number of revolutions required to turn the probe through 30° about its axis.

Answer: 500 rev.

28. In a lecture demonstration, a toy train track is mounted on a large wheel

that is free to turn with negligible friction about a vertical axis. A toy train

of mass m is placed on the track and, with the system initially at rest, the

electrical power is turned on. The train reaches a steady speed v with re-

spect to the track. What is the angular velocity o> of the wheel, if its mass is

M and its radius R- (Neglect the mass of the spokes of the wheel.)

29. A girl (mass M) stands on the edge of a frictionless merry-go-round (mass

10 M, radius R, rotational inertia 1) that is not moving. She throws a rock

(mass m) in a horizontal direction that is tangent to the outer edge of the

merry-go-round. The speed of the rock, relative to the ground, is v. What
are [a] the angular speed of the merry-go-round and (b) the linear speed of

the girl after the rock is thrown?

Answer: [a) mvR/{I + MR 2
), [b] vmR 2

l(I + mi? 2
).

30. In a playground there is a small merry-go-round of radius 4.0 ft (1.2 m) and

mass 12.0 slugs (180 kg). The radius of gyration (see Problem 14 of Chapter

12) is 3.0 ft (0.91 m). A child of mass 3.0 slugs (44 kg) runs at a speed of 10

ft/s (3.0 m/s) tangent to the rim of the merry-go-round when it is at rest and
then jumps on. Neglect friction between the bearings and the shaft of the

merry-go-round and find the angular velocity of the merry-go-round and
child.

31. A uniform flat disk of mass M and radius R rotates about a horizontal axis

through its center with angular speed w„. [a] What is its kinetic energy? Its

angular momentum? (/?) A chip of mass m breaks off the edge of the disk at

an instant such that the chip rises vertically above the point at which it

broke off (Fig. 13-18). How high above the point does it rise before starting

to fall? (c) What is the final angular speed of the broken disk? The final

angular momentum and energy?

Answer: [a] MKW/4; MR2ojJ1. [b] i?W/2 g. (c) <o0) [Mil - m)R 2
a>n;

[Mil - m)#W/2.
32. A cockroach, mass m, runs counterclockwise around the rim of a lazy

Susan (a circular dish mounted on a vertical axle) of radius R and rotational

figure 13-18

Problem 31
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inertia / with frictionless bearings. The cockroach's speed (relative to the

earthl is v. whereas the lazy Susan turns clockwise with angular speed w,,.

The cockroach finds a bread crumb on the rim and of course, stops, [a) What
is the angular speed of the lazy Susan after the cockroach stops- \b) Is

energy conserved'

33. In Example 5 compare the kinetic energies of the object in two different

orbits. Use the work-energy theorem to explain the difference quanti-

tatively.

34. A particle is projected horizontally along the interior of a smooth hemi-

spherical bowl of radius r which is kept at rest (Fig. 13-19). We wish to find

the initial speed vn required for the particle to just reach the top of the

bowl. Find v as a function of 6n , the initial angular position of the particle.

[Hint: Use conservation principles.)

35. On a large horizontal frictionless circular track, radius R, lie two small

masses m and M, free to slide on the track. Between the two masses is

squeezed a spring which, however, is not fastened to m and M. The two
masses are held together by a string, [a] If the string breaks, the compressed

spring (assumed massless) shoots off the two masses in opposite directions;

the spring itself is left behind. The balls collide when they again meet on

the track (Fig. 13-20). Where does this collision take place? (You might

find it convenient to express the answer in terms of the angle M travels

through.) [b] If the potential energy initially stored in the spring was U
,

what is the time it takes after the string breaks for the collision to take

place? (c) Assuming the collision to be perfectly elastic and head-on, where
will the balls again collide after the first collision?

Answer: [a] 2 irm/[m+M) rad. [b) [2ir2mMR 2/{m + M)U ]
1/2

. (c) At the point

of origin.

figure
Problem

figure

Problem
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equilibrium of

rigid bodies
The towers supporting a suspension bridge must be strong enough so

that they do not collapse under the weight of the bridge and its traffic

load; the landing gear of an aircraft must not collapse if the pilot makes
a poor landing; the tines of a fork must not bend when we cut a tough

steak. In all such problems the engineer is concerned that these pre-

sumed rigid structures do indeed remain rigid under the forces, and the

associated torques, that act on them.

In such problems the engineer must ask two questions. (1) What
forces and torques act on the presumed rigid body? (2) Considering its

design and the materials used, will the body remain rigid under the

action of these forces and torques? In this chapter we are concerned only

with the first of these questions; the engineering student will deal at

length with the second question in later courses.

We note that the presumed rigid bodies of the preceding section (that is,

the bridge towers, the landing gear, and the fork) are in mechanical equi-

librium. A rigid body is in mechanical equilibrium if, as viewed from an
inertial reference frame, (1) the linear acceleration acm of its center of

mass is zero and (2) its angular acceleration a about any axis fixed in

this reference frame is zero.

This definition does not require the body to be at rest with respect to

the observer but only to be unaccelerated. Its center of mass, for ex-

ample, may be moving with constant velocity vcm and the body may be

rotating about a fixed axis with constant angular velocity to. If the body
is actually at rest (so that v,.m = and o> = 0), we often speak of static

equilibrium, the central subject of this chapter. However, as we shall

14-1
RIGID BODIES

14-2
THE EQUILIBRIUM
OF A RIGID BODY
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see, the restrictions imposed on the forces and torques are the same
whether or not the equilibrium is static. Furthermore, we can trans-

form any case of (nonstatic) equilibrium to one of static equilibrium by

choosing an appropriate new reference frame.

The translational motion of a rigid body of mass M is governed by

Eq. 9-10, or

Fext — Macm ,

in which F ext is the vector sum of all the external forces acting on the

body. Because acm must be zero for equilibrium, the first condition of

equilibrium istatic or otherwise) is: The vector sum of all the external

forces acting on a body in equilibrium must be zero.

We can write condition (1) as

F = F, +F 2 + • • - = 0, (14-1)

in which we have dropped the subscript on F t
, xt for convenience. This

vector equation leads to three scalar equations.

Fx = Fix + F-Zx + • • = 0,

F„ = Fi„ + F2 » + - = 0, (14-2)

Fz = Fu + F2g + • • = 0,

which state that the sum of the components of the forces along each of

any three mutually perpendicular directions is zero.

The second requirement for equilibrium is that a = for any axis.

Since the angular acceleration of a rigid body is associated with torque—
recall that - = la for a fixed axis — we can state this second condition of

equilibrium (static or otherwise) as: The vector sum of all the external

torques acting on a body in equilibrium must be zero.

We can write condition (2) as

T=T, +t2 + • • = 0. (14-3)

This vector equation leads to three scalar equations

T.r = Tijc +T2X+ m
• = 0,

T„ = Tly +T2„+ = 0, (14-4)

Tz = Tiz + T2z + ' ' ' = 0,

which state that, at equilibrium, the sum of the components of the

torques acting on a body, along each of any three mutually perpendicu-

lar directions, is zero.

The resultant torque t in Eq. 14-3, which must be zero for mechanical

equilibrium, is defined with respect to a particular origin O. The quan-

tities tx, Ty, and 7; in Eq. 14-4 are the scalar components of t and refer to

any set of three mutually perpendicular axes whose origin is at O, no
matter how these axes are oriented in space. This follows because, if a

vector is zero, its scalar components must be zero no matter how we
orient the axes of the reference frame. You may wonder whether the

choice of an origin is essential. The answer— as we shall show below — is

that it is not, because (for a body in translational equilibrium), if t =
tor any single origin O it is also zero for any other origin in the reference

frame. The substance of tins paragraph then is that condition 2 is satis-

fied for a body in translational equilibrium it we can show either that

[a] t = with respect to an} one point [Eq. 14 3) or that \b) the torque



components along any three mutually perpendicular axes are zero (Eq.

14-4).

Let us now assume that we have a rigid body in translational equilibrium, so

that F = Fi + F2 + • • = (Eq. 14-1). We now wish to show that the torque about

any point (such as P in Fig. 14-1) will be zero if the torque about one particular

point (such as O in Fig. 14-1) is zero. The figure shows three of the n forces,

Fi, F2 • • • F„, applied at various points on a rigid body and pointing in various

directions. The points of application with respect to O are identified by dis-

placement vectors, of which ri is an example. The arbitrary point P is identified

by displacement vector tp
}
the vector ri — tP locates the point of application of

Fi with respect to point P.

We can write for the resultant torque about O (see Eq. 12-1)

To t, x F, + t2 x F> + r„ x F„

and for the torque about P,

TP = (r, - cj>] xF, + [ii - tp) x F 2 + • • • + (f„ - tP )
x F„.

We can expand the latter equation as

TP = [r, x F, + r, x F 2 + • • • + r„ x F„] - [iP x (F, + F 2 + • • • +F„)].

Now if, as we have assumed, the first condition of equilibrium is satisfied, then

Fi + F 2 + • • • + F„ = and the second term above in the square brackets vanishes.

The first term in the square brackets is simply t (see above) so that, under

these conditions

Ti- ro-

Thus, for a body in translational equilibrium, if t

an arbitrary point.

0, then Tp = 0, where P is

Hence we have six independent conditions on our forces for a body

to be in equilibrium. These conditions are the six algebraic relations of

Eqs. 14-2 and 14-4. These six conditions are a condition on each of the

six degrees of freedom of a rigid body, three translational and three rota-

tional.

Often we deal with problems in which all the forces lie in a plane.

Then we have only three conditions on our forces: The sum of their

components must be zero for each of any two perpendicular directions

in the plane, and the sum of their torques about any one axis perpen-

dicular to the plane must be zero. These conditions correspond to the

three degrees of freedom for motion in a plane, two of translation and

one of rotation.

We shall limit ourselves henceforth mostly to planar problems in

order to simplify the calculations. This does not impose any funda-

mental restriction on the general principles. Also, as a matter of con-

venience, we shall consider only the case of static equilibrium, in which
bodies are actually at rest in our chosen inertial reference frame.

w

r-n

Hm

o

O

m

figure 14-1

We display three of the n forces,

Fi, F2 , F3 . . . F,„ that act on a rigid

body, not shown. In the text we
show that if t = for point O it also

vanishes for any point such as P,

assuming that the body is in

translational equilibrium.

One of the forces encountered in rigid-body motions is the force of

gravity. Actually, for an extended body, this is not just one force but the

resultant of a great many forces. Each particle in the body is acted on by
a gravitational force. If the body of mass M is imagined to be divided into

a large number of particles, say n, the gravitational force exerted by the

earth on the ith particle of mass mt is m,g. This force is directed down
toward the earth. If the acceleration due to gravity g is the same every-

where in a region, we say that a uniform gravitational field exists there;

that is, g has the same magnitude and direction everywhere in that re-

14-3
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gion. For a rigid body in a uniform gravitational field, g must be the same
for each particle in the body and the weight forces on the particles must
be parallel to one another. If we assume that the earth's gravitational

field is uniform, we can show that all the individual weight forces act-

ing on a body can be replaced by a single force Mg acting down at the

center of mass of the body. This is equivalent to showing that the indi-

vidual weight forces, acting downward, can be counteracted in their ac-

celerating effects by a single force F (= —Mg) acting upward, provided

this force F is applied at the center of mass of the body.

Figure 14-2 shows two typical particles or mass elements m x and m>,

selected from the n such elements into which the rigid body has been

divided. An upward force F (= —Mg) is applied at a certain point O. It

remains to show that the body is in mechanical equilibrium if (and only

if) point O is the center of mass. Condition 1 for equilibrium (Eq. 14-1)

has already been satisfied by our choice of the magnitude and direction

of F. That is,

or

F + m,g + m 2g + • • • + m„g = 0,

F = —(mi + m-i + • • • + m„)g = —Mg,

which corresponds to our assumption.

It remains to prove that t = for any single point in the body, such as

O. This is the second condition for equilibrium. By choosing O as our

origin we insure that the torque of F about this point is zero, because the

moment arm of F is zero for this point. The torque about O due to the

gravitational pull on the mass elements is

t = ti x m,g + t, x m 2g + • • + r„ X m„g

which (because mi, m>, etc., are scalars) we can write as

t = m,r, xg + m,ti x g + • • • + m ntn x g.

Because g is the same in each term, we can factor it out, obtaining

t = {rriiii + mx- + + m„r„) x g

^mjijxg,

in which the sum is taken over all the mass elements that make up the

body.

Now if point O is the center of mass of the body, the sum above is

zero. This follows from the definition of the center of mass (see Eq. 9-5b

and the discussion following it). We conclude then that if (and only if)

point O is the center of mass, then t = and the second condition for

mechanical equilibrium is satisfied.

Thus the gravitational forces acting on the individual mass elements

that make up a rigid body are equivalent in their translational and rota-

tional effects to a single force equal to Mg, the total weight of the body,

acting at the center of mass. We can obtain the same result if the body

is continuous and divided into an infinite number of particles. You
should be able to do this by the methods of integral calculus (see Sec-

tion 9-1). The point of application of the equivalent resultant gravita-

tionaJ force is often called the centei o) gravity.

The fact that the center of gravity and the centei of mass coincided came
about only because we assumed tli.it the earth b gravitational field j; was the

s.i m
(

tor .ill parts ol the rigid body. Actually this assumption is not strictly true

figure 14-2

An irregular body is divided into n

mass elements of which two typical

elements mi and m 2 are shown. In

the text we prove that, if the

gravitational field is uniform, the

body can be held in translational

and rotational equilibrium by a

single force F = (—Mg) directed

upward and applied at the center of

mass of the body.



for the magnitude of g changes with distance from the center of the earth and

furthermore the direction of g is radially in toward the center of the earth from

any point (Chapter 16). To see the effect this has, let us consider a very long

uniform stick inclined to the vertical in the earth's gravitational field, as in

Fig. 14-3. The center of gravity of a body is the point at which the equivalent

resultant gravitational force on it acts. This point must be the same as the point

at which a single oppositely directed force is applied for the body to be kept in

equilibrium. If the field were uniform, a single upward force of magnitude Mg
at the center of mass would keep the stick in translational and rotational equi-

librium. But the field is not uniform, and the value ofgatm, is less than the

value of g at m„. The point at which a single force must be applied to keep the

body in equilibrium is therefore at a point P some distance below the center of

mass. Furthermore, if the orientation of the body is changed, the position of the

point P, required for application of an equilibrium force, changes. Hence center

of gravity really has little usefulness in such a case. Not only does it not coin-

cide with the center of mass, but its position changes with respect to the body

as the body is moved.

figure 14-3

The center of mass C and center of

gravity P in reality do not coincide,

since the earth's gravitational field

is not uniform.

Because almost all problems in mechanics involve objects having

dimensions small compared to the distances over which g changes ap-

preciably, we can assume that g is uniform over the body. The center of

mass and the center of gravity can then be taken as the same point. In

fact, we can use this coincidence to determine experimentally the

center of mass in irregularly shaped objects. For example, let us locate

the center of mass of a thin plate of irregular shape, as in Fig. 14-4. We
suspend the body by a cord from some point A on its edge. When the

body is at rest, the center of gravity must lie directly under the point of

support somewhere on the line Aa, for only then can the torque result-

ing from the cord and the weight add to zero. We next suspend the body
from another point B on its edge. Again, the center of gravity must lie

somewhere on Bb. The only point common to the lines Aa and Bb is O,

the point of intersection, so that this point must be the center of gravity.

If now we suspend the body from any other point on its edge, as C, the

vertical line Cc will pass through O. Since we have assumed a uniform
field, the center of gravity coincides with the center of mass, which is

therefore located at O.

figure 14-4

Since the center of mass O always

hangs directly below the point of

suspension, hanging a plate from

two different points determines O.

In applying the conditions for equilibrium (zero resultant force and zero

resultant torque about any axis), we can clarify and simplify the pro-

cedure by proceeding as follows.

First, we draw an imaginary boundary around the system under con-

sideration. This assures that we see clearly just what body or system of

14-4
EXAMPLES OF
EQUILIBRIUM



bodies it is to which we are applying the laws of equilibrium. This pro-

cess is called isolating the system.

Second, we draw vectors representing the magnitude, direction, and

point of application of all external forces. An external force is one that

acts from outside the boundary which was drawn earlier. Examples of

external forces often encountered are gravitational forces and forces

transmitted by strings, wires, rods, and beams which cross the boundary.

A question sometimes arises about the direction of a force. In this case

make an imaginary cut through the member transmitting the force at

the point where it crosses the boundary. If the ends of this cut tend to

pull apart, the force acts outward. If you are in doubt, choose the direc-

tion arbitrarily. A negative value for a force in the solution means that

the force acts in the direction opposite to that assumed. Note that only

external forces acting on the system need be considered; all internal

forces cancel one another in pairs.

Third, we choose a convenient coordinate system along whose axes

we resolve the external forces before applying the first condition of equi-

librium (Eq. 14-2). The object here is to simplify the calculations. The
preferable coordinate system is usually obvious.

Fourth, we choose a convenient coordinate system along whose axes

we resolve the external torques before applying the second condition of

equilibrium (Eq. 14-4). The object again is to simplify calculations and

we may use different coordinate systems in applying the two conditions

for static equilibrium if this proves to be convenient. Suppose that an

axis passes through the point at which two forces concur and is at right

angles to the plane formed by these forces; these forces will automati-

cally have no torque component along |or about) this axis. The torque

components resulting from all external forces must be zero about any

axis for equilibrium. Internal torques will cancel in pairs and need not

be considered.

\a) A uniform steel meter bar rests on two scales at its ends (Fig. 14-5). The bar EXAUfflPMJE 1

weighs 4.0 lb. Find the readings on the scales.

t-

—

\ i i—ft*
' I ' I 4 ' I ' I |

' W

(a)

~

V»

w

(b)

K.

figure 14-5

(a) Example la. A uniform steel bar

rests on two spring scales, (b)

Example lb. A weight is suspended

a quarter of the way from one end.

Our system is the bar. The forces acting on the bar are W, the gravitational

for* e acting down at the center of gravity, and F, and F 2 , the forces exerted up-

ward on the bar at its ends by the scales. These are shown in Fig. 14-5a. By

Newton's third lavv, the force exerted by a scale on the bar is equal and opposite

to that exerted by the bar on the scale. Therefore, to obtain the readings on the

scales, we must determine the magnitudes of F, and Fj.

For translations! equilibrium (Eq. 14-1] the condition is

F, - F ( W 0.

All fori es .n i vi iih ally bo that it we chouse tin- \ axis to be vertical no othei



axes need be considered. Then we get the scalar equation

F, + F2
- 4.0 lb = 0.

For rotational equilibrium, the component of the resultant torque on the bar

must be zero about any axis. We have seen that it is enough to show that the

torque components are zero for any set of three mutually perpendicular axes.

These components are certainly zero for any two perpendicular axes that lie in

the plane of Fig. l4-5a (Why?). It remains to require that the resultant torque is

zero about any one axis at right angles to the plane of the figure. Let us choose an

axis through the center of gravity. Then, taking clockwise rotation as positive

and counterclockwise rotation as negative, the condition for rotational equi-

librium (Eq. 14-4) is

ft(0-ft(£) + w(o)«a

or

Fi - F2 = 0.

Combining the two equations, we obtain

Ft + Ft = 2F, = 2F-2 = 4.0 lb,

Fi = F2 = 2.0 lb.

Each scale reads 2.0 lb, as we might have expected.

If we had chosen an axis through one end of the bar, we would have obtained

the same result. For example, taking torques about an axis through the right

end, we obtain

FA1) - w(£) + F,(0) = 0,

or

Combining this with F t + F2 = 4.0 lb, we obtain F2 = 2.0 lb, as before.

\b) Suppose that a 6.0-lb block is placed at the 25-cm mark on the meter bar.

What do the scales read now?
The external forces acting on the bar are shown in Fig. I4-5b, where w is the

force exerted on the bar by the block. The first condition for equilibrium is

Fi + Fi - W - w = 0.

With W = 4.0 lb and w = 6.0 lb, we obtain

F, + F-> = 10 lb.

If we take an axis through the left end of the bar, the second condition for equi-

librium is

'1\ .../Iw
ii)

+ w
id

~m

=

°-

With W = 4.0 lb and w = 6.0 lb, we obtain

F-2 = 3.5 lb.

Putting this result into the first equation, we obtain

F,+3.5 lb= 10 1b,

F, = 6.5 lb.

The left-hand scale reads 6.5 lb and the right-hand scale reads 3.5 lb at equi-

librium.

Why do we obtain only two conditions on the forces in this problem rather

than the three conditions expected for problems in which all forces lie in the

same plane?



[a] A 60-ft ladder weighing 100 lb rests against a wall at a point 48 ft above the

ground. The center of gravity of the ladder is one-third the way up. A 160-lb

man climbs halfway up the ladder. Assuming that the wall (but not the ground)

is frictionless, find the forces exerted by the system on the ground and on the

wall.

The forces acting on the ladder are shown in Fig. 14-6. W is the weight of the

man standing on the ladder and w is the weight of the ladder itself. A force Fi is

exerted by the ground on the ladder. F u is the vertical component and Fi/, is the

horizontal component of this force (due to friction). The wall, being friction-

less, can exert only a force normal to its surface, called F 2 . We are given the

following data:

EXAMPLE 2

W= 160 lb,

a = 48 ft,

w= 100 lb,

c = 60 ft.

From the geometry we conclude that b = 36 ft. The line of action of W inter-

sects the ground at a distance b/2 from the wall and the line of action of w
intersects the ground at a distance 2b/3 from the wall.

We choose the x-axis to be along the ground and the y-axis along the wall.

Then, the conditions on the forces for translational equilibrium |Eq. 14-2) are

Fo - F lh = 0,

W 0.

For rotational equilibrium |Eq. 14-4) choose an axis through the point of contact

with the ground and obtain

F-Aa) W = 0.

Using the data given, we obtain

F2(48 ft) - (160 lb)(18 ft) - (100 lb)(12 ft) = 0,

F2 = 85 lb,

Fit, = F2 = 85 lb,

Fi„= 160 lb+ 100 lb = 260 lb.

By Newton's third law the forces exerted by the ground and the wall on the

ladder are equal but opposite to the forces exerted by the ladder on the ground

and the wall, respectively. Therefore, the normal force on the wall is 85 lb, and

the force on the ground has components of 260 lb down and 85 lb to the right.

[b] If the coefficient of static friction between the ground and the ladder is

fj.,
= 0A0. how high up the ladder can the man go before it starts to slip-'

Let x be the fraction of the total length of the ladder the man can climb be-

fore slipping begins. Then our equilibrium conditions are

F2 - F lh = 0,

and

Now we obtain

Fid - Wbx

Fiv ~ W - w = 0,

-<)-"

F2|48 ft) = (160 lb)(36 ft)x + (100 lb)(12 ft),

F2 = (120x + 25) lb.

Hence

and, as before

/„, = |120x + 25) lb,

/,, 260 1b.

flu maximum force of static friction is given by

figure 14-6

Example 2.



Therefore,

and

F,» = fi,Fiv = (0.40)(260 lb) = 104 lb.

Flh = U20x + 25) lb= 104 1b

so that the man can climb up the ladder

60x ft = 39.5 ft

before slipping begins.

In this example the ladder is treated as a one-dimensional object, with only

one point of contact at the wall and ground. You should reflect on how this

limits consideration of the less artificial case of two contact points at each end.

The reason for assuming that the wall is frictionless is discussed later in this

section. Can you guess what it is?

A uniform beam is hinged at the wall. A wire connected to the wall a distance d

above the hinge is attached to the other end of the beam. The beam makes an

angle of 30° with the horizontal when a weight w is hung from a string fastened

to the end of the beam. If the beam has a weight W and a length 1, find the ten-

sion in the wire and the forces exerted by the hinge on the beam.

The situation is depicted in Fig. 14-7, in which all the forces acting on the

beam are shown. The wire pulling on the beam makes some angle a with the

horizontal so that the tension T in the wire has horizontal and vertical com-

ponents Tft and T,, respectively, as shown. The force F exerted by the hinge on

the beam also has horizontal and vertical components F/, and F,, respectively.

W is the weight of the beam, acting at its center of gravity, and w is the tension

in the string that transmits the weight of the suspended body to the beam.

Choosing our axes to be horizontal and vertical, we obtain for translational

equilibrium

and

Fv + Tr-W -w = 0,

Th = 0.

Choosing an axis through the point of intersection of T and w (Why?), we
obtain for rotational equilibrium

Fv [l cos 30°) - Fh{l sin 30°) -
W{1 °°S 3° 0)

= 0.

Our unknowns are Thl TVl Fh, and Fv . Let us assign the following values to

the other quantities:

EXAMPLE 3

W = 60 N, 40 N, 1 = 3.0 m, d = 2.0 m.

figure 14-7

Example 3.



Therefore

[1] F,+T, = 100N,

(2) F„ = Ta,

and

F,|3)(0.866) = F*|1.5) + |60)(1.5)|0.866),

or

13) Fv = Fa(5.0/8.66) + 30 N.

Recall that we have four unknowns, namely FVl Fa, T,, and Ta. We need an-

other relation between these quantities if we are to solve the problem. This

relation follows from the fact that T, and Ta must add to give a resultant vector

T directed along the wire. The wire cannot supply or support a force transverse

to its orientation. [Notice that this is not true for the beam, however.) Hence
our fourth relation is

Tv = Ta tan a,

where tan a = [d - I sin 30°)/7 cos 30° = 1.0/5.2, so that

(4) Tv = Ta/5.2.

Combining |1) and (4) we obtain

F„ = 100 N - Ta/5.2.

Combining (2) and |3), we obtain

F, = Ta|5.0/8.66) + 30N..

Solving these equations simultaneously, we obtain

Ta = 91.0N,

and

F, = 82.5 N.

From (2) we obtain

Fa = 91.0 N.

From (1) we obtain

Tv = 17.5 N.

The tension in the wire will then be

T=VTa 2 + T(
.
2 = 92.7 N,

and the hinge will exert a horizontal force of 91.0 N and a vertical force of

82.5 N on the beam.

In the preceding examples we have been careful to limit the number
of unknown forces to the number of independent equations relating the

forces. When all the forces act in a plane, we can have only three inde-

pendent equations of equilibrium, one for rotational equilibrium about

any axis normal to the plane and two others for translational equilib-

rium in the plane. However, we often have more than three unknown
fi trees. For example, in the ladder problem of Example la, if we drop the

artificial assumption of a frictionless wall, we have four unknown scalar

quantities, namely, the horizontal and vertical components of the force

.u ting on the ladder at the wall and the horizontal and vertical compo
dents oi the force acting on the ladder at the ground. Because we have

only three scalar equations, these forces cannot be determined. For an)

value assigned to one unknown force the othei three forces can be de



termined. But if we have no basis for assigning any particular value to

an unknown force, there are an infinite number of solutions mathe-

matically possible. We must therefore find another independent rela-

tion between the unknown forces if we hope to solve the problem

uniquely.

Another simple example of such underdetermined structures is the

automobile. In this case we wish to determine the forces exerted by the

ground on each of the four tires when the car is at rest on a horizontal

surface. If we assume that these forces are normal to the ground, we
have four unknown scalar quantities. All other forces, such as the

weight of the car and passengers, act normal to the ground. Therefore,

we have only three independent equations giving the equilibrium condi-

tions, one for translational equilibrium in the single direction of all the

forces and two for rotational equilibrium about the two axes perpen-

dicular to each other in a horizontal plane. Again the solution of the

problem is indeterminate, mathematically. A four-legged table with all

its legs in contact with the floor is a similar example.

Of course, since there is actually a unique solution to any real physi-

cal problem, we must find a physical basis for the additional inde-

pendent relation between the forces that enable us to solve the problem.

The difficulty is removed when we realize that structures are never

perfectly rigid, as we have tacitly assumed throughout. Actually our

structures will be somewhat deformed. For example, the automobile

tires and the ground will be deformed, as will the ladder and wall. The
laws of elasticity and the elastic properties of the structure determine

the nature of the deformation and will provide the necessary additional

relation between the four forces. A complete analysis therefore requires

not only the laws of rigid body mechanics but also the laws of elasticity.

In courses of civil and mechanical engineering, many such problems

are encountered and analyzed in this way. We shall not consider the

matter further here.

In Chapter 8 we saw that the gravitational force is a conservative force. For con-

servative forces we can define a potential energy function U(x,y,z), where U is

related to F by

-dU/dx, Fy = -d U/dy, Fz = - a U/c)z.

At points where riU/dx is zero, a particle subject to this conservative force will

be in translational equilibrium in the x-direction, for then Fx equals zero. Like-

wise, at points where dU/dy or dU/dz are zero, a particle will be in translational

equilibrium in the y- and z-directions, respectively. The derivative of U at a

point will be zero when U has an extreme value (maximum or minimum) at that

point or when U is constant with respect to the variable coordinate.

When U is a minimum, the particle is in stable equilibrium; any displace-

ment from this position will result in a restoring force tending to return the par-

ticle to the equilibrium position. Another way of stating this is to say that if a

body is in stable equilibrium, work must be done on it by an external agent to

change its position. This results in an increase in its potential energy.

When U is a maximum, the particle is in unstable equilibrium; any displace-

ment from this position will result in a force tending to push the particle farther

from the equilibrium position. In this case no work must be done on the par-

ticle by an external agent to change its position; the work done in displacing the

body is supplied internally by the conservative force, resulting in a decrease in

potential energy.

When U is constant, the particle is in neutral equilibrium. In this case a par-

14-5
STABLE, UNSTABLE,
AND NEUTRAL
EQUILIBRIUM OF RIGID
BODIES IN A
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figure 14-8

A gravitational potential surface, which may be thought of as a real surface.

A particle placed at A, B or C remains at rest; a plane tangent to any of

these points is horizontal. We say that a particle here is in equilibrium.

At A, a particle, if slightly displaced, tends to return to A. A represents a

point of stable equilibrium. At B, a particle, if slightly displaced, tends to

increase its displacement. Thus B represents a point of unstable equilibrium.

At C, the particle, if slightly displaced in the direction aa', will tend to

return to C, but if it is displaced in direction bb' , it will tend to increase

its displacement. C is called a saddle point since a saddle has somewhat
this shape. Neutral equilibrium, experienced by a particle anywhere on a

plane horizontal surface is not illustrated.

tide can be displaced slightly without experiencing either a repelling or restor-

ing force.

Notice that a particle can be in equilibrium with respect to one coordinate

without necessarily being in equilibrium with respect to another coordinate, as

for example a freely falling ball. Furthermore, a particle may be in stable equilib-

rium with respect to one coordinate and in unstable equilibrium with respect

to another coordinate, as for example a particle at a saddle point (Fig. 14-8).

All these remarks apply to particles, that is, to translational motion. Suppose

now we treat a rigid body. We must consider rotational equilibrium as well as

translational equilibrium. The problem of a rigid body in a gravitational field is

particularly simple, however, because all the gravitational forces on the par-

ticles of the rigid body can be considered to act at one point, both for transla-

tional and rotational purposes. We can replace this entire rigid body, for pur-

poses of equilibrium under gravitational forces, by a single particle having the

equivalent mass at the center of gravity.

For example, consider a cube at rest on one side on a horizontal table. The
center of gravity is shown at the center of the central cross section of the cube

in Fig. 14-9a. Let us supply a force to the cube so as to rotate it without its slip-

ping about an axis along an edge. Notice that the center of gravity is raised and

that work is done on the cube, which increases its potential energy. If the force

is removed, the cube tends to return to its original position, its increased poten-

tial energy being converted into kinetic energy as it falls back. This initial posi

tn hi is, therefore, one of sta ble equilibrium. In terms of a particle of equivalent

mass at the center of gravity, this process is described by the dotted line which

indicates the path taken hy the center of gravity during this motion. The particle

is seen to have a minimum potential energy in the position ot stable equilib-

rium, as required We can conclude that the rigid body will he in stable equilib-

rium if the application of any lone can raise the ccntet ot gravity of the body

but not lowei it

If the cube is rotated until ii balances on an edge .is m i ig i i 9b then one c

tin CUbt is in equilibrium. 'I Ins equilibrium position is seen to be un
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figure 14-9

Equilibrium of an extended body, (a) A cube resting on one side is in stable

equilibrium since its center of gravity C is raised if the cube is tipped by a

horizontal force F. fb) A cube resting on one edge is in unstable equilibrium £
since C falls if the cube is tipped by F. (c) A circular cylinder is in neutral

equilibrium since C neither rises nor falls when F is applied. Compare

these criteria for equilibrium with those given in Fig. 14-8. How are the

criteria in the two figures related?

stable. The application of even the slightest horizontal force will cause the cube

to fall away from this position with a decrease of potential energy. The particle

of equivalent mass at the center of gravity follows the dotted path shown. At the

position of unstable equilibrium this particle has a maximum potential energy,

as required. We can conclude that the rigid body will be in unstable equilibrium

if the application of any horizontal force tends to lower the center of gravity of

the body.

The neutral equilibrium of a rigid body is illustrated by a cylinder on a hori-

zontal table (Fig. 14-9c). If the cylinder is subjected to any horizontal force, the

center of gravity is neither raised nor lowered but moves along the horizontal

dotted line. The potential energy of the cylinder is constant during the displace-

ment, as is that of the particle of equivalent mass at the center of gravity. The
system has no tendency to move in any direction when the applied force is re-

moved. A rigid body will be in neutral equilibrium if the application of any hori-

zontal force neither raises nor lowers the center of gravity of the body.

Under what circumstances would a suspended rigid body be in stable equilib-

rium? When would a suspended rigid body be in unstable equilibrium, and

when would it be in neutral equilibrium?

1. Are Eqs. 14-1 and 14-3 both necessary and sufficient conditions for mechani-

cal equilibrium? For static equilibrium?

2. A wheel rotating at constant angular velocity w about a fixed axis is in

mechanical equilibrium because no net external force or torque acts on it.

However, the particles that make up the wheel undergo a centripetal ac-

celeration a directed toward the axis. Since a # how can the wheel be said

to be in equilibrium?

3. Give several examples of a body which is not in equilibrium, even though

the resultant of all the forces acting on it is zero.

4. If a body is not in translational equilibrium, will the torque about any point

be zero if the torque about some particular point is zero?

5. Which is more likely to break in use, a hammock stretched tightly between
two trees or one that sags quite a bit? Prove your answer.

6. A ladder is at rest with its upper end against a wall and the lower end on the

ground. Is it more likely to slip when a man stands on it at the bottom or at

the top? Explain.

7. In Example 2, if the wall were rough, would the empirical laws of friction

supply us with the extra condition needed to determine the extra (vertical)

force exerted by the wall on the ladder?

8. In Example 3, why isn't it necessary to consider friction at the hinge?

9. A picture hangs from a wall by two wires. What orientation should the wires

have to be under minimum tension? Explain how equilibrium is possible

questions
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1

with any number of orientations and tensions, even though the picture has a

definite mass.

Show how to use a spring balance to weigh objects well beyond the maxi-

mum reading of the balance.

Do the center of mass and the center of gravity coincide for a building? For

a lake : Under what conditions does the difference between the center of

mass and the center of gravity of a body become significant :

12. If a rigid body is thrown into the air without spinning, it does not spin dur-

ing its flight, provided air resistance can be neglected. What does this simple

result imply about the location of the center of gravity?

13. Explain, using forces and torques, how a tree can maintain equilibrium in a

high wind.

Is there such a thing as a truly rigid body?

You are sitting in the driver's seat of a parked automobile. You are told that

the forces exerted upward by the ground on each of the four tires are differ-

ent. Discuss the factors that enter into a consideration of whether this state-

ment is true or false.

A uniform block, in the shape of a rectangular parallelepiped of sides in the

ratio 1:2:3, lies on a horizontal surface. In which position, that is, on which

of its three different faces, can it be said to be most stable, if any?

17. A virus particle in a rotating liquid-filled centrifuge tube is in uniform cir-

cular motion (that is, in accelerated motion) as viewed by an observer in the

laboratory. An observer rotating with the centrifuge, however, would de-

clare the particle to be unaccelerated. Explain how the virus particle can

be in equilibrium for this second observer but not for the first.

18. In Chapter 5 we defined force in terms of acceleration from the relation

F = ma. For a body in equilibrium, however, there are no accelerations. How,
then, can we give meaning to the forces acting on such a body?

14

15

16

SECTION 14-2

1. Prove that when only three forces act on a body in equilibrium, they must
be coplanar and their lines of action must meet at a point or at infinity.

2. A uniform sphere of weight w and radius r is being held by a rope attached

to a frictionless wall a distance L above the center of the sphere, as in Fig.

14-10. Find [a] the tension in the rope and [b] the force exerted on the sphere

by the wall.

3. A uniform sphere of weight w lies at rest wedged between two inclined

planes of inclination angles 6, and 0> (Fig. 14-11). [a] Assume that no friction

is involved and determine the forces (directions and magnitude) that the

planes exert on the sphere. \b) What change would it make, in principle, if

friction were taken into account?

Answer: [a] Ft = w sin 2/sin [02 — 0i); F-2 = w sin tf,/sin [62 — 0ij; normal to

the planes.

problems

9\

figure I 1-10

Problem 2

figure 14-11

Problem 3



Two identical uniform smooth spheres, each of weight W, rest as shown in

Fig. 14-12 at the bottom of a fixed, rectangular container. Find, in terms of

W, the forces acting on the spheres by [a] the container surfaces and [b] by

one another, if the line of centers of the spheres makes an angle of 45° with

the horizontal.

A flexible chain of weight W hangs between two fixed points, A and B, at

the same level, as shown in Fig. 14-13. Find [a) the vector force exerted by

the chain on each end point and [b] the tension in the chain at the lowest

point.

W 1

Answer: (a) — sin 0, tangent to chain, [b] -W cot 0.
figure 14-12

Problem 4
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SECTION 14-3

6. A nonuniform bar of weight W is suspended at rest in a horizontal position

by two light cords as shown in Fig. 14-14; the angle one cord makes with the

vertical is = 36.9°; the other makes the angle </> = 53.1° with the vertical.

If the length 1 of the bar is 6. 1 m, compute the distance x from the left-hand

end to the center of gravity.

7. A circular section of radius r is cut out of a uniform disk of radius R, the

center of the hole being R/2 from the center of the original disk. Locate the

center of gravity of the resulting body.

Answer: Along a line from the center of the hole through the center of the

disk, beyond the latter point by a distance Rr2/2(R 2 — r2
).

SECTION 14-4

8. A beam is carried by three men, one man at one end and the other two sup-

' porting the beam between them on a crosspiece so placed that the load is

equally divided among the three men. Find where the crosspiece is placed.

Neglect the mass of the crosspiece.

9. In Fig. 14-15 a man is trying to get his car out of the mud on the shoulder of

a road. He ties one end of a rope tightly around the front bumper and the

other end tightly around a telephone pole 60 ft away. He then pushes side-

ways on the rope at its midpoint with a force of 125 lb, displacing the center

of the rope 1 .0 ft from its previous position and the car almost moves. What
force does the rope exert on the car-

1

(The rope stretches somewhat under

the tension.) Answer: 1900 lb.

figure 14-13
Problem 5

figure 14-14

Problem 6

figure 14-15

Problem 9

10. Forces Fi, F 2/ and F3 act on the structure of Fig. 14-16 as shown. We wish to

put the structure in equilibrium by applying a force, at a point such as P,

whose vector components are F* and F, . We are given that a = 2.0 m, b =
3.0 m, c = 1.0 m, F, = 20 N, F2 = 10 N, and F, = 5.0 N. Find [a] F,„ [b] Fv, and

[eld.
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figure 14-16

Problem 10



11. What force F applied horizontally at the axle of the wheel is necessary to

raise the wheel over an obstacle of height h : Take r as the radius of the

wheel and W as its weight [Fig. 14-171.

15.

16.

17.

19.

20.

21

Answer: WVh\2r - h)l[i - h).

12. A trap door in a ceiling is 3.0 ft (0.91 m) square, weighs 25 lb |mass= 1 1 kg),

v and is hinged along one side with a catch at the opposite side. If the center

of gravity of the door is 4.0 in. (10 cm) from the door's center and closer to

the hinged side, what forces must {a) the catch and \b) the hinge sustain 7

13. A meter stick balances on a knife edge at the 50.0-cm mark. When two
nickels are stacked over the 12.0-cm mark, the loaded stick is found to

balance at the 45.5-cm mark. A nickel has a mass of 5.0 g. What is the mass
of the meter stick!

1

Try this technique and check your answer experi-

mentally. Answer: 74.4 g.

14. A balance is made up of a rigid rod free to rotate about a point not at the

center of the rod. It is balanced by unequal weights placed in the pans at

each end of the rod. When an unknown mass m is placed in the left-hand

pan, it is balanced by a mass m, placed in the right-hand pan, and similarly

when the mass m is placed in the right-hand pan, it is balanced by a mass
m2 in the left-hand pan. Show that

m V.ffllfflj,

An automobile weighing 3000 lb (mass = 1360 kg) has a wheel base of 120

in. (305 cm). Its center of gravity is located 70.0 in. (178 cm) behind the front

axle. Determine \a) the force exerted on each of the front wheels (assumed

the same) and \b) the force exerted on each of the back wheels (assumed the

same) by the level ground.

Answer: [a] 625 lb (2780 N). [b] 875 lb (3890 N).

A crate in the form of a 4.0-ft cube contains a piece of machinery whose

design is such that the center of gravity of the crate and its contents is

located 1.0 ft above its geometrical center, {a) If the crate is to be slid down a

ramp without tipping over, what is the maximum angle which the ramp
may make with the horizontal" (£>) What is the maximum value for the

coefficient of static friction between the crate and the ramp in this case

such that the crate will just begin to slide?

A door 7.0 ft (2. 1 m) high and 3.0 ft (0.91 m) wide weighs 60 lb (mass = 27 kg).

A hinge 1.0 ft (0.30 m) from the top and another 1.0 ft (0.30 m) from the

bottom each support half the door's weight. Assume that the center of

gravity is at the geometrical center of the door and determine the hori-

zontal and vertical force components exerted by each hinge on the door

Answer: 30 lb (130 N) vertical; 18 lb (80 N) horizontal, oppositely directed.

Four bricks, each of length /, are put on top of one another (see Fig. 14-18)

in such a way that part of each extends beyond the one beneath. Show that

the largest equilibrium extensions are [a] top brick overhanging the one

below by 1/2, [b] second brick from top overhanging the one below by 1/4,

and (c) third brick from top overhanging the bottom one by 1/6.

The system shown in Fig. 14-19 is in equilibrium. The mass hanging from

the end of the strut S weighs 500 lb (mass = 230 kg), and the strut itself

weighs 100 lb (mass = 45 kg). Find (a) the tension T in the cable and \b) the

force exerted on the strut by the pivot P.

Answer: [a] 1500 lb (6800 N). [b] Fh = 1300 lb (5900 N), F„= 1350 lb (6100 N).

A 100-lb plank, of length / = 20 ft, rests on the ground and on a frictionless

rollei not shown) at the top oi a wall of height h = 10 ft (see Fig. 14-20). The
center of gravity of the plank is at its center. The plank remains in equilib-

rium for any value of <i s= 70°, but slips it 6 70°. [a] Draw a diagram show-

ing all forces acting mi the plank, [b] Find the coefficient of static friction

between the plank and the ground,

A thin horizontal bar AH of negligible weight and length / is pinned to .i

vertical wall at A and Bupported .u H by a thin wire B( ' that makes an .ingle 6

figure 14-17
Problem 1

1

figure 14-18

Problem 18
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figure 14-19

Problem 19

figure I 1-20

Problem 20



with the horizontal. A weight W can be moved anywhere along the bar as

defined by the distance x from the wall (Fig. 14-21). [a] Find the tension T
in the thin wire as a function of x. Find [b] the horizontal and (c) the vertical

components of the force exerted on the bar by the pin at A.

Answer: [a] Wx/[1 sin 0). [b] Wx/(1 tan 0). (c) W(l - x/1).

22. A homogeneous sphere of radius r and weightW slides along the floor under

the action of a constant horizontal force P applied to a string, as shown in Fig.

14-22. [a] Show that if ju. is the coefficient of kinetic friction between sphere

and floor, the height h is given by h = i[l — fxW/P). [b] Show that the sphere

is not in translational equilibrium under these circumstances. Is there any

point about which the sphere is in rotational equilibrium? (c) Can one get

the sphere to be in both rotational and translational equilibrium by a dif-

ferent choice of h- By a different direction for P? Explain.

O
03

m

figure 14-21
Problem 21

figure 14-22
Problem 22

23. In the stepladder shown in Fig. 14-23 AC and CE are 8.0 ft long and hinged
* at C. BD is a tie rod 2.5 ft long, halfway up. A man weighing 192 lb climbs

6.0 ft along the ladder. Assuming that the floor is frictionless and neglecting

the weight of the ladder, find (a) the tension in the tie rod and [b] the forces

exerted on the ladder by the floor. [Hint: It will help to isolate parts of the

ladder in applying the equilibrium conditions.)

Answer: [a] 47 lb. [b) Fa = 120 lb, FE = 72 lb.

24. A cubical box is filled with sand and weighs 200 lb (890 N). It is desired to

"roll" the box by pushing horizontally on one of the upper edges, [a] What
minimum force is required" [b] What minimum coefficient of static friction

is required? (c) Is there a more efficient way to roll the box? If so, find the

lowest possible force that would be required to be applied directly to the

box.

25. By means of a turnbuckle G, a tension force T is produced in bar AB of the

square frame ABCD in Fig. 14-24. Determine the forces produced in the

other bars. The diagonals AC and BD pass each other freely at E. Symmetry
considerations can lead to considerable simplification in this and similar

problems.

Answer: Bars AD, BC, and DC are in tension (force T)
;
diagonals AC and

BD are in compression (force V2 T).

26. A well-known problem is the following (see, for example, Scientific Amer-
ican, November 1964, p. 128): Uniform bricks are placed one upon another

in such a manner as to have the maximum offset. This is accomplished by

having the center of gravity of the top brick directly above the edge of the

brick below it, the center of gravity of the two top bricks combined directly

above the edge of the third brick from the top, etc. [a] Justify this criterion

for maximum offset. \b) Show that, if the process is continued downward,

one can obtain as large an offset as he wants. (Martin Gardner, in the article

referred to above, states: "With 52 playing cards, the first placed so that its

end is flush with a table edge, the maximum overhang is a little more than

2| card lengths. . . .") (c) Suppose now, instead, one piles up uniform bricks

so that the end of one brick is offset from the one below it by a constant

fraction, 1/n, of a brick length 1. How many bricks, N, can one use in this

process before the pile will fall over? Check the plausibility of your answer
for n = 1, n = 2, n = «.

figure 14-23
Problem 23

figure 14-24
Problem 25



m SECTION 14-5

27. A bowl having a radius of curvature r rests on a rough horizontal table. Show

that the bowl will be in stable equilibrium about the center point at its

bottom only if the center of mass of the material piled up in the bowl is not

as high as r above the center of the bowl.

28. A cube of uniform density and edge a is balanced on a cylindrical surface of

radius i as shown in Fig. 14-25. Show that the criterion for stable equilib-

rium of the cube, assuming that friction is sufficient to prevent slipping,

is r > all.

figure 14-25
Problem 28

O



15

oscillations
Any motion that repeats itself in equal intervals of time is called peri- 15-1
odic motion. As we shall see, the displacement of a particle in periodic OSCILLATIONS
motion can always be expressed in terms of sines and cosines. Because

the term harmonic is applied to expressions containing these functions,

periodic motion is often called harmonic motion.

If a particle in periodic motion moves back and forth over the same
path, we call the motion oscillatory or vibratory. The world is full of

oscillatory motions. Some examples are the oscillations of the balance

wheel of a watch, a violin string, a mass attached to a spring, atoms in

molecules or in a solid lattice, and air molecules as a sound wave
passes by.

Many oscillating bodies do not move back and forth between pre-

cisely fixed limits because frictional forces dissipate the energy of mo-
tion. Thus a violin string eventually stops vibrating and a pendulum
stops swinging. We call such motions damped harmonic motions. Al-

though we cannot eliminate friction from the periodic motions of gross

objects, we can often cancel out its damping effect by feeding energy

into the oscillating system so as to compensate for the energy dissipated

by friction. The main spring of a watch and the falling weight in a pen-

dulum clock supply external energy in this way, so that the oscillating

system, that is, the balance wheel or the pendulum, moves as if it were
undamped.

Not only mechanical systems can oscillate. Radio waves, micro-

waves, and visible light are oscillating magnetic and electric field vec-

tors. Thus a tuned circuit in a radio and a closed metal cavity in which
microwave energy is introduced can oscillate electromagnetically. The
analogy is close, being based on the fact that mechanical and electro-
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magnetic oscillations are described by the same basic mathematical
equations. We will make the most of this analogy in later chapters.

The period T of a harmonic motion is the time required to complete
one round trip of the motion, that is, one complete oscillation or cycle.

The frequency of the motion v is the number of oscillations (or cycles)

per unit of time. The frequency is therefore the reciprocal of the

period, or

v = l/T. .15-11

The SI unit of frequency is the cycle per second, or hertz (Hz).* The posi-

tion at which no net force acts on the oscillating particle is called its

equilibrium position. The displacement (linear or angular) is the dis-

tance (linear or angular) of the oscillating particle from its equilibrium

position at any instant.

Let us focus attention on a particle oscillating back and forth along a

straight line between fixed limits. Its displacement x changes periodi-

cally in both magnitude and direction. Its velocity v and acceleration a

also vary periodically in magnitude and direction and, in view of the

relation F = ma, so does the force F acting on the particle.

Forces associated with harmonic motion are the most general kinds of forces

that we have discussed so far. In the earlier chapters we dealt only with constant

forces (and accelerations). Later, when we considered forces that are not con-

stant but instead vary with time, we examined a force (and thus an acceleration)

that varied in direction although its magnitude was constant (the centripetal

force of Section 6-3), and a force (and thus an acceleration) which varied in mag-

nitude although its direction was constant (the impulsive force of Section 10-1).

Here, in harmonic motion, the force, and the acceleration, vary both in direc-

tion and magnitude.

In terms of energy, we can say that a particle undergoing harmonic

motion passes back and forth through a point (its equilibrium position)

at which its potential energy is a minimum. A swinging pendulum is a

good example, its potential energy being a minimum at the bottom of

the swing, that is, at the equilibrium position. Figure 15- la shows the

generalized case of a particle oscillating between the limits Xi and x>,

O being the equilibrium position. Figure 15-lfr shows the corresponding

potential energy curve, which has a minimum value at that position.

The force acting on the particle at any position is derivable from the

potential energy function; it is given by Eq. 8-7,

F = -dU/dx, (8-7)

and is displayed in Fig. 15-lc. The force is zero at the equilibrium posi-

tion O, points to the right (that is, has a positive value) when the par-

ticle is to the left of O, and points to the left (that is, has a negative

value) when the particle is to the right of O. The force is a restoring

force because it always acts to accelerate the particle in the direction of

its equilibrium position. Hence in harmonic motion the position of

equilibrium is always one of stable equilibrium.

The total mechanical energy £ for an oscillating particle is the sum
of its kinetic energy and its potential energy, or

-»

o—

*i

(a)

F(= ma)

U(x)

figure 15-1

(a) A particle of mass m
oscillates harmonically between

points Xi and x: , O being the

equilibrium position, (b) The
potential energy of the particle as a

function of position. The force

acting on the particle at position x

is given by F = —dU/dx. (c) The
force acting on the particle as a

function of position x
;
note that the

force is directed toward the

equilibrium position.

E = K+ U 115-2)

I In a Frequency unit is named aftci I leinrit h I lertz (1857-18941 whose research provided

the expi Him nt. il tiini.it i tin Hie t r< imagnei u waves predicted theoretically hy

lames ( lerk Maxwell 1831 18



in which £ remains constant if no nonconservative forces, such as the

force of friction, are acting. Figure 15-2 shows £ for the motion of Fig.

15-1. Note how Eq. 15-2 is satisfied for the particle in the typical posi-

tion shown. The particle cannot move outside the limits Xi and x2 be-

cause, in these regions, U exceeds £. This, as Eq. 15-2 shows, would

require the kinetic energy to be negative, an impossibility.

For a given environment, that is, for a given function U[x), an oscil-

lating particle can have various total energies, depending on how we set

it into motion initially. Thus the total energy may be £', rather than £,

in which case the limits of oscillation would be x/ and x2 ', as Fig. 15-2

shows, rather than Xi and x2 .

U(x) (a)

figure 15-2

The total mechanical energy £ for

the motion of Fig. 15-1 is shown.

If the total mechanical energy of

the oscillating particle is reduced

to £', the limits of oscillation are

reduced to x/ and x2
' respectively.

-xi
"'«» >

+xi

figure 15-3

(a) A particle of mass m oscillates

with simple harmonic motion
between points +x, and — Xi, O
being the equilibrium position, (b)

The potential energy U(x) and the

total mechanical energy £. (c) The
force acting on the particle.

Compare this figure carefully with

Fig. 15-1, which illustrates the

general case of harmonic motion.

Let us consider an oscillating particle (Fig. l5-3a) moving back and forth

about an equilibrium position through a potential that varies as

U(x) = ikx2 (15-3)

in which k is a constant; see Fig. 15-3i>. The force acting on the particle

is given by Eq. 8-7, or

f(x) = -dU/dx = -d{ikx2)/dx = -kx ; ;i5-4)

see Fig. 15-3c. Such an oscillating particle is called a simple harmonic
oscillator and its motion is called simple harmonic motion. In such

motion, as Eq. 15-3 shows, the potential energy curve varies as the

square of the displacement, and, as Eq. 15-4 shows, the force acting on
the particle is proportional to the displacement but is opposite to it in

direction. In simple harmonic motion the limits of oscillation are

equally spaced about the equilibrium position. This is not true for the

more general motion of Fig. 15-1 which, although harmonic, is not sim-

ple harmonic. The magnitude of the maximum displacement, that is,

the quantity Xi in Fig. 15-3, always taken as positive, is called the ampli-

tude of the simple harmonic motion.

You will have recognized Eq. 15-3 [U[x) = ikx2
] as the expression

for the potential energy of an "ideal" spring, compressed or extended
by a distance x

;
see Section 8-4. In this same section an ideal spring was

15-2
THE SIMPLE HARMONIC
OSCILLATOR



defined as one in which the force exerted by the stretched or com-

pressed spring is given by Fix) = —kx (see Eq. 15-4), A- being called the

force constant.

Hence, a body of mass m attached to an ideal spring of force constant

k and free to move over a frictionless horizontal surface is an example

of a simple harmonic oscillator (see Fig. 15-4). Note that there is a

position (the equilibrium position; see Fig. 15-4i>) in which the spring

exerts no force on the body. If the body is displaced to the right (as in

Fig. 15-4fl), the force exerted by the spring on the body points to the left

and is given by F = —kx. If the body is displaced to the left (as in Fig.

15-4c), the force points to the right and is also given by F =—kx. In each

case the force is a restoring force. The motion of the oscillating mass is

simple harmonic motion.

inmnrrmlr

F= -kx
<

(a) Stretched

iMIMM
(b) Relaxed

mmmmmmmkmmm^M^mm

figure 15-4

A simple harmonic oscillator. The
force exerted by the spring is

shown in each case. The block

slides on a frictionless horizontal

table.

Let us apply Newton's second law, F = ma, to the motion of Fig.

15-4. For F we substitute —kx (from Eq. 15-4) and for the acceleration a

we put in d2x/dt2 (= dv/dt). This gives us

-kx = m d2x

dt2

or

d2x . k n
dt2 m ,15-5)

This equation involves derivatives and is, therefore, called a differen-

tial equation. To solve this equation means to determine how the dis-

placement x of the particle must depend on the time t in order that the

equation be satisfied. When we know how x depends on time, we know
the motion of the particle; thus, Eq. 15-5 is called the equation of mo-
tion of a simple harmonic oscillator. We shall solve this equation and

describe the motion in detail in the next section.

The simple harmonic oscillator problem is important for two rea-

sons: First, most problems involving mechanical vibrations reduce to

that of the simple harmonic oscillator at small amplitudes of vibration,

or to ;i combination of such vibrations. This is equivalent to saying that

if we considei a small enough portion of the restoring force curve of Fig.

15-L around the origin), it becomes arbitrarily close to a straight line



which, as Fig. 15-3c shows, is characteristic of simple harmonic mo-

tion. Or, in other words, the potential energy curve of Fig. 15- lb for

general oscillatory motion reduces to that of Fig. \5-3b for simple har-

monic oscillation when the amplitude of vibration is made sufficiently

small about the equilibrium position O.

Second, as we have indicated, equations like Eq. 15-5 occur in many
physical problems in acoustics, in optics, in mechanics, in electrical

circuits, and even in atomic physics. The simple harmonic oscillator

exhibits features common to many physical systems.

Equation 15-4 [F = —kx) is an empirical relation known as Hooke's

law. It is a special case of a more general relation, dealing with the de-

formation of elastic bodies, discovered by Robert Hooke (1635-1703).*

It is obeyed by springs and other elastic bodies provided the deforma-

tion is not too great. If the solid is deformed beyond a certain point,

called its elastic limit, it will not even return to its original shape when
the applied force is removed (Fig. 15-5). It turns out that Hooke's law

holds almost up to the elastic limit for many common materials. The
range of applied forces over which Hooke's law is valid is called the

"proportional region." Beyond the elastic limit, the force can no longer

be specified by a potential energy function, because the force then de-

pends on many factors including the speed of deformation and the pre-

vious history of the solid.

Notice that the restoring force and potential energy function of the

simple harmonic oscillator are the same as that of a solid deformed in

one dimension in the proportional region. If the deformed solid is re-

leased, it will vibrate, just as the simple harmonic oscillator does.

Therefore, as long as the amplitude of the vibration is small enough,

that is, as long as the deformation remains in the proportional region,

mechanical vibrations behave exactly like simple harmonic oscillators.

It is easy to generalize this discussion to show that any problem in-

volving mechanical vibrations of small amplitude in three dimensions

reduces to a combination of simple harmonic oscillators.

The vibrating string or membrane, sound vibrations, the vibrations

of atoms in solids, and electrical or acoustical oscillations in a cavity

can be described in a form which is mathematically identical to a sys-

tem of harmonic oscillators. The analogy enables us to solve problems

in one area by using the techniques developed in other areas.

figure 15-5

Typical graph of applied force F

versus resulting elongation of an

aluminum bar under tension. The
sample was a foot long and a

square inch in cross section. Notice

that we may write F = kx only for

the portion Oa, since beyond this

point the slope is no longer constant

but varies in a complicated way
with x. At some point such as b

(the elastic limit) the sample does

not return to its original length

when the applied force is removed.

Between b and b' the elongation

increases, even though the force is

held constant; the material flows

like a viscous fluid. At c, the sample

can be stretched no farther; any

increase in elongation results in the

sample's breaking in two. The
applied force is equal in magnitude

to the restoring force so that no

minus sign appears in the relation

F= kx.

Let us now solve the equation of motion of the simple harmonic oscil-

lator,

d2x k n
at 2 m H5-6)

Recall that any system of mass m upon which a force F = —kx acts will

be governed by this equation. In the case of a spring, the proportionality

constant k is the force constant of the spring, which is a measure of its

stiffness. In other oscillating systems the proportionality constant k

may be related to other physical features of the system, as we shall see

later. We can use the oscillating mass-spring system as our prototype.

15-3
SIMPLE HARMONIC
MOTION

* Hooke first expressed his law in 1676 as a Latin cryptogram ceiiinosssttuv. Two years

later he deciphered this as ut tensio sic vis, which we may translate as: the {extension is

proportional to the force.



Equation 15-6 is a differential equation. It gives a relation between a

function of the time x(r) and its second time derivative d2x/dt2
. To find

the position of the particle as a function of the time, we must find a

function x|r) which satisfies this relation.

We can rewrite Eq. 15-6 as

Equation 15-7 then requires that x[t) be some function whose second

derivative is the negative of the function itself, except for a constant

factor k/m. We know from the calculus, however, that the sine func-

tion or the cosine function has this property.* For example,

d , d2 d
~r cos t = —sin t and -j-r cos t = — -5- sin t = —cos t.

dt dt2 dt

This property is not affected if we multiply the cosine function by a con-

stant A. We can allow for the fact that the sine function will do as well,

and for the fact that Eq. 15-7 contains a constant factor, by writing as a

tentative solution of Eq. 15-7,

X = A COS [tat + d>). (15-8)

Here since

cos [cot + tf>) = cos <£ cos cot — sin <f> sin cot = a cos cot + b sin cot,

the constant 4> allows for any combination of sine and cosine solutions.

Hence, with the (as yet) unknown constants A, to, and tf>, we have writ-

ten as general a solution to Eq. 15-7 as we can. In order to determine

these constants such that Eq. 15-8 is actually the solution of Eq. 15-7,

we differentiate Eq. 15-8 twice with respect to the time. We have

dx
-j- = —coA sin [tot + tf>)

d2x
and -1-7 = — co

2A cos [cot + </>).

Putting this into Eq. 15-7, we obtain

-co2A cos [cot + <l>)
= ~™A cos [cot + (/>).

Therefore, if we choose the constant co such that

co
2 = — > (15-9)m

then x = A cos [cot + c/>)

is in fact a solution of the equation of a simple harmonic oscillator.

The constants A and tf> are still undetermined and, therefore, still

completely arbitrary. This means that any choice of A and tb whatso-

ever will satisfy Eq. 15-7, so that a large variety of motions is possible

for the oscillator. Actually, this is characteristic of a differential equa-

tion of motion, for such an equation does not describe just one single

motion but a group or family of possible motions which have some
features in common but differ in other ways. In this case to is common
to all the allowed motions, but A and <l> may differ among them. We

l i.i r ii i
f hi i c motion is not onlj periodic but also bounded. Only the Bine and cosine func

nuns en i ombinations of them) have both these properties



shall see later that A and 4> are determined for a particular harmonic

motion by how the motion starts.

Let us find the physical significance of the constant to. If we increase

the time t in Eq. 15-8 by 2-nlto, the function becomes

x = A cos [w{t + 2ttI(o) + </>],

= A cos [tot + 2tt + </>),

= A cos [tot + </>).

That is, the function merely repeats itself after a time 2tt/o). Therefore,

Itt/w is the period of the motion T. Since w2 = k/m, we have

T=— = 2ttJ^-- (15-10)
to V K

Hence, all motions given by Eq. 15-7 have the same period of oscilla-

tion, and this is determined only by the mass m of the oscillating par-

ticle and the force constant k of the spring. The frequency v of the

oscillator is the number of complete vibrations per unit time and is

given by

v= r= T~ = ^T \/™' 15-11
T 2tt 2tt \m

Hence, a> = 2irv = ^- (15-12)

The quantity a> is called the angular frequency; it differs from the fre-

quency v by a factor 2tt. It has the dimension of reciprocal time (the

same as angular speed) and its unit is the radian/second. In Section 15-6

we shall give a geometric meaning to this angular frequency.

The constant A has a simple physical meaning. The cosine function

takes on values from —1 to 1. The displacement x from the central

equilibrium position x = 0, therefore, has a maximum value of A; see

Eq. 15-8. We call A [= xmax )
the amplitude of the motion. Because A is

not fixed by our differential equation, motions of various amplitudes

are possible, but all have the same frequency and period. The frequency

of a simple harmonic motion is independent of the amplitude of the

motion.

The quantity [cot + (/>) is called the phase of the motion. The constant

(/> is called the phase constant. Two motions may have the same ampli-

tude and frequency but differ in phase. If </> = — tt/2, for example,

x = A cos [a)t + </>) = A cos [tot — 90°)

= A sin tot

so that the displacement is zero at the time t = 0. When 4> — 0, the dis-

placement x — A cos tot is a maximum at the time t = 0. Other initial

displacements correspond to other phase constants.

The amplitude A and the phase constant
(f> of the oscillation are de-

termined by the initial position and speed of the particle. These two
initial conditions will specify A and 4> exactly.* Once the motion has

started, however, the particle will continue to oscillate with a constant

amplitude and phase constant at a fixed frequency, unless other forces

disturb the system.

* A phase constant may be increased by any integral multiple of 2n, or of 360°, and it will

still describe the motion equally well.
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figure 15-6

Several solutions of the simple

harmonic oscillator equation, (a)

Both solutions have the same
amplitude and period but differ in

phase by 45°. (b) Both have the

same period and phase constant but

differ in amplitude by a factor of 2.

(c) Both have the same phase

constant and amplitude but differ

in period by a factor of 2.

In Fig. 15-6 we plot the displacement x versus the time t for several

simple harmonic motions described by Eq. 15-8. Three comparisons are

made. In Fig. \5-6a, I and II have the same amplitude and frequency but

differ in phase by </> = 7r/4 or 45°. In Fig. 15-6b, I and III have the same
frequency and phase constant but differ in amplitude by a factor of 2.

In Fig. 15-6c, I and IV have the same amplitude and phase constant but

differ in frequency by a factor j or in period by a factor 2. Study these

curves carefully to become familiar with the terminology used in sim-

ple harmonic motion.

Another distinctive feature of simple harmonic motion is the rela-

tion between the displacement, the velocity, and the acceleration of the

oscillating particle. Let us compare these quantities for curve / of Fig.

15-6, which is typical. In Fig. 15-7 we plot separately the displacement

x versus the time t, the velocity v = dx/dt versus the time t, and the

acceleration a = dv/dt = d2x/dt2 versus the time t. The equations of

these curves are

x — A cos [(at + </>),

V = -j- = — ojA sin (cot + 4>),

dv , .
, ,

,

o = -Tr= —(o2A cos [(at + </)).

[15-13)

For the case plotted we have taken c/> = 0. The units and scale of dis-

placement, velocity, and acceleration are omitted for simplicity of com-

parison. Notice that (see Eq. 15-13) the maximum displacement is A,

the maximum speed is utA, and the maximum acceleration is <o
2A

When the displacement is a maximum in either direction, the speed

is zero because the velocity must now change its direction. The accel-

eration at this instant, like the restoring force, has a maximum value

but is directed opposite to the displacement. When the displacement is

zero, the speed of the particle is a maximum and the acceleration is

zero, corresponding to a zero restoring force. The speed increases as the

particle moves toward the equilibrium position and then decreases as

it moves out to the maximum displacement, inst as for a pendulum hob.

figur«' 15-7

The relations between displacement

velocity, and acceleration m simple

harmonic motion The phase

constant </> is zero in this particul.ii

case since the displacement is

maximum at i o see Eq 1 5 8
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In Fig. 15-8 we show the instantaneous values of x, v, and a at four

instants in the motion of a particle oscillating at the end of a spring.

figure 15-8

The force acting on, and the

acceleration, velocity and

displacement of a mass m
undergoing simple harmonic

motion. Compare carefully

with Fig. 15-7.

Equation 15-2 tells us that for harmonic motion, including simple har-

monic motion, in which no dissipative forces act, the total mechanical

energy E [= K + U) is conserved (remains constant). We can now study

this in more detail for the special case of simple harmonic motion, for

which the displacement is given by

x = A cos {<ot 4- </>).

The potential energy U at any instant is given by

U = ikx2

= ikA 2 cos2
(cut + c/>).

;i5-8i

115-14)

The potential energy has a maximum value of \kA 2
. During the motion

the potential energy varies between zero and this maximum value, as

the curves in Fig. 15-9a and 15-9£> show.

The kinetic energy K at any instant is imv2
. Using the relations

and

we obtain

v = dx/dt = —a)A sin [cot + c/>)

<w
2 = k/m,

K = imv2
,

= imco2A 2 sin2
[tot + </>),

= ikA 2 sin2
(art + 0). ;i5-15)

The kinetic energy, therefore, has a maximum value of ikA 2 or \m\wA) 2
,

in agreement with the maximum speed coA noted earlier. During the

15-4
ENERGY
CONSIDERATIONS IN
SIMPLE HARMONIC
MOTION
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figure 15-9

Energies of a simple harmonic

oscillator, (a) Potential energy

(— — — — ), kinetic energy

(— — ), and total energy |— —

)

plotted as a function of time, (b)

Potential, kinetic, and total energy

plotted as a function of

displacement from the

equilibrium position. Compare
with Fig. 8-4.

motion the kinetic energy varies between zero and this maximum
value, as shown by the curves in Fig. \5-9a and l5-9b.

The total mechanical energy is the sum of the kinetic and the po-

tential energy. Using Eqs. 15-14 and 15-15 we obtain

£ = K+ U = ikA 2 sin2 |wr + <f>) + ikA 2 cos2 [at + 0) = ikA 2
. (15-16)

We see that the total mechanical energy is constant, as we expect, and

has the value ikA 2
. At the maximum displacement the kinetic energy

is zero, but the potential energy has the value ikA 2
. At the equilibrium

position the potential energy is zero, but the kinetic energy has the

value ikA 2
. At other positions the kinetic and potential energies each

contribute energy whose sum is always ikA 2
. This constant total energy

is shown in Fig. \S-9a and 15-9b. The total energy of a particle executing

simple harmonic motion is proportional to the square of the amplitude

of the motion. It is clear from Fig. 15-9*3 that the average kinetic en-

ergy for the motion during one period is exactly equal to the average

potential energy and that each of these average quantities is ikA 2
.

Equation 15-16 can be written quite generally as

K + U = imv2 + ikx2 = ikA 2
.

From this relation we obtain v2 = [klm)[A 2 — x2
) or

15-17)

dx
[A 2 - x2

).

in
15-18)

This relation shows clearly that the speed is a maximum at the equilib-

rium position x = and zero at the maximum displacement x — A. In

fact, wc can start from the conservation of energy principle, Eq. 15-17

[in which ikA 2 = £), and by integration of Eq. 15-18 obtain the dis-

placement as a function of time. The result is identical with Eq. 15-8

which we deduced from the differential equation ot the motion, Eq.

15-6. (See Problem 29.)

The effect ol dissipative forces will be discussed in Section 15-9.



The horizontal spring of Fig. 15-4 is found to be stretched 3.0 in. from its equi- EXAMPLE 1
librium position when a force of 0.75 lb acts on it. Then a 1.5-lb body is at-

tached to the end of the spring and is pulled 4.0 in. along a horizontal friction-

less table from the equilibrium position. The body is then released and executes

simple harmonic motion.

[a] What is the force constant of the spring''

A force of 0.75 lb on the spring produces a displacement of 0.25 ft. Hence,

k = F/x = 0.75 lb/0.25 ft = 3.0 lb/ft.

Why didn't we use k = — Fix here?

[b] What is the force exerted by the spring on the 1.5-lb body just before it is

released!'

The spring is stretched 4.0 in. or i ft. Hence, the force exerted by the spring

is

F = -kx = -(3.0 lb/ft)(i ft) = -1.0 lb.

The minus sign indicates that the force is directed opposite to the displacement.

[c] What is the period of oscillation after release

?

nn „ m « 1.5/32 77 „ „

This corresponds to a frequency v[= 1/T) of 1.3 Hz and to an angular frequency

oj(= 27ri>) of 8.0 rad/s.

[d] What is the amplitude of the motion?

The maximum displacement corresponds to zero kinetic energy and a max-

imum potential energy. This is the initial condition before release, so that the

amplitude is the initial displacement of 4.0 in. Hence, A = i ft.

(e) What is the maximum speed of the vibrating body?

From Eq. 15-13, vmax = wA = (2tt/T)A,

vmax=(^s-')(|ft) = 2.7ft/s.

The maximum speed occurs at the equilibrium position, where x = 0. This value

is achieved twice in each period, the velocity being —2.7 ft/s when the body

passes through x = after release and +2.7 ft/s when the body passes through

x = on the return trip.

(/) What is the maximum acceleration of the body?

From Eq. 15-13, amax = co
2A = [k/m)A,

The maximum acceleration occurs at the ends of the path where x = ±A and
v = 0. Hence, a = — 21 ft/s2 at x = +A and a = +21 ft/s2 at x = —A, the accelera-

tion and displacement being oppositely directed.

(g) Compute the velocity, the acceleration, and the kinetic and potential

energies of the body when it has moved in halfway from its initial position

toward the center of motion.

At this point, x = — = i ft,

so that from Eq. 15-18,

277
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k -3.0 /l
a = x =m 1.5/32

(^)ft/s2 = -ll ft/s2 ,

^=-^2

=®(M)(4)2ft - lb=ift - lb'

t/ =W = (j)l3)(£f ft • lb = A ft • lb.

[h] Compute the total energy of the oscillating system.

Since the total energy is conserved, we can compute it at any stage of the

motion. Using previous results, we obtain

E = K + U = (i + -A) ft lb = i ft • lb, (particle at x = A/2)

E = Umax = | kxmax2 =
(j) (3)

(|)

2

ft • lb = i ft • lb, (particle at x = A)

E = Kmax = 1 mvmax
2 =

f-J (—
)
(-)" ft • lb = i ft lb. (particle at x = 0)

(i) What is the displacement of the body as a function of time?

In general, we have

x = A cos [oit + (b).

We have already found that A = \ it. We must now determine o> and 4>. We
obtain

277 2tt ,

w =— = —77 = 8 rad/s,
T 7T/4

so that, with our particular units,

x = | cos (8r + tf>).

At the time t = 0, x = } ft, so that at that instant

x = | cos </> = i

or $ = rad.

Therefore, with A = i ft, w = 8 rad/s, and ci = rad, we obtain

x = i cos 8r.

This describes the motion of the body, where x is in feet, t is in seconds, and the

angle 8t is in radians.

A few physical systems that move with simple harmonic motion are !.">-,">

considered here. We will discuss others from time to time throughout APPLICATIONS OF
the text. SIMPLE HARMONIC

MOTION*
The Simple Pendulum. A simple pendulum is an idealized body con-

sisting of a point mass, suspended by a light inextensible cord. When
pulled to one side of its equilibrium position and released, the pendulum
swings in a vertical plane under the influence of gravity. The motion
is periodic and oscillatory. We wish to determine the period of the mo-
tion.

Figure 15-10 shows a pendulum of length /, particle mass m. making

an angle 6 with the vertical. The forces acting on m are mg, the gravita-

A Repertoire ol S 11. M." by Eli Maor, The rh\ sics Teacher, October 1972 foi a full

discussion ol in physical systems that exhibit simple harmonic motion



tional force, and T, the tension in the cord. Choose axes tangent to the

circle of motion and along the radius. Resolve rag into a radial com-

ponent of magnitude rag cos 6, and a tangential component of magni-

tude rag sin 0. The radial components of the forces supply the neces-

sary centripetal acceleration to keep the particle moving on a circular

arc. The tangential component is the restoring force acting on ra tending

to return it to the equilibrium position. Hence, the restoring force is

F = —rag sin 0.

Notice that the restoring force is not proportional to the angular

displacement but to sin 6 instead. The resulting motion is, therefore,

not simple harmonic. However, if the angle is small, sin 6 is very

nearly equal to in radians.* The displacement along the arc is x = Id,

and for small angles this is nearly straight-line motion. Hence, assuming

sin = 0,

we obtain

-mgO -rag m,
For small displacements, therefore, the restoring force is proportional

to the displacement and is oppositely directed. This is exactly the cri-

terion for simple harmonic motion. The constant mg/1 represents the

constant k in F = —kx. Check the dimensions of k and mg/1. The period

of a simple pendulum when its amplitude is small is

m
2tt

ra

mg/1
or T=2ttW- [15-19)

Notice that the period is independent of the mass of the suspended

particle.

When the amplitude of the oscillation is not small, the general equation for the

period can be shown to be

T=2n
ll (, 1 . Jm 1 3»
- 1 +^ sin2 —- + —

-

g\ 22 2 22 4*
sin4 + (15-20)

Here 9m is the maximum angular displacement and the succeeding terms be-

come smaller and smaller. The period can then be computed to any desired de-

gree of accuracy by taking enough terms in the infinite series. When 6m = 15°,

corresponding to a total to-and-fro angular displacement of 30°, the true period

differs from that given by Eq. 15-19 by less than 0.5%.

Because the period of a simple pendulum is practically independent of the

amplitude, the pendulum is useful as a timekeeper. As damping forces reduce

the amplitude of swing, the period remains very nearly unchanged. In a pendu-

lum clock energy is supplied automatically by an escapement mechanism to

compensate for frictional loss. The pendulum clock with escapement was in-

vented by Christian Huygens (1629-1695).

The simple pendulum also provides a convenient method for measuring the

value of g, the acceleration due to gravity. We need not perform a free-fall experi-

ment here, but instead we merely measure 1 and T.

* For example,.

sin Differenc

0° = 0.00000 rad 0.00000 0.00

2° = 0.03491 rad 0.03490 0.03

5° = 0.08727 rad 0.08716 0.24

10° = 0.17453 rad 0. 1 7365 0.50

15° =0.26180 rad 0.25882 1.14

figure 15-10

The forces acting on a simple

pendulum are the tension T in the

string and the weight mg of mass m.

The magnitudes of the radial and

tangential components of mg are

labeled.



The Torsional Pendulum. In Fig. 15-11 we show a disk suspended by

a wire attached to the center of mass of the disk. The wire is securely

fixed to a solid support and to the disk. At the equilibrium position of

the disk a radial line is drawn from its center to P, as shown. If the disk

is rotated in a horizontal plane to the radial position Q, the wire will be

twisted. The twisted wire will exert a torque on the disk tending to re-

turn it to the position P. This is a restoring torque. For small twists the

restoring torque is found to be proportional to the amount of twist, or

the angular displacement (Hooke's law), so that

t = -kO. .15-21]

Here k is a constant that depends on the properties of the wire and is

called the torsional constant. The minus sign shows that the torque is

directed opposite to the angular displacement 0. Equation 15-21 is the

condition for angular simple harmonic motion.

The equation of motion for such a system is

rdw T d
28

so that, on using Eq. 15-21, we obtain

,d2

or

k6 = I

d2

dt2

dt2

figure 15-11

The torsional pendulum. The line

drawn from the center to P
oscillates between Q and R,

sweeping out an angle 2d,„ where

6,„ is the (angular) amplitude of the

motion.

0. ,15-22)

Notice the similarity between Eq. 15-22 for simple angular harmonic
motion and Eq. 15-7 for simple linear harmonic motion. In fact, the

equations are mathematically identical. We have simply substituted

angular displacement 8 for linear displacement x, rotational inertia /

for mass m, and torsional constant k for force constant k. By substitut-

ing these correspondences, we find the solution of Eq. 15-22, therefore,

to be a simple harmonic oscillation in the angle coordinate 0, namely

0= d,„ cos (wt + 0). 15-23)

Here, m is the maximum angular displacement, that is, the amplitude

of the angular oscillation. In Fig. 15-11 the disk oscillates about the

equilibrium position = (line OP), the total angular range being 20m

(from OQ to OR).

The period of the oscillation by analogy with Eq. 15-10 is

T=2ir (15-24)

If k is known and T is measured, the rotational inertia / about the

axis of rotation of any oscillating rigid body can be determined. If / is

known and T is measured, the torsional constant k of any sample of

wire can be determined.

Many laboratory instruments involve torsional oscillations, notably

the galvanometer. The Cavendish balance is a torsional pendulum
(Chapter 16). The balance wheel of a watch is another example oi angu-

lar harmonic motion, the restoring torque here being supplied b\ a

spiral hairspring.



A thin rod of mass 0.10 kg and length 0.10 m is suspended by a wire which

passes through its center and is perpendicular to its length. The wire is twisted

and the rod set oscillating. The period is found to be 2.0 s. When a flat body in

the shape of an equilateral triangle is suspended similarly through its center of

mass, the period is found to be 6.0 s. Find the rotational inertia of the triangle

about this axis.

The rotational inertia of the rod is Ml2
/ 12 (see Table 12-1). Hence

EXAMPLE 2

(0.10 kg)(0. 10 m) 2

irod — , ry ~ 8 ->J x 10- 5 kg • m2
.

From Eq. 15-24,

^ rod _ / ' rod \

-* triangle \-*triangle'

Of 'triangle = /rod(^) <

so that

/triangle = (8.3 X 10 5 kg m /6.o sy =
'\2.0 s/

7.5 x 10- 4 kg m 2
.

Does the amplitude of the oscillation affect the period in these cases-

The Physical Pendulum. Any rigid body mounted so that it can swing

in a vertical plane about some axis passing through it is called a physical

pendulum. This is a generalization of the simple pendulum in which

a weightless cord holds a single particle. Actually all real pendulums
are physical pendulums.

For convenience we choose our pendulum to be a laminar body, such

as may be cut out from a sheet of plywood with a jigsaw, and we choose

the axis of oscillation to be at right angles to the plane of this body. We
lose nothing essential by this restriction.

In Fig. 15-12 a body of irregular shape is pivoted about a horizontal

frictionless axis through P and displaced from the equilibrium position

by an angle 6. The equilibrium position is that in which the center of

mass of the body, C, lies vertically below P. The distance from pivot to

center of mass is d, the rotational inertia of the body about an axis

through the pivot is /, and the mass of the body is M. The restoring

torque for an angular displacement 8 is

t = —Mgd sin 8

and is due to the tangential component of the force of gravity. Since r is

proportional to sin 6, rather than 8, the condition for simple angular

harmonic motion does not, in general, hold here. For small angular

displacements, however, the relation sin 8 = 8 is, as before, an excellent

approximation, so that for small amplitudes,

or

where

But

so that

t = -Mg d 8

-k8,

k = Mgd.

i
d2°

j

d2e _ t _ _k
dt* I I

figure 15-12

A laminar physical pendulum, with

center of mass C, is pivoted at P

and displaced an angle 8 from its

equilibrium position (when C hangs

directly below P). Its weight Mg
supplies a restoring torque.



Hence, the period of a physical pendulum oscillating with small ampli-

tude is

^'k
= 277\W 15-25)

At larger amplitudes the physical pendulum still has a harmonic mo-
tion, but not a simple harmonic one.

Notice that this treatment applies to a laminar object of any shape

and that the pivot can be located anywhere. As a special case consider

a point mass m suspended at the end of a weightless string of length 1.

Here

/ = ml2
, M = m, d = l,

so that

T=2tt m^-Wf
which is the period of a simple pendulum with small amplitude. The
physical pendulum is often used for accurate determinations of g.

Equation 15-25 can be solved for the rotational inertia /, giving

T*Mgd
1 =

4772
115-26)

The quantities on the right are all directly measurable. The center of mass can

be determined by suspension as was shown in Fig. 14-4. Hence, the rotational

inertia about an axis of rotation iother than through the center of mass) of a body

of any shape can be determined by suspending the body as a physical pendulum
from that axis.

Find the length of a simple pendulum whose period is equal to that of a particu- EXAJMPLE 3
lar physical pendulum.

Equating the period of a simple pendulum to that of a physical pendulum,

we obtain

T=2"V^tWaIMgd
or

I

I

Md [15-27)

Hence, as far as its period of oscillation is concerned, the mass of a physical

pendulum may be considered to be concentrated at a point whose distance

from the pivot is / = I/Md. This point is called the center of oscillation of the

physical pendulum. Notice that it depends on the location of the pivot for any

given body.

A disk is pivoted at its rim |Fig. 15-13). Find its period for small oscillations and

the kngth of the equivalent simple pendulum.

The rotational inertia of a disk about an axis through its center is '\!/

where r is the radius and M is the mass of the disk. The rotational inertia about

the pivol at the rim is

EXAMPLE 4

I = iMr* I
\W :\I/

I In p< riod then with </ r is



T=2i7
I_

Mgr
2tt

3 Mr2

2 Mgr
2tt\ — -'

V2g

independent of the mass of the disk.

The simple pendulum having the same period has a length

/ —— — 3-r

Mr

or three-fourths the diameter of the disk. The center of oscillation of the disk

pivoted at P is, therefore, at O, a distance fr below the point of support. Is any

particular mass required of the equivalent simple pendulum"

If we pivot the disk at a point midway between the rim and the center, as at

O. we find that I = }Mr2 and d = \r. The period T is

T = iTT^Wg

just as before. This illustrates a general property of the center of oscillation O
and the point of support P, namely, if the pendulum is pivoted about a new axis

through O, its period is unchanged and P becomes the new center of oscillation.

If the disk were pivoted at the center, what would be its period of oscillation?

The center of oscillation of a physical pendulum has another interesting prop-

erty. If an impulsive force (assumed horizontal and in the plane of oscillation)

acts at the center of oscillation, no reaction is felt at the point of support. Prove

this for an impulsive force F acting toward the left at point O in Fig. 15-13.

Assume the pendulum to be initially at rest.

This is a case of combined translation and rotation (see Sec. 12-7). The trans-

lation effect, acting alone, would make P in Fig. 15-13 move to the left with an

acceleration

a, ef( = F/M.

The rotational effect, acting alone, would produce a clockwise angular accelera-

tion about C of

a = t/I

= (Fmnmr2
)

= FIMr.

Because of this angular acceleration P would move to the right with an accelera-

tion

aright = ar

= \FIMr)[r) = F/M.

Thus a left = —arig(,i and there is no movement at point P.

When viewed from this point of view the center of oscillation is often called

the center of percussion. Baseball players know that unless the ball hits the bat

at just the right spot |center of percussion) the impact will sting their hands.

The "sting" has a different direction depending on whether the ball strikes on
one side or the other of this spot.

EXAMPLE 5

figure 15-13

Example 4 and Example 5. A physical

pendulum consisting of a disk pivoted

at the edge (Pj, along with a simple

pendulum having the same period.

O is the center of oscillation.

The period of a disk of radius 10.2 cm executing small oscillations about a pivot EXAMPEE C»
at its rim is measured to be 0.784 s. Find the value of g, the acceleration due to

gravity at that location.

From T = 2ir\/%rlg, we obtain

_ 6ir2r



With T = 0.784 s and r = 0. 102 m, we obtain

6tt2 0.102
g

(0.784) 2
m/s2 = 9.82 m/s2 -

Let us consider the relation between simple harmonic motion along a

straight line and uniform circular motion. This relation is useful in

describing many features of simple harmonic motion. It also gives a

simple geometric meaning to the angular frequency o> and the phase

constant <b. Uniform circular motion is also an example of a combina-

tion of simple harmonic motions, a phenomenon we deal with rather

often in wave motion.

In Fig. 15-14 Q is the point moving around a circle of radius A with

a constant angular speed of gj, expressed, say, in radians/second. P is the

perpendicular projection of Q on the horizontal diameter, along the

x-axis. Let us call Q the reference point and the circle on which it moves
the reference circle. As the reference point revolves, the projected point

P moves back and forth along the horizontal diameter. The x-com-

ponent of Q's displacement is always the same as the displacement of

P; the x-component of the velocity of Q is always the same as the

velocity of P
;
and the x-component of the acceleration of Q is always

the same as the acceleration of P.

Let the angle between the radius OQ and the x-axis at the time r =
be called 4>. At any later time t, the angle between OQ and the x-axis is

{(ot + </>), the point Q moving with constant angular speed. The x-coordi-

nate of Q at any time is, therefore,

x = A cos [u)t + </)). 115-28)

Hence, the projected point P moves with simple harmonic motion along

the x-axis. Therefore, simple harmonic motion can be described as the

projection along a diameter of uniform circular motion.

15-6
RELATION BETWEEN
SIMPLE HARMONIC
MOTION AND
UNIFORM CIRCULAR
MOTION

'

Q/C ^\
/ 1 N.

/ 1

/ 1

03t+<p \
\

l ^
O

(b)
t>0

figure 15-14

The relation of simple harmonic

motion to uniform circular motion.

Q moves in uniform circular motion

and P in simple harmonic motion.

Q has angular speed w, P angular

frequency w. fa. bj The x-component

of Q's displacement is always equal

to P's displacement, (c) The
x-component of Q's velocity is

always equal to P's velocity, (d) The
x-component of Q's acceleration is

always equal to P's acceleration.



The angular frequency co of simple harmonic motion is the same as

the angular speed of the reference point. The frequency of the simple

harmonic motion is the same as the number of revolutions per unit

time of the reference point. Hence, v = co/2tt orw = 27™. The time for a

complete revolution of the reference point is the same as the period T
of the simple harmonic motion. Hence, T= 2tt/co oxco = 2ttIT. The phase

of the simple harmonic motion, cot + 4>, is the angle that OQ makes with

the x-axis at any time t (Fig. \5-\4b,c,d). The angle that OQ makes
with the x-axis at the time t = (Fig. 15-14<a) is </>, the phase constant or

initial phase of the motion. The amplitude of the simple harmonic

motion is the same as the radius of the reference circle.

The tangential velocity of the reference point Q has a magnitude of

coA. Hence, the x-component of this velocity (Fig. 15- 14c) is

vx = —coA sin (cot + </>).

This relation gives a negative vx when Q and P are moving to the left

and a positive vx when Q and P are moving to the right. Notice that

vx is zero at the end points of the simple harmonic motion, where

cat + 4> is zero and tt, as required.

The acceleration of point Q in uniform circular motion is directed

radially inward and has a magnitude of co
2A. The acceleration of the

projected point P is the x-component of the acceleration of the reference

point Q (Fig. 15-14d). Hence,

ax = -co2A cos [oit + 4>)

gives the acceleration of the point executing simple harmonic motion.

Notice that ax is zero at the midpoints of the simple harmonic motion,

where cot + 4> = n/2 or 3tt/2, as required.

These results are all identical with those of simple harmonic motion
along the x-axis

;
see Eqs. 15-13.

If we had taken the perpendicular projection of the reference point

onto the y-axis, instead, we would have obtained for the motion of the

y-projected point

y = A sin [cot + </>). (15-29)

This is again a simple harmonic motion. It differs only in phase from Eq.

15-28, for if we replace 4> by $ — tt/2, then cos [cot + cf>) becomes sin

(cot + (/>). It is clear that the projection of uniform circular motion along

any diameter gives a simple harmonic motion.

Conversely, uniform circular motion can be described as a combina-

tion of two simple harmonic motions. It is that combination of two
simple harmonic motions, occuring along perpendicular lines, which
have the same amplitude and frequency but differ in phase by 90°. When
one component is at the maximum displacement, the other component
is at the equilibrium point. If we combine these components (Eqs.

15-28 and 15-29), we obtain at once the relation

r = Vx2 + y
2 = A.

By writing the relations for vy and a u (you should do this) and combining
corresponding quantities, we obtain also the relations

Vvx
2 + v,/ = coA,

a = Vax
2 + a y

2 = co
2A.

These relations correspond respectively to the magnitudes of the dis-



placement, the velocity, and the acceleration in uniform circular

motion.

It will be possible for us to analyze many complicated motions as

combinations of individual simple harmonic motions. Circular motion

is a particularly simple combination. In the next section we shall con-

sider other combinations of simple harmonic motions.

In example 1 we considered a body executing a horizontal simple harmonic EXAMPLE T
motion. The equation of that motion (units-) was

x = i cos St.

This motion can also be represented as the projection of uniform circular mo-
tion along a horizontal diameter.

[a] Give the properties of the corresponding uniform circular motion.

The x-component of the circular motion is given by

x = A cos (wt + <t>).

Therefore, the reference circle must have a radius A = i ft, the initial phase or

phase constant must be <b = 0, and the angular velocity must be w = 8 rad/s, in

order to obtain the equation x = i cos St for the horizontal projection.

[b) From the motion of the reference point determine the time required for

the body to come halfway in toward the center of motion from its initial posi-

tion.

As the body moves halfway in, the reference point moves through an angle

of wt = 60° (Fig. 15-15). The angular velocity is constant at 8 rad/s so that the

time required to move through 60° is

t =
60° 77-/3 rad tt=

t;
—tt = tts = 0.13 s.

(o 8 rad/s 24

The time may also be computed directly from the equation of motion. Thus, figure 15-15

Example 7. The particles Q and P of

x = i cos St and

Hence

Therefore,

Fig. 15-14 are shown for wt = 60°.

Since a> is known, t may be found.

i cos 8t or

£ = — s = 0.13 s.

Often two linear simple harmonic motions at right angles are com- l,">-7

bined. The resulting motion is the sum of two independent oscillations. COMBINATIONS OF
Consider first the case in which the frequencies of the vibrations are the HARMONIC MOTIONS
same, such as

x = Ax cos [wt + <f>x),

y — Ay cos (cut + (/)„).

15-30)

The x and y motions have different amplitudes and different phase

constants, however.

It the phase constants are the same so that </>., = </>„ = </>, the resulting

motion is a straight line. This can be shown analytically, for when we
eliminate t from the equations

x = Ax co$[o)t f- </>) y = Ay cos [<at
(f>\

we obtain y = [A„/Aj)x.



This is the equation of a straight line, whose slope is A,,/Ax . In Fig.

15-16(3 and b we show the resultant motion for two cases, A y/Ax = 1 and

Ay/Ax = 2. In these cases both the x- and y-displacements reach a

maximum at the same time and reach a minimum at the same time.

They are in phase.

If the phase constants are different, the resulting motion will not be

a straight line. For example, if the phase constants differ by 77-/2, the

maximum x-displacement occurs when the y-displacement is zero and

vice versa. When the amplitudes are equal, the resulting motion is cir-

cular; when the amplitudes are unequal, the resulting motion is ellipti-

cal. Two cases, A y/Ax = 1 and A,JA X = 2, are shown in Fig. 15- 16c and d,

for^j- = 4> y + -nil. The cases A y/A x = 1 and A y/Ax = 2, for 4>x = 4>y
— it/4,

are shown in Fig. 15-16e and /.

All possible combinations of two simple harmonic motions at right

angles having the same frequency correspond to elliptical paths, the

circle and straight line being special cases of an ellipse. This can be

shown analytically by combining Eqs. 15-30 and eliminating the time;

you can show that the resulting equation is that of an ellipse. The shape

of the ellipse depends only on the ratio of the amplitudes, A UIAX , and the

difference in phase between the two oscillations, 4> x — 4> y . The actual

motion can be either clockwise or counterclockwise, depending on
which component leads in phase.

A simple way to produce such patterns is by means of an oscillo-

(e)

figure IS- 16
Simple harmonic motions in two
dimensions, (a) The amplitudes of x
and y (namely A x and A u )

are the

same, as are their phase constants.

(b) y's amplitude is twice x's but

their phase constants are the same.

(c) Their amplitudes are equal, but x
leads y in phase by 90°. (d) Same as

(c) except that y's amplitude is

twice x's. (e) Equal amplitudes, but

x lags y in phase by 45°.
(f) Same

as (e) except that y's amplitude is

twice x's.



scope. In this, electrons are deflected by each of two electric fields at

right angles to one another. The field strengths alternate sinusoidally

with the same frequency, but their phases and amplitudes can be varied.

In this way the electrons can be made to trace out the various patterns

discussed above on a fluorescent screen. We can also produce these

patterns mechanically by means of a pendulum swinging with small

amplitude but not confined to one vertical plane. Such combinations

of two simple harmonic motions at right angles having the same fre-

quency are particularly important in the study of polarized light and

alternating current circuits.

Combinations of simple harmonic motions of the same frequency in

the same direction, but with different amplitudes and phases, are of

special interest in the study of diffraction and interference of light,

sound, and electromagnetic radiation. This will be discussed later in

the text.

If two oscillations of different frequencies are combined at right

angles, the resulting motion is more complicated. The motion is not

even periodic unless the two component frequencies oj x and co2 are the

ratio of two integers (see Problem 49). Oscillations of different frequen-

cies in the same direction may also be combined. The treatment of this

motion is particularly important in the case of sound vibrations and

will be discussed in Chapter 20.

The simple harmonic oscillator of Fig. 15-4 is a mass m coupled by a spring of

force constant k to a solid wall. The wall is rigidly connected to the earth, so

that this system is really a two-body system, connected by a spring, one of the

bodies being effectively of infinite mass. This solid support remains at rest in

an inertial reference frame so that the change in length of the spring is equal to

the displacement of the mass m-, the other end of the spring does not move. In

this case we defined the potential energy L/(x) of the oscillating system of Fig.

15-4 to be a function of the displacement x of the mass m alone (see Figs. 15-3,

9). This again is equivalent to assuming that one end of the spring is connected

to an infinite mass so that the extension of the spring is determined by the

motion of mass m alone.

Often in nature we find two-body oscillating systems in which we cannot

take the mass of one of the bodies to be infinite and we must consider the mo-
tions of both bodies in an appropriate inertial reference frame. Examples are

diatomic molecules such as H 2 , CO, HCl, etc., which can oscillate along their

axis of symmetry. The coupling between the atoms that make up these mole-

cules is electromagnetic, but we may imagine them, for our purpose, to be con-

nected by a tiny, massless spring.

The surprising thing about two-body oscillators is that, by redefining terms

slightly and by introducing a new concept (that of reduced mass), we can de-

scribe the oscillations by exactly the same equations that we have already de-

rived for the (effectively) one-body system of Fig. 15-4. Let us prove this.

Figure 15- 17a shows two bodies mi and m 2 connected by a (massless) spring

of force constant k; the system is free to oscillate on a frictionlcss horizontal

surface. We locate the ends of the spring by the coordinates Xi(i) and x->[t), as

shown. The length of the spring at any instant is x, — x... If its normal, unstressed

length is /, then the change in length of the spring, x(t), is given by

X = (Xi - Xt) - 1. L 5 J 1

1

If x is positive, the spring is stretched, if x = 0, the spring has its normal length

and it v is negative it is compressed,

In Fig 15 I la we assume foi concreteness, that the spring is stretched so

that x • 0. We show also the force F excited In the spring on m and the force F

15-8
TWO-BODY
OSCILLATIONS



figure 15-17

(a) Two bodies of masses mi and m 2 connected by a (massless) spring whose

unstressed length is 1. (b) A single body of mass
fj.

(the reduced mass)

connected by an identical spring to a rigid wall.

exerted on m,. These two forces are equal and opposite, as the figure shows,

and have the common magnitude F = kx.

If we apply Newton's second law, F = ma, to masses m x and m 2 , we obtain

and

m,

m>

d2x 1

dt2

d2x2

dt2

kx

= +kx.

Let us now multiply the first equation by m2 and the second equation by mi and

subtract. We obtain

d2x, cf
2x,

mimi
~dF ~

Wim
- ~dt2

~ = ~m2kx rtijkx,

which we can write as

mim 2

ffli+ffl2 dt2
(xi — x2 )

= —kx. (15-32)

Let us call the quantity m 1m>/[nii +m 2 ), which has the dimensions of mass, the

reduced mass of the system and give it the symbol ju,
;
that is,

V*

mjirii
(15-33)

Because Hsa constant, d2
(xi

can be written as

mi + m 2

x 2 )/dt
2 = d2x/dt2 (see Eq. 15-31) and Eq. 15-32 now

d2x

dt2
+ -x = 0. (15-34)

This is identical in form to Eq. 15-5 which we developed for the single-body

oscillation of Fig. 15-4. The differences are that (1) x in Eq. 15-34 is the relative

displacement of the two blocks from their equilibrium positions (see Eq. 15-31)

rather than the displacement of a single block from its equilibrium position, and

(2) /a is the reduced mass of the pair of blocks rather than the mass of a single

block.

Note from Eq. 15-33, which we can write either as

ffli

m 2 ffli

or as

m. + m-d

111;

m. + m 2

1 1

+ \_

M m, m->

that (for finite masses) \x is always smaller than mi or m 2; hence the name re-

duced mass. Equation 15-34 leads, by way of the derivation that follows Eq.

15-6, to

J_
2tt

or T=2tt- (15-35)



for the frequency and period of oscillation of the system of Fig. 15- 17a. It is

clear that this system has the same frequency and period as a single block of

mass /x, connected by a similar spring to a rigid wall, as in Fig. 15-17t>. Hence,

the two- body oscillation of Fig. 15- 17a is equivalent to the one-body oscillation

of Fig. 15- 1 7fc>. One particle moves relative to the other particle as though the

other particle were fixed and the mass of the moving one were reduced to /j.. The
reduced mass concept is applied widely in physics.

We can solve Eq. 15-34, as in Section 15-3, to yield these relations:

x = A cos [cot + <j>),

and

v = dx/dt = —coA sin [cot + <f>),

a = dv/dt = —co2A cos (wt -I- <£).

They are identical with Eqs. 15-13 except that here x, v, and a are the relative

displacement, velocity, and acceleration, respectively, of the two blocks. Thus

x. 1.

and

v = dx/dt = Vi — V-,,

a = dv/dt = a\— a-i,

[15-36)

in which the subscripts refer to the two blocks.

The potential energy of a two-body, simple harmonic oscillator is given by

U[x) = ikx2 which shows clearly, because x depends on the positions of both

blocks (see Eq. 15-36), that the potential energy is a characteristic of the system

as a whole.

Many actual two-body oscillators, although harmonic, are not simple har-

monic; their potential energy curves, like that of Fig. 8- la which refers to a

diatomic molecule, are not parabolic. Even such oscillators, however, behave

like simple harmonic oscillators for small enough amplitudes of oscillation

about the equilibrium position. Note, too, that x in Fig. &-7a has a different

meaning than we have assigned to it in this chapter; it is the actual separation,

rather than (see Eq. 15-36) the difference between the actual separation and the

equilibrium separation. Thus in Fig. 8-7a the stable equilibrium position cor-

responds, not to x = as in Fig. 15-2, but to x = ^la/b. This change is only a

change in the origin of the x-axis of the potential energy curve and has no funda-

mental significance.

figure 15-18

A damped harmonic oscillator. A
disk is attached to the mass and

immersed in a fluid which exerts a

damping force — b dx/dt. The elastic

restoring force is —kx.

Up to this point we have assumed that no frictional forces act on the oscillator.

If this assumption held strictly, a pendulum or a weight on a spring would oscil-

late indefinitely. Actually, the amplitude of the oscillation gradually decreases

to zero as a result of friction. The motion is said to be damped by friction and

is called damped harmonic motion. Often the friction arises from air resistance

nr internal forces. The magnitude of the frictional force usually depends on the

speed. In most cases of interest the frictional force is proportional to the veloc-

ity of the body but directed opposite to it. An example of a damped oscillator

is shown in Fig. 15-18.

The equation of motion of the damped simple harmonic oscillator is given

by the second law of motion, F = ma, in which F is the sum of the restoring

force —kx and the damping force — b dx/dt. Here b is a positive constant. We
obtain

15-9
DAMPED HARMONIC
MOTION

or

or

ma,

-kx
, dx </-v
/-, = m-r-

<// dt1

,
dx ,m -r— + b -j- + kx = 0.

dt1 ill

,15-371



If b is small, the solution of this differential equation (given without proof)* is

x = Ae- b"2m cos{a>'t + <t>), (15-38)

where >' = 2ttv'
\2m

(15-39)

In Fig. 1 5- 1 9 we plot the displacement x as a function of the time r for oscillatory

motion with small damping.

We can interpret the solution as follows. First, the frequency is smaller and

the period is longer when friction is present. Friction slows down the motion,

as might be expected. If no friction were present, b would equal zero and w'

would equal v'k/m or a>, which is the angular frequency of undamped motion.

When friction is present, o>' is less than w, as shown by Eq. 15-39. Second, the

amplitude of the motion gradually decreases to zero. The time interval t during

which the amplitude drops to l/e of its initial value is called the mean lifetime

of the oscillation. The amplitude factor is Ae~b,l2m
, so that t = 2m/ b. Once again,

if there were no friction present, b would equal zero and the amplitude would
have the constant value A as time went on

;
the lifetime would be infinite.

If the force of friction is great enough, b becomes so large that Eq. 15-38 is no
longer a valid solution of the equation of motion.* Then the motion will not be

periodic at all. The body merely returns to its equilibrium position when re-

leased from its initial displacement A.

In damped harmonic motion the energy of the oscillator is gradually dissi-

pated by friction and falls to zero in time.

. Ae-bt/2m

Ae
- bt/2m

cos u't (<t> = 0)

figure 15-19
Damped harmonic motion plotted

versus time. The motion is

oscillatory with everdecreasing

amplitude. The amplitude (— — —

)

is seen to start with value A and

decay exponentially to zero as r
—

* =

Thus far we have discussed only the natural oscillations of a body, that is, the

oscillations that occur when the body is displaced and then released. For a mass
attached to a spring the natural frequency is

CD = Ittv m
in the absence of friction and

= 2itv' = IK-&m

in the presence of a small frictional force bv.

A different situation arises, however, when the body is subject to an oscil-

latory external force. As examples, a bridge vibrates under the influence of

marching soldiers, the housing of a motor vibrates owing to periodic impulses

from an irregularity in the shaft, and a tuning fork vibrates when exposed to the

periodic force of a sound wave. The oscillations that result are called forced

oscillations. These forced oscillations have the frequency of the external force

and not the natural frequency of the body. However, the response of the body

depends on the relation between the forced and the natural frequency. A suc-

cession of small impulses applied at the proper frequency can produce an oscil-

lation of large amplitude. A child using a swing learns that by pumping at proper

time intervals he can make the swing move with a large amplitude. The prob-

lem of forced oscillations is a very general one. Its solution is useful in acoustic

systems, alternating current circuits, and atomic physics as well as in me-
chanics.

The equation of motion of a forced oscillator follows from the second law of

motion. In addition to the restoring force —kx and the damping force —b dx/dt,

we have also the applied oscillating external force. For simplicity let this exter-

nal force be given by Fm cos co"t. Here Fm is the maximum value of the external

force and co" (= lirv") is its angular frequency. We can imagine such a force ap-

plied directly to the suspended mass of Fig. 15-18, if we wish, for concreteness.

15-10
FORCED OSCILLATIONS
AND RESONANCE

* See, for example, K. R. Symon, Mechanics, third edition, Addison-Wesley Publishing

Company, 1971, Section 2.9.



From F = ma,

dx cfcx
we obtain —kx — b^- + Fm cos <o"t = m -tt

dt dt2

d-x dx
or m -y- + b -r- + kx = F,„ cos w"t. (15-40)

dt- dt

The solution of this equation (given without proof)* is

x =^ sin [<a"t -d>), 1
15-41)

where G = Vm 2 (w"2 - w2
)

2 + bW2
, ( 1 5-42)

bco"
and <£ = cos -1 -—- (15-43)

Let us consider the resulting motion in a qualitative way.

Notice (Eq. 15-41) that the system vibrates with the frequency of the driving

force, u>", rather than with its natural frequency u>, and that the motion is un-

damped harmonic motion.

The simplest case is that in which there is no damping, which means that

b = in Eq. 15-42. The factor G, which has the value |m(w"2 — w2
)| for b = 0, is

large when the frequency of the driving force w" is very different from the nat-

ural undamped frequency of the system o>. This means that the amplitude of the

resultant motion, F,JG, is small. As the driving frequency approaches the natu-

ral frequency, that is, as a>" -* u>, we see that G —
» and the amplitude F„,/G -* sc.

Actually some damping is always present so that the amplitude of oscillation,

although it may become large, remains finite in practice.

For actual, damped oscillators (for which b ^ in Eq. 15-42), there is a char-

acteristic value of the driving frequency on" at which the amplitude of oscilla-

tion is a maximum. This condition is called resonance^ and the value of w" at

which resonance occurs is called the resonant frequency. The smaller the

damping in a given system the closer is the resonant frequency to the natural

undamped frequency w. Frequently the damping is small enough so that the

resonant frequency can be taken to equal the natural undamped frequency w
with small error. Likewise, for small damping, the natural undamped frequency

(o (= \Zk/m) can be taken to equal the natural damped frequency &>' (see Eq.

15-39) with small error.

In Fig. 15-20 we have drawn five curves giving the amplitude of the forced

vibrations as a function of the ratio of the driving frequency w" to the undamped
natural frequency w. Each of the five curves corresponds to a different value of

the damping constant b. Curve [a) shows the amplitude when b = 0, that is,

when there is no damping. In this case, as we have seen, the amplitude becomes

infinite at at" = w because energy is being fed into the system continuously by

the applied force and none of it is dissipated. In practice, some friction is al-

ways present, so the amplitude reaches a large, but finite, value. Of course, when
the amplitude gets so large that Hooke's law no longer holds and the elastic

limit is exceeded, the system is no longer governed by Eq. 15-40. Often the

system breaks, as in the Tacoma Bridge disaster (Fig. 15-21). Curves \b) and (c)

give the amplitude of forced vibration for two cases of increasing damping.

The displacement caused by a constant force F,„ applied to a system with a

force constant k is simply FJk. Notice (Fig. 15-20) that the amplitude of the

• Ibid., Section 2.10.

FResonani I hen to occur at the frequency at which the forced oscillations have

their maximum amplitude may be defined in othei wa) s .is foi example at the frequency

at which maximum powei 18 transferred from the driving unit to the oscillating system

l
which the speed nt the oscillating m.iss is ,i maximum, The definitions are not

equivalent, we will disc uss t In m.ntei tmiliei when we deal with forced electrical oscil

is; see Problem 55.



A = Fm/G

3Fm Jk

2FJk -

FJk

figure 15-20
The amplitude of a driven damped
simple harmonic oscillator is plotted

versus the ratio of the driving

frequency w" to the undamped
natural frequency &>. Curves for

five different degrees of damping are

shown; curve (a) shows no damping
and curve (c) high damping. We
notice that the resonant peak

moves nearer and nearer the

vertical line at (o"/a) = 1 as b

becomes smaller and smaller.

N

o
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m
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figure 15-21

On July 1, 1940, the Tacoma Narrows Bridge at Puget Sound, Washington,

was completed and opened to traffic. Just four months later a mild gale set

the bridge oscillating until the main span broke up, ripping loose from the

cables and crashing into the water below. The wind produced a fluctuating

resultant force in resonance with a natural frequency of the structure. This

caused a steady increase in amplitude until the bridge was destroyed.

Many other bridges were later redesigned to make them aerodynamically

stable.

forced vibrations is rather large compared to this static displacement. A column
of soldiers marching in step across a bridge can set it vibrating with a destruc-

tively large amplitude if the frequency of their steps happens to be some natural

frequency of the bridge. This is the reason why soldiers break step when cross-

ing a bridge. Resonance considerations are very important in many electrical,

acoustic, and atomic devices, as we shall see later.

Give some examples of motions that are approximately simple harmonic.

Why are motions that are exactly simple harmonic rare?

A typical screen-door spring is tension-stressed in its normal state, that is,

adjacent turns cling to each other and resist separation. Does such a spring

obey Hooke's law?

Is Hooke's law obeyed, even approximately, by a diving board? A trampo-

line? A coiled spring made of lead wire?

questions



4. A spring has a force constant k, and a mass m is suspended from it. The
spring is cut in half and the same mass is suspended from one of the halves.

How are the frequencies of oscillation, before and after the spring is cut,

related?

5. An unstressed spring has a force constant k. It is stretched by a weight

hung from it to an equilibrium length well within the elastic limit. Does
the spring have the same force constant k for displacements from this new
equilibrium position-'

6. Suppose we have a block of unknown mass and a spring of unknown force

constant. Show how we can predict the period of oscillation of this block-

spring system simply by measuring the extension of the spring produced

by attaching the block to it.

7. Any real spring has mass. If this mass is taken into account, explain quali-

tatively how this will change our expressions for the period of oscillation

of a spring-and-mass system (see Problem 31).

8. Can one have an oscillator which even for smaller amplitudes is not sim-

ple harmonic? That is, can one have a nonlinear restoring force in an oscil-

lator even at arbitrarily small amplitudes"

9. How are each of the following properties of a simple harmonic oscillator

affected by doubling the amplitude: period, force constant, total mechanical

energy, maximum velocity, maximum acceleration?

10. What changes could you make in a harmonic oscillator that would double

the maximum speed of the oscillating mass?

11. We think of energy exchange for a mass-spring system as a transfer be-

tween U and K, their sum E remaining constant; see Fig. 15-9. Suppose a

mass is oscillating between two stretched springs, as in Fig. 15-23. A stu-

dent says: "Consider the mass instantaneously at rest at one end of its

limit of oscillation. Here K = 0. However, when the mass starts to move
toward its equilibrium position K increases. Also because U = ikx2 (Eq.

8-11) both springs increase their potential energy because the sign of x

(compression or extension) does not matter. Therefore K and U both in-

crease. How can their sum (= E) be constant?"

What is wrong with this argument?

12. A person stands on a bathroom-type scale which rests on a platform sus-

pended by a large spring. The whole system executes simple harmonic mo-
tion in a vertical direction. Describe the variation in scale reading during a

period of motion.

13. Could we ever construct a simple pendulum?

14. Could standards of mass, length, and time be based on properties of a pendu-

lum : Explain.

15. Show that as the amplitude 9m in Eq. 15-20 approaches 180° the period ap-

proaches infinity. Is this reasonable?

16. Predict by qualitative arguments whether a pendulum oscillating with large

amplitude will have a period longer or shorter than the period for oscilla-

tions with small amplitude. (Consider extreme cases.)

17. What happens to the frequency of a swing as its oscillations die down from

large amplitude to small :

18. How is the period of a pendulum affected when its point of suspension is

[a] moved horizontally with acceleration a-, \b) moved vertically upward

with acceleration a- (c) moved vertically downward with acceleration

a < g. Which case, if any, applies to a pendulum mounted on a cart rolling

down an inclined plane?

19. Why was an axis through the center of mass excluded in using Eq. 15-26 to

determine F I )oes this equation apply to such an axis : How can you deter-

mine / for such an axis usinj; physical pendulum methods'

20. A hollow sphere is Ml led with water through a small hole in it. It is bung by

.i long thread and, as the watei slowly flows out oJ the hole .it the bottom



one finds that the period of oscillation first increases and then decreases.

Explain.

21. (a) The effect of the mass, m, of the cord attached to the bob, of mass M, of

a pendulum is to increase the period over that for a simple pendulum in

which m = 0. Make this plausible, (b) Although the effect of the mass of the

cord on the pendulum is to increase its period, a cord of length 1 swinging

without anything on the end (M = 0) has a period less than that of a simple

pendulum of length 1. Make that plausible. (See "Effect of the Mass of the

Cord on the Period of a Simple Pendulum," by H. L. Armstrong, American

Journal of Physics, June, 1976.)

22. Two pendula, each consisting of a disk attached to a light bar, are identical

except for the coupling between disk and bar. In one the bar is rigidly

mounted to the disk; in the other ball-bearings are used so that the disk

would be free to spin about the end of the bar, for example. Both pendula

are hung, pulled aside to the same height, and released. Which has the

greater period? Explain.

23. Will the frequency of oscillation of a torsional pendulum change if it is

taken to the moon? a simple pendulum? a mass-spring oscillator? a physi-

cal pendulum?

24. How can a pendulum be used so as to trace out a sinusoidal curve?

25. What component simple harmonic motions would give a figure 8 as the

resultant motion?

26. Is there a connection between the F vs. x relation at the molecular level and

the macroscopic relation between F and x in a spring?

27. (a) Under what circumstances would the reduced mass of a two-body system

be equal to the mass of one body? Explain, [b] What is the reduced mass if

the bodies have equal mass? (c) Do cases [a) and [b] give the extreme values

of the reduced mass?

28. Why are damping devices often used on machinery? Give an example.

29. Give some examples of common phenomena in which resonance plays an

important role.

30. The lunar ocean tide is much more important than the solar ocean tide (see

Question 18 of Chapter 16, for example). The opposite is true for tides in the

earth's atmosphere, however. Explain this, using resonance ideas, given the

fact that the atmosphere has a natural period of oscillation of nearly 12

hours.

SECTION 15-3

1. A 4.0-kg block extends a spring 16 cm from its unstretched position. The
block is removed and a 0.50-kg body is hung from the same spring. If the

spring is then stretched and released, what is its period of oscillation?

Answer: 0.28 s.

2. A 2.0-kg mass hangs from a spring. A 300-g body hung below the mass
stretches the spring 2.0 cm farther. If the 300-g body is removed and the

mass is set into oscillation, find the period of motion.

3. The scale of a spring balance reading from to 32 lb is 4.0 in. long. A
package suspended from the balance is found to oscillate vertically with a

frequency of 2.0 Hz. How much does the package weigh?
Answer: 19 lb.

4. An automobile can be considered to be mounted on a spring as far as vertical

oscillations are concerned. The springs of a certain car are adjusted so that

the vibrations have a frequency of 3.0 Hz. [a] What is the spring's force

constant if the car weighs 3200 lb? [b) What will the vibration frequency be

if five passengers, averaging 160 lb each, ride in the car?

problems



5. [a] Show that the general relations for the period and frequency of any

simple harmonic motion are

T = 2tt\ and v — -^—\

[b] Show that the general relations for the period and frequency of any

simple angular harmonic motion are

T=2tt\ and v
V a

6. The endpoint of a spring vibrates with a period of 2.0 s when a mass m is

attached to it. When this mass is increased by 2.0 kg the period is found to

be 3.0 s. Find the value of m.

7. A particle executes linear harmonic motion about the point x = 0. At t =
it has displacement x = 0.37 cm and zero velocity. The frequency of the

motion is 0.25 Hz. Determine [a) the period, [b] the angular frequency,

(c) the amplitude, \d) the displacement at time t, (e) the velocity at time t,

I/) the maximum speed, \g) the maximum acceleration, [h] the displace-

ment at f = 3.0 s, and [i] the speed at r = 3.0 s.

Answer: [a] 4.0 s. [b] tt/2 rad/s. (c) 0.37 cm. \d) 0.37 cos [irt/2], in centi-

meters, [e] —0.58 sin (7rr/2), in centimeters per second, [f] 0.58

cm/s. (g) 0.91 cm/s 2
. [h) Zero, (i) 0.58 cm/s.

8. A small body of mass 0.10 kg [W = mg = 0.22 lb) is undergoing simple

harmonic motion of amplitude 1.0 m (3.3 ft) and period 0.20 s. [a] What is

the maximum value of the force acting on it' \b) If the oscillations are pro-

duced by a spring, what is the force constant of the spring"

9. The vibration frequencies of atoms in solids at normal temperatures are

of the order 10 13 Hz. Imagine the atoms to be connected to one another by

"springs." Suppose that a single silver atom vibrates with this frequency

and that all the other atoms are at rest. Compute the force constant of a

single spring. One mole of silver has a mass of 108 g and contains 6.02

x 1023 atoms. Assume that the atom interacts only with its nearest neighbor.

Answer: 710 N/m.

10. A block is on a piston which is moving vertically with a simple harmonic

motion of period 1.0 s. {a) At what amplitude of motion will the block and

piston separate! [b] If the piston has an amplitude of 5.0 cm, what is the

maximum frequency for which the block and piston will be in contact

continuously ?

11. A block is on a horizontal surface which is moving horizontally with a

simple harmonic motion of frequency 2.0 Hz. The coefficient of static fric-

tion between block and plane is 0.50. How great can the amplitude be if the

block does not slip along the surface? Answer: 3.1 cm.

12. The end of one of the prongs of a tuning fork that executes simple harmonic

motion of frequency 1000 Hz has an amplitude of 0.40 mm. Find [a] the

maximum acceleration and maximum speed of the end of the prong and

[b) the acceleration and the speed of the end of the prong when it has a dis-

placement 0.20 mm. (c) Express the end's position as a function of time if

it is at equilibrium when t = 0.

13. A body oscillates with simple harmonic motion according to the equation

x = 6.0 cos [3nt + it/3)

where x is in meters, t is in seconds, and the numbers in the parentheses are

in radians. What is [a] the displacement, [b] the velocity, (c) the acceleration

and \d) the phase at the time t = 2.0 s. Find also (e) the frequency v and

(/) the period ol the motion

Answei a 10 m. \b) -49 m/s. (c) -270 m/s2
. |d)20rad. (e) 1.5 Hz. [f] 0.67 s.

14. A Loudspeaker produces .1 musical sound by the oscillation ot .i diaphragm.

ii the amplitude oi oscillation is limited to 1.0 > m ' mm what Erequenc Les

will resuli in the acceleration ol the diaphragm exceedin



15.

16.

17.

19.

Two particles execute simple harmonic motion of the same amplitude and

frequency along the same straight line. They pass one another when going

in opposite directions each time their displacement is half their amplitude.

What is the phase difference between them? Answer: 120°.

Two particles oscillate in simple harmonic motion along a common straight

line segment of length A. Each particle has a period of 1.5 s but they differ in

phase by 30°. [a] How far apart are they (in terms of A) 0.50 s after the lag-

ging particle leaves one end of the path? (b) Are they moving in the same

direction, toward each other, or away from each other at this time?

A massless spring of force constant 7.0 N/m is cut into halves, [a] What is

the force constant of each half? [b] The two halves, suspended separately,

support a block of mass M (see Fig. 15-22). If the system vibrates at a fre-

quency of 3.0 Hz, what is the value of the mass M?
Answer: [a] 14 N/m. [b] 19 g.

A uniform spring whose unstressed length is 1 has a force constant k. The
spring is cut into two pieces of unstressed lengths h and l>, where U = nh
and n is an integer. What are the corresponding force constants k\ and k 2 in

terms of n and k\ Check your result for n = 1 and n = °°.

Two springs are attached to a mass m and to fixed supports as shown in

Fig. 15-23. Show that the frequency of oscillation in this case is

J_
277

A1 + A2

m

(The electrical analog of this system is a series combination of two ca-

pacitors.)
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20. Two equal masses m and three identical springs of force constant k are ar-

ranged as shown in Fig. 15-24. [a] Let X\, x2 represent the displacement of

each mass from its equilibrium position and show that

21.

22.

m d2x,

dt2

and

m d2x 2

dt2

= k[x-2 - 2xi)

A(x, - 2x2

\b) Find the frequencies of vibration for the system by assuming a solution

of the form Xi = Ai sin cut and x2 = A> sin wt.

Two springs are joined and connected to a mass m as shown in Fig. 15-25.

The surfaces are frictionless. If the springs separately have force constants

ki and k>, show that the frequency of oscillation of m is

J_
2tt

ktk-.

{ki + k 2)m

(The electrical analog of this system is a parallel connection of two ca-

pacitors.)

The force of interaction between two atoms in certain diatomic molecules

can be represented by F = —air2 + b/r3 , in which a and b are positive con-

stants and r is the separation distance of the atoms. Make a graph of F vs. r.

Then [a] show that the separation at equilibrium is bla
}
[b] show that for

small oscillations about this equilibrium separation the force constant is

a 4/b3
}

(c) find the period of this motion.

figure 15-25
Problem 21
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SECTION 15-4

23. A massless spring of force constant 19 N/m |1.3 lb/ft) hangs vertically. A
body of mass 0.20 kg |W = mg = 0.44 lb) is attached to its free end and then

released. Assume that the spring was unstretched before the body was re-

leased. Find [a] how far below the initial position the body descends, [b] the

frequency, and |c) the amplitude of the resulting motion, assumed to be

simple harmonic.

Answer: [a] 0.21 m (0.68 ft), [b] 1.6 Hz (1.5 Hz), (c) 0.11 m (0.34 ft).

24. An oscillating mass-spring system has a mechanical energy of 1.0
J (0.74

ft • lb), amplitude of 0.10 m (0.33 ft), and maximum speed of 1.0 m/s (3.3

ft/s). Find \a) the force constant of the spring, \b) the mass, and (c) the fre-

quency of oscillation.

[a] When the displacement is one-half the amplitude A, what fraction of

the total energy is kinetic and what fraction is potential in simple harmonic

motion? [b] At what displacement is the energy half kinetic and half po-

tential''

Answer: [a) £ : \. [b] A/\ 2.

\a) Prove that in simple harmonic motion the average potential energy

equals the average kinetic energy when the average is taken with respect

to time over one period of the motion, and that each average equals }kA 2
.

(See Fig. 15-9a.) [b] Prove that when the average is taken with respect to

position over one cycle, the average potential energy equals ikA 2 and the

average kinetic energy equals ^kA 2
. (See Fig. 15-9/7.) (c) Explain physically

why the two results above [a and b) are different.

27. Vertical Spring in a Uniform Gravitational Field. Consider a massless

spring of force constant k in a uniform gravitational field. Attach a mass m
to the spring. [a\ Show that if x = marks the slack position of the spring,

the static equilibrium position is given by x = mg/k (see Fig. 15-26). [b] Show
that the equation of motion of the mass-spring system is

26

d2x ,m -y— + kx
dt 2

mg

and that the solution for the displacement as a function of time is x = A cos

[u>t + (/>) + mg/k. where w = Vk/m as before, (c) Show, therefore, that the

system has the same w, v, a, i>, and T in a uniform gravitational field as in

the absence of such a field, with the one change that the equilibrium posi-

tion has been displaced by mg/k. \d) Now consider the energy of the sys-

tem, \mv2 + jkx2 + mg\h —x) = constant, and show that time differentiation

leads to the equation of motion of part [b). \e) Show that when the mass falls

from x = to the static equilibrium position, x = mg/k, the loss in gravita-

tional potential energy goes half into a gain in elastic potential energy and

half into a gain in kinetic energy.
( f) Finally, consider the system in mo-

tion at the static equilibrium position. Compute separately the change in

gravitational potential energy and in elastic potential energy when the mass

moves up through a displacement A. and when the mass moves down
through a displacement A. Show that the total change in potential energy

is the same in each case, namely \kA 2
.

In view of the results (c) and
(

/'), one can simply ignore the uniform gravi-

tational field in the analysis merely by shifting the reference position from

x = to Xo = x — mg/k = 0. The new potential energy curve [c7(x )
= ?/<x<r f

i instant
| has the same parabolic shape as the potential energy curve in the

absence of a gravitational field \U\x) = fr/cx
8
].

2K. An 8.0-lb block is suspended from a spring with a force constant of 3.0 lb/in.

A bullet weighing 0. 10 lb is fired into the block from below with a speed ot

inn ft/s .ind comes to rest in the hlock. \a\ Find the amplitude ot the re-

sulting simple harmonic motion b) What fraction oi the original kinetic

energy of the bullet is stored in the harmonic oscillator? Is energ) lost in

tins proi ess ' Explain your answer.

29 Stan from Eq. 15-17 for the conservation ol energ) with \i I E] and

-x =

--x = mg/k

Ground level

figure
Problem
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obtain the displacement as a function of the time by integration of Eq.

15-18. Compare with Eq. 15-8.

30. Attach a solid cylinder to a horizontal massless spring so that it can roll

without slipping along a horizontal surface, as in Fig. 15-27. The force con-

stant k of the spring is 3.0 N/m. If the system is released from rest at a posi-

tion in which the spring is stretched by 0.25 m, find [a] the translational

kinetic energy and (b) the rotational kinetic energy of the cylinder as it

passes through the equilibrium position, (c) Show that under these condi-

tions the center of mass of the cylinder executes simple harmonic motion

with a period

T=2tt V3M/2A,

where M is the mass of the cylinder.

31. If the mass of a spring m s is not negligible but is small compared to the

mass m of the object suspended from it, the period of motion is T =

277 V(m + m s/3)/k. Derive this result. {Hint: The condition m s « m is

equivalent to the assumption that the spring stretches proportionally along

its length.) (See H. L. Armstrong, American [ournal of Physics, 37, 447

(1969) for a complete solution of the general case.)

figure 15-27
Problem 30
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SECTION 15-5

32. What is the length of a simple pendulum whose period is 1.00 s at a point

where g = 32.2 ft/s
2

?

33. A simple pendulum of length 1.00 m (3.28 ft) makes 100 complete oscilla-

tions in 204 s at a certain location. What is the acceleration due to gravity

at this point- Answer: 9.49 m/s2 (31.1 ft/s2
).

34. A solid sphere of mass 2.0 kg
(
W = mg = 4.4 lb) and diameter 0.30 m (0.98 ft)

is suspended on a wire. Find the period of angular oscillation for small dis-

placements if the torque constant of the wire is 6.0 x 10~ 3 N • m/rad (4.4 x

10- 3 lb • ft/rad).

35. A circular hoop of radius 2.0 ft and weight 8.0 lb is suspended on a horizon-

tal nail, (a) What is its frequency of oscillation for small displacements

from equilibrium-' [b) What is the length of the equivalent simple pendu-

lum? Answer: [a] 0.45 Hz. [b] 4.0 ft.

36. Determine the largest amplitude of a simple pendulum such that Eq. 15-19

for the period is correct to within 1.0%.

37. A long uniform rod of length / and mass m is free to rotate in a horizontal

plane about a vertical axis through its center. A spring with force constant

k is connected horizontally between the end of the rod and a fixed wall as

shown in Fig. 15-28. What is the period of the small oscillations that result

when the rod is pushed slightly to one side and released?

Answer: lir Vm/3k.

38. The balance wheel of a watch vibrates with an angular amplitude of 77

radians and a period of 0.50 s. Find [a] the maximum angular speed of the

wheel, [b] the angular speed of the wheel when its displacement is 77/2

rads, and (c) the angular acceleration of the wheel when its displacement

is 77/4 radians.

39. [a] What is the frequency of a simple pendulum 2.0 m long? [b] Assuming
small amplitudes, what would its frequency be in an elevator accelerating

upward at a rate of 2.0 m/s2
. (c) What would its frequency be in free fall?

Answer: [a] 0.35 Hz. \b) 0.39 Hz. (c) Zero.

40. A simple pendulum of length / and mass m is suspended in a car that is

traveling with a constant speed v around a circle of radius R. If the pendu-

lum undergoes small oscillations in a radial direction about its equilibrium

position, what will its frequency of oscillation be?

41. Prove, for the generalized physical pendulum of Fig. 15-12, that the centers

of oscillation and percussion coincide. See Examples 4 and 5 for a special

case.

figure 15-28
Problem 37



42. A pendulum is formed by pivoting a long thin rod of length 1 and mass m
about a point on the rod which is a distance d above the center of the rod.

[a] Find the small amplitude period of this pendulum in terms of d, 1, m,

and g. [b] Show that the period has a minimum value when d = 7/VT2 =

0.289i.

43. A disk 1.0 m in diameter is cut from a metal sheet. The disk is made to

swing as a pendulum by drilling a small hole in it and mounting it on a nail

driven into a wall. Let 1 be the distance from the nail to the center of the

plate, [a] For what value or values of 1 will the period be 1.7 s? [b] Suppose

you want the period to be as small as possible. What value of 1 would you

use? Answer: [a] 0.30 m
;
0.42 m. [b] 0.35 m.

44. [a] Show that the maximum tension in the string of a simple pendulum,

when the amplitude 0„, is small, is mg(l + m
2
). [b\ At what position of the

pendulum is the tension a maximum :

SECTION 15-7

45. Electrons in an oscilloscope are deflected by two mutually perpendicular

electric fields in such a way that at any time t the displacement is given by

x = A cos cut, y = A cos (cut + <t>y ).

[a] Describe the path of the electrons and determine its equation when

<l>y
= 0°. (b) When 4> y

= 30°. (c) When 4>„ = 90°.

Answer: [a] Straight line, y = ±x. [b] Ellipse, y 2 — V3xy + x2 = A 2/4. (c)

Circle, x2 + y2 = A 2
.

46. Sketch the path of a particle which moves in the x-y plane according to the

equations x = A cos (cut — 77/2), y = 2A cos (cut), in which x and y are in

meters and t is in seconds.

47. The figure shown in Fig. 15-29 is the result of combining the two simple

harmonic motions x = Ax cos a>A and y = A y cos (cuyt + <f)y ). (a) What is the

value of AxlAy*. [b] What is the value of wj/w.,-
(
c ) What is the value of </>„?

Answer: [a) 1.0, [b] 0.50, [c] ±&r.

48. A particle, mass m, moves in a fixed plane along the trajectory r = i A cos

cut + j A cos 3 cut. [a] Sketch the trajectory of the particle. \b) Find the par-

ticle's angular momentum as a function of time, (c) Find the force acting

on the particle. Also find [d] its potential energy and \e) its total energy as

functions of time. \f) Is the motion periodic" If so, what is the period?

49. Lissajous Figures. When oscillations at right angles are combined, the fre-

quencies for the motion of the particle in the x- and y-directions need not

be equal, so that in the general case Eqs. 15-30 become

x = A x cos (cuj-t + c/>j) and y = A y cos (cu y t + <f> y ).

The path of the particle is no longer an ellipse but is called a Lissajous curve,

after Jules Antoine Lissajous who first demonstrated such curves in 1857.

[a] If cux/cu w is a rational number, so that the angular frequencies cuj- and cu v

are "commensurable," then the curve is closed and the motion repeats

itself at regular intervals of time. Assume A x = A y and 4>x = 4>y and draw

the Lissajous curve for cux/cu w = |, $, and f. [b] Let wx/cu,, be a rational num-
ber, either i, i, or f say, and show that the shape of the Lissajous curve

depends upon the phase difference </>j- — cV Draw curves for c/>j-
— c/>„ = 0, 77/4,

and 77/2 rad. (c) If toj-/to y is not a rational number, then the curve is "open.''

Convince yourself that after a long time the curve will have passed through

every point lying in the rectangle bounded by x = ±A.r and y = ±A U , the

particle never passing twice through a given point with the same velocity.

1 or definiteness, assume c/>., = throughout.

SECTION 15-8

50. (a) What is the reduced mass of each of the following diatomic molecules:

2 , HC1, and CO? Express youi answers m unified atomic mass units

the mass of a hydrogen atom being approximately 1.00 U /'I An HCl mole
ink- is known to vibrate ai .1 tunil.inH-nt.il frequency of v = 8.7 x 10 ,s Hz.

figure 15-29
Problem 47



What is the effective "force constant" k for the coupling forces between the

atoms ? In terms of your experience with ordinary springs, would you say

that this "molecular spring" is relatively stiff or not?

51. (a) Show that when m 2
—» °° in Eq. 15-33, /j. -* mi. [b] Show that the effect

of a noninfinite wall (m 2 < °°) on the oscillations of a mass mi at the end of

a spring attached to the wall is to reduce the period, or increase the fre-

quency, of oscillation compared to (a), (c) Show that when m 2 = mi the

effect is as though the spring were cut in half, each mass oscillating inde-

pendently about the center of mass at the middle.

52. The spring in Fig. 15- 17a has a force constant k = 250 N/m (17 lb/ft). Let

m, = 1.0 kg | Wi = m,g = 2.2 lb) and m 2 = 3.0 kg [W2 =m 2g = 6.6 lb), [a) What
is the oscillation frequency of the two-body system' (b) What is the ratio

KilK> of the kinetic energies of the bodies'

53. Show that the kinetic energy of the two-body oscillator of Fig. 15- 17a is

given by K = i/uv2
, where fj.

is the reduced mass and v (= vi — v.) is the rela-

tive velocity. It may help to note that linear momentum is conserved while

the system oscillates.

SECTION 15-9

54. For the system shown in Fig. 15-18, the block has a mass of 1.5 kg and the

spring constant k = 8.0 N/m. Suppose the block is pulled down a distance

of 12 cm and released. If the friction force is given by — b dx/dt, where b =
0.23 kg/s, find the number of oscillations made by the block during the

time interval required for the amplitude to fall to one-third of its initial

value.

SECTION 15-10

55. Starting from Eq. 15-41, find the velocity v (= dx/dt), in forced oscillatory

motion. Show that the velocity amplitude is v,„ = Fm/[[mo)" — k/w") 2 + b2
]
112

.

The equations of Section 15-10 are identical in form with those repre-

senting an electrical circuit containing a resistance R, an inductance L,

and a capacitance C in series with an alternating emf V= V,„ cos oj"t. Hence,

b, m, k, and Fm are analogous to R, L, 1/C, and Vm, respectively, and x and

v are analogous to electric charge q and current i, respectively. In the elec-

trical case the current amplitude i,„, analogous to the velocity amplitude

vm above, is used to describe the quality of the resonance.



gravitation
From at least the time of the Greeks two problems were the subjects 16-1
of searching inquiry: (1) the tendency of objects such as stones to fall HISTORICAL
to earth when released, and (2) the motions of the planets, including INTRODUCTION*
the sun and the moon, which were classified with the planets in those

times. In early days these problems were thought of as completely sep-

arate. It is one of Newton's achievements that, building on the work
of his predecessors, he saw them clearly as aspects of a single problem

and subject to the same laws.

In 1665 the 23-year-old Newton was driven from Cambridge to

Lincolnshire when the college was dismissed because of the plague.

About 50 years later he wrote, ".
. . in the same year (1665) I began to

think of gravity extending to the orb of the Moon . . . and having

thereby compared the force requisite to keep the Moon in her orb with

the force of gravity at the surface of the earth, and found them to

answer pretty nearly."

Newton's young friend William Stukeley wrote of having tea with

Newton under some apple trees when Newton said that the setting

was the same as when he got the idea of gravitation. "It was occasion d

by the fall of an apple,! as he sat in a contemplative mood . . . and thus

by degrees he began to apply this property of gravitation to the motion

of the earth and the heavenly bodys ..." (See Fig. 16-1.1

We can compute the acceleration of the moon toward the earth from

its period of revolution and the radius of its orbit. We obtain 0.0089 ft/s
2

A Background to Newtonian Gravitation In v v Raman in The Physics Teachei

November 1972.

I here is little basis for the belie! thai the apple hit Newton on the head!

88 I



(see Example 4, Chapter 4). This value is about 3600 times smaller than

g, the acceleration due to gravity at the surface of the earth. Newton,

guided as he says by Kepler's third law (see below and see Problem 25),

sought to account for this difference by assuming that the acceleration

of a falling body is inversely proportional to the square of its distance

from the earth.

The question of what we mean by "distance from the earth" imme-
diately arises. Newton eventually came to regard every particle of the

earth as contributing to the gravitational attraction it had on other

bodies. He made the daring assumption that the mass of the earth could

be treated as if it were all concentrated at its center. (See Section 16-6.)

We can treat the earth as a particle with respect to the sun, for ex-

ample. It is not obvious, however, that we can treat the earth as a par-

ticle with respect to an apple located only a few feet above its surface.

If we make this assumption, however, a falling body near the earth's

surface is a distance of one earth radius from the effective center of

attraction of the earth, or 4000 mi. The moon is about 240,000 mi away.

The inverse square of the ratio of these distances is (4000/240,000) 2 =
1/3600, in agreement with the ratio of the accelerations of the moon
and the apple. In Newton's words, quoted above, it does indeed "answer

pretty nearly."

Newton did not publish his conclusions in full until 1678, some 22

years after he had conceived the basic ideas. He did so then in his

master-work, the Principia. Quite apart from the apple-earth problem

which we mentioned above, there was a real uncertainty about the

radius of the earth, a needed parameter in the calculations. Finally,

there was Newton's general reluctance to publish anything; he was a

shy and introspective man and abhorred controversy. Bertrand Russell

wrote of him: "If he had encountered the sort of opposition with which
Galileo had to contend, it is probable that he would never have pub-

lished a line." Edmund Halley, of Halley's comet fame, virtually

forced Newton to publish the Principia. The mathematician Augustus

DeMorgan wrote of Halley: ".
. . but for him, in all human probability,

that work would not have been thought of, nor when thought of written,

nor when written printed."

In the Principia Newton went beyond the apple- earth and the moon-
earth problems and extended his law of gravitation to all bodies, in

a way that we will discuss in the next section.

There are three overlapping realms in which we can discuss gravi-

tation. (1) The gravitational attraction between two bowling balls, for

example, although measurable by sensitive techniques, is too weak to

fall within our ordinary sense perceptions. (2) The attraction of our-

selves and objects around us by the earth is a controlling feature of

our lives from which we can escape only by extreme measures. The
designers of our space program have the gravitational force constantly

in mind as a central and controlling factor. (3) On a cosmic scale, that

is, in the realm of the solar system and of the formation and inter-

action of stars and galaxies, gravitation is by far the dominant force.

The earliest serious attempts to explain the kinematics of the solar

system were made by the Greeks. Ptolemy (Claudius Ptolemaus, second

century a.d.) developed a geocentric (Ptolemaic) scheme for the solar

system in which, as the name implies, the earth remains stationary

at the center whereas the planets, including the sun and the moon,
revolve around it. This should not be a surprising deduction. The earth

seems to us to be a substantial body. Shakespeare referred to it as ".
. .

figure 16-1

Both the moon and the apple are

accelerated toward the center of the

earth. The difference in their

motions arises because the moon
has a tangential velocity v

whereas the apple does not.



this goodly frame, the earth. ..." Even today, in teaching navigational

astronomy, we use a geocentric reference frame and in ordinary con-

versation we use terms such as "sunrise," which imply such a frame.

Simple circular orbits cannot account for the complicated motions

of the planets so that Ptolemy had to use the concept of epicycles, in

which a planet moves around a circle whose center moves around an-

other circle centered on the earth. (See Fig. 16-2b.) He also had to resort

to several other geometrical arrangements, each of which preserved

the supposed sanctity of the circle as a central feature of planetary mo-
tions. We now know that it is not a circle that is fundamental but an

ellipse, with the sun at one focus (see below).

figure 16-2

(a) The Copernican view of the solar system. The sun is at the center and

the planets move around it. (b) The Ptolemaic view of the solar system. The

earth is at the center and the planets move around it. Both investigators

introduced geometrical complexities to explain the complex motion of the

planets. In (b), for example, Mars travels about a (circular) epicycle

whose center travels about a (circular) deferent. The arrangements of

Copernicus, essentially equally complex, are not shown. The basic

difference is whether or not the sun or the earth is to be at the center of the

planetary motions. (See The Crime of Galileo, by Giorgio De Santillana,

Chicago: University of Chicago Press, 1955. See also The Copernican

Revolution, by Thomas S. Kuhn, Cambridge, Mass.: Harvard University

Press, 1957.)

In the sixteenth century Copernicus (1473-1543) proposed a helio-

centric (Copernican) scheme, in which the sun was at the center of

the solar system, the earth moving about it as one of its planets: see

Fig. 16-2(3. It is often thought that the Copernicus scheme is so much
simpler than that of Ptolemy that it should have been adopted at once.

This is not true. Copernicus still believed in the sanctity of circles and
Ins use of epicycles and other arrangements was about as great as that

of Ptolemy; these are not shown in Fig. \6-2a. Copernicus however,

by putting the sun at the center of things, gave a much simpler descrip-

tion and more natural explanation ol certain features of planetary mo-
tion Above all he laid the indispensable groundwork from which our

modern view <>f the solai system developed



The growing controversy over the two theories stimulated astron-

omers to obtain more accurate observational data. Such data were com-

piled by Tycho Brahe* (1546-1601), who was the last great astronomer

to make observations without the use of a telescope, t His data on

planetary motions were analyzed and interpreted for about twenty years

by Johannes Kepler (1571-1630), who had been Brahe's assistant. Kepler

found important regularities in the motion of the planets. These regu-

larities are known as Kepler's three laws of planetary motion.

1. All planets move in elliptical orbits having the sun as one focus

(the law of orbits).

2. A line joining any planet to the sun sweeps out equal areas in equal

times (the law of areas).

3. The square of the period of any planet about the sun is proportional

to the cube of the planet's mean distance from the sun (the law of

periods).

Kepler's laws lent strong support to the Copernican theory. They
showed the great simplicity with which planetary motions could be

described when the sun was taken as the reference body. However, these

laws were empirical; they simply described the observed motion of the

planets without any theoretical interpretation. Kepler had no concept

of force as a cause of such regularities.** In fact, the concept of force

was not yet clearly formulated. It was, therefore, a great triumph for

Newton's ideas that he could derive Kepler's laws from his laws of

motion and his law of gravitation. Newton's law of gravitation in this

case required each planet to be attracted toward the sun with a force

proportional to the mass of the planet and inversely proportional to

the square of its distance from the sun.

In this way Newton was able to account for the motion of the planets

in the solar system and of bodies falling near the surface of the earth

with one common concept. He thereby synthesized into one theory

the previously separate sciences of terrestrial mechanics and celestial

mechanics. The real scientific significance of Copernicus' work lies

in the fact that the heliocentric theory opened the way for this syn-

thesis.* Subsequently, on the assumption that the earth rotates and
revolves about the sun, it became possible to explain such diverse

phenomena as the daily and the annual apparent motion of the stars,

the flattening of the earth from a spherical shape, the behavior of the

tradewinds, and many other things that could not have been tied to-

gether so simply in a geocentric theory.

It is instructive to review the development of our understanding of the motions

of the bodies in the solar system in terms of the program of classical mechanics

that we outlined in Chapter 5; see page 73. Historically, there were four

"breakthroughs."

* See "Copernicus and Tycho" by Owen Gingerich, in Scientific American, December
1973.

tThe first scientifically useful telescope was built in 1609 by Galileo. With it he dis-

covered the inner moons of Jupiter and the phases of Venus. Galileo was a strong advo-

cate of the Copernican theory and used his observations to argue in its behalf. Newton,
incidentally, invented a telescope, the reflecting type.
"* See 'How Did Kepler Discover His First Two Laws' by Curtis Wilson in Scientific

American, March 1972.

t Newton's work certainly built on or was influenced by the work of others. Among them
we must include Galileo, Kepler, Halley, and Hooke.



1. Copernicus pointed out that the sun and not the earth is the central body of

the solar system. In today's language he gave us a reference frame (the sun)

much more suitable than the one previously used (the earth) for describing

the motions of the solar system. Among other advantages, the Copernican

frame, fixed with respect to the sun but not rotating with it, is essentially

an inertial reference frame; the reference frame fixed to the revolving earth

on which we live cannot be so considered for problems involving planetary

motions.

2. Brahe made accurate measurements of the motions of the planets as viewed

from the earth. He provided the necessary observational data that made
further progress possible.

3. Kepler, studying Brahe 's data, deduced from it the three simple empirical

laws of planetary motion that we have discussed above. Adopting Coper-

nicus' reference frame, he displayed the kinematic information about plane-

tary motions in simple form.

4. Newton discovered the laws of motion for mechanical systems in general

as well as the particular force law that applies to the motions of the planets,

namely the law of universal gravitation.

Thus, over a span of about 200 years, we see emerging (1) the appropriate ref-

erence frame, (2) accurate kinematical information, (3) the empirical laws of

planetary motion, and |4) the general laws of classical mechanics and the force

law appropriate to planetary motion.

The force between any two particles having masses mi and m> sep- 16-2
arated by a distance r is an attraction acting along the line joining THE LAW OF
the particles and has the magnitude UNIVERSAL

F=G rrhmli (161)

where G is a universal constant having the same value for all pairs of

particles.

This is Newton's law of universal gravitation. It is important to

stress at once many features of this law in order that we understand it

clearly.

First, the gravitational forces between two particles are an action-

reaction pair. The first particle exerts a force on the second particle

that is directed toward the first particle along the line joining the two.

Likewise, the second particle exerts a force on the first particle that

is directed toward the second particle along the line joining the two.

These forces are equal in magnitude but oppositely directed.

The universal constant G must not be confused with the g which

is the acceleration of a body arising from the earth's gravitational pull

on it. The constant G has the dimensions UIMT2 and is a scalar; g has

the dimensions LIT*, is a vector, and is neither universal nor constant.

Notice that Newton's law of universal gravitation is not a defining

equation for any of the physical quantities (force, mass, or length) con-

tained in it. According to our program for classical mechanics in Chap-

ter 5, force is defined from Newton's second law, F = ma. The essence

of this law, however, is the assumption that the force on a particle,

so defined, can be related in a simple way to measurable properties of

the particle and of its environment, that is, the existence of simple

force laws is assumed. The law of universal gravitation is such a simple

law. The constant G must be found from experiment. Once G is de-

termined tor a given pair of bodies, we can use that value in the law of

GRAVITATION



gravitation to determine the gravitational forces between any other

pair of bodies.

Notice also that Eq. 16-1 expresses the force between mass particles.

If we want to determine the force between extended bodies, as for ex-

ample the earth and the moon, we must regard each body as decomposed

into particles. Then the interaction between all particles must be com-

puted. Integral calculus makes such a calculation possible. Newton's

motive in developing the calculus arose in part from a desire to solve

such problems. In general, it is incorrect to assume that all the mass

of a body can be concentrated at its center of mass for gravitational pur-

poses. This assumption is correct for uniform spheres, however, a result

that we shall use often and shall prove in Section 16-6.

Implicit in the law of universal gravitation is the idea that the gravi-

tational force between two particles is independent of the presence of

other bodies or the properties of the intervening space. The correctness

of this idea depends on the correctness of the deductions using it and

has so far been borne out. This fact has been used by some to rule out

the possible existence of "gravity screens."

We can express the law of universal gravitation in vector form. Let the displace-

ment vector ti2 point from the particle of mass m, to the particle of mass m 2 ,

as Fig. \6-3a shows. The gravitational force F2] , exerted on m 2 by rri\, is given

in direction and magnitude by the vector relation

mim-,
F2i

= -G — r, 2

r 12
3

\\6-2a)

in which rVi is the magnitude of r12 . The minus sign in Eq. l6-2a shows that

F 2 i points in a direction opposite to t vli that is, the gravitational force is attrac-

tive, m> feeling a force directed toward mi (see Fig. 16-3). That Eq. \6-2a is in-

deed an inverse square law can be seen by writing it as F 2 i
= —(Gmim2/ri22

)(ii2/ri2);

here the displacement vector divided by its own magnitude, r 12/r 12 , is simply a

unit vector u r in the direction of the displacement. If we express the relation

in scalar form by equating the magnitudes of each side, a factor ri 2 in the

numerator cancels one of the factors of rV2
3 in the denominator and the inverse

square relation of Eq. 16-1 results.

The force exerted on rri\ by m 2 is clearly

F,2
„m 2m,C — r2

r2 i

3
|16-2fo)

Note, in Eqs. 16-2, that r 2i
= —tu (see Fig. \6-2>a,b) so that, as we expect,

I12 = — F21 (see Fig. 16-3c)
;
that is, the gravitational forces acting on the two

bodies form an action-reaction pair.

To determine the value of G it is necessary to measure the force of

attraction between two known masses. The first accurate measure-

ment was made by Lord Cavendish in 1798. Significant improvements
were made by Poynting and Boys in the nineteenth century. The present

accepted value of G is*

G = 6.6720 x 10- 11 N • m2/kg2
,

accurate to about 0.0006 x 10 n N • m2/kg2
. In the British engineering

system this value is 3.436 x 10" lb ft
2/slug2

.

The constant G can be determined by the maximum deflection

* See "A New Determination of the Constant of Gravitation" by A. H. Cook, in Con-
temporary Physics, May 1968, for a good review of the principles and methods used.

(a) (b) (c)

figure 16-3

The force exerted on m 2 (by mi),

F21, is directed opposite to the

displacement, r i2 , of m> from m,.

The force exerted on m l (by m 2 ),

F ]2 , is directed opposite to the

displacement, r2 i, of m, from m..

F21 = — F12, the forces being an

action-reaction pair.

16-3
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figure 16-4

The Cavendish balance, used for

experimental verification of

Newton's law of universal

gravitation. Masses m,m are

suspended from a fiber. Masses

M,M can rotate on a stationary

support. An image of the lamp
filament is reflected by the mirror

attached to m,m onto the scale so

that any rotation of m,m can

be measured.

method illustrated in Fig. 16-4. Two small balls, each of mass m, are

attached to the ends of a light rod. This rigid "dumbbell" is suspended,

with its axis horizontal, by a fine vertical fiber. Two large balls each

of mass M are placed near the ends of the dumbbell on opposite sides.

When the large masses are in the positions A and B, the small masses

are attracted, by the law of gravitation, and a torque is exerted on the

dumbbell rotating it counterclockwise, as viewed from above. When
the large masses are in the positions A' and B' , the dumbbell rotates

clockwise. The fiber opposes these torques as it is twisted. The angle

through which the fiber is twisted when the balls are moved from one

position to the other is measured by observing the deflection of a beam
of light reflected from the small mirror attached to it. If the masses

and their distances of separation and the torsional constant of the fiber

are known, we can calculate G from the measured angle of twist. The
force of attraction is very small so that the fiber must have an ex-

tremely small torsion constant if we are to obtain a detectable twist.

In Example 1 at the end of this section some data are given from which
G can be calculated.

The masses in the Cavendish balance of Fig. 16-4 are, of course, not

particles but extended objects. Since they are uniform spheres, how-
ever, they act gravitationally as though all their mass were concen-

trated at their centers (Section 16-6).

Because G is so small, the gravitational forces between bodies on the

earth's surface are extremely small and can be neglected for ordinary

purposes. For example, two spherical objects each having a mass of

100 kg (about 220-lb weight) and separated by 1.0 m at their centers

attract each other with a force

= Gm xm 2 = (6.67 x 1Q-") x (100) x (100)

r2 (1.0)
2

= 6.7 x 10 7 N

or about 1.5 x 10 7 lb! The Cavendish experiment must be a very deli

cate one indeed Even so it is often performed as an experiment in an

introductory physics laboratory.



The large gravitational force which the earth exerts on all bodies

near its surface is due to the extremely large mass of the earth. In fact,

we can determine the mass of the earth from the law of universal gravi-

tation and the value of G calculated from the Cavendish experiment.

For this reason Cavendish is said to have been the first person to

"weigh" the earth. Consider the earth, mass Me , and an object on its

surface of mass m. The force of attraction is given both by

and F =

F = mg

GmMe
R,

Here R e is the radius of the earth, which is the separation of the two

bodies, and g is the acceleration due to gravity at the earth's surface.

Combining these equations we obtain

g RS (9.80 m/s*)(6.37 x 10° m)»
? Q

„ ,Me ~ G ~ 6.67 x 10-» N • m2/kg2 " by/ 1U Rg

or 6.6 x 1021 tons "weight."

If we were to divide the total mass of the earth by its total volume, we
would obtain the average density of the earth. This turns out to be

5.5 g/cm3
, or about 5.5 times the density of water. The average density

of the rock on the earth's surface is much less than this value. We con-

clude that the interior of the earth contains material of density greater

than 5.5 g/cm3
. From the Cavendish experiment we have obtained in-

formation about the nature of the earth's core. (See Question 7 and

Problem 16.)

Let the small spheres of Fig. 16-4 each have a mass of 10.0 g and let the light EXAMPLE
rod be 50.0 cm long. The period of torsional oscillation of this system is found

to be 769 s. Then two large fixed spheres each of mass 10.0 kg are placed near

each suspended sphere so as to produce the maximum torsion. The angular

deflection of the suspended rod is then 3.96 x 10 3 rad and the distance between
centers of the large and small spheres is 10.0 cm. Calculate the universal con-

stant of gravitation G from these data.

The period of torsional oscillation is given by Eq. 15-24,

For the rigid dumbbell, if we neglect the contribution of the light rod,

/ = 2 mr2 = (10.0 g)(25.0 cm) 2 + (10.0 g)(25.0 cm) 2

or 1= 1.25 x 10 3 kg • m2
.

With T = 769 s, we can obtain the torsional constant k as

4tt2/ _ (4tt 2 )(1.25 X lO 3 kg • m 2

K = T (769 s)
2

8.34 x 10- 8 kg • m2/s2 .

The relation between the applied torque and the angle of twist is t = k0. We
now know k and the value of at maximum deflection.

The torque arises from the gravitational forces exerted by the large spheres
on the small ones. This torque will be a maximum for a given separation when
the line joining the centers of these spheres is at right angles to the rod. The
force on each small sphere is

GMm
r =—:—

'



and the moment arm for each force is half the length of the rod (1/2). Then,

torque = force x moment arm

GMm 1

or T=2

Combining this with

we obtain

G = xHr2 _ |8.34 x 10~ 8 kg • m2/s2 )|3.96 x 10 3 rad)(0.100 m) 2

Mml ,10.0 kg)|0.0100 kg)i0.500 m]

= 6.63 x 10" N • m2/kg2
.

Notice that this result is about 17c lower than the accepted value. What have

we neglected in this calculation that might account for this difference

-

1

The gravitational force on a body is proportional to its mass, as Eq. 16-1 shows.

This proportionality between gravitational force and mass is the reason we
ordinarily consider the theory of gravitation to be a branch of mechanics,

whereas theories of other kinds of force (electromagnetic, nuclear, etc.) may
not be.

An important consequence of this proportionality is that we can measure

a mass by measuring the gravitational force on it. This can be done by using a

spring balance or by comparing the gravitational force on one mass with that

on a standard mass, as in a balance; in other words, we can determine the mass
of a body by weighing it. This gives us a more practical and more convenient

method of measuring mass than is given by our original definition of mass (Sec-

tion 5-4).

The question arises whether these two methods really measure the same
property. The word mass has been used in two quite different experimental

situations. For example, if we try to push a block that is at rest on a horizontal

frictionless surface, we notice that it requires some effort to move it. The
block seems to be inert and tends to stay at rest, or if it is moving, it tends to

keep moving. Gravity does not enter here at all. It would take the same effort

to accelerate the block in gravity-free space. It is the mass of the block which

makes it necessary to exert a force to change its motion. This is the mass
occurring in F = ma in our original experiments in dynamics. We call this mass

m the ineitial mass. Now there is a different situation which involves the mass
of the block. For example, it requires effort just to hold the block up in the air

at rest above the earth. If we do not support it, the block will fall to the earth

with accelerated motion. The force required to hold up the block is equal in

magnitude to the force of gravitational attraction between it and the earth.

Here inertia plays no role whatever; the property of material bodies, that they

are attracted to other objects such as the earth, does play a role. The force is

given by

F=G in M,

Rr2

where m' is the gravitational mass of the block. Are the gravitational mass
m' ami the menial mass m of the block really the samel Let us look more
carefully at this.

Consider two particles A and H (if gravitational masses m ,' and nil,' acted

on by a third particle C of gravitational mass m, '. Let the third particle be an

equal distance r from the other two. Then the gravitational force exerted on

A by ( is

16-4
INERTIAL AND
GRAVITATIONAL MASS

lu G
Ill , III,



and the gravitational force exerted on B by C is

_ mjW
fBC — Lr

r2

The ratio of the gravitational forces on A and B is the ratio of their gravitational

masses; that is,

Fac _ mA
'

FBc m B
'

Now suppose that the third body C is the earth. Then FAC and FBC are what we
have called the weights of bodies A and B. Hence,

WA _ m A
'

WH m B
'

Therefore, the law of universal gravitation contains within it the result that the

weights of various bodies, at the same place on the earth, are exactly propor-

tional to their gravitational masses.

Now suppose we measure the inertial masses m A and m B of the particles A
and B by dynamical experiments, perhaps using a spring as in Section 5-4. Hav-

ing done this, we then let these particles fall to the earth from a given place

and measure their accelerations. We find experimentally that objects of different

inertial masses all fall with the same acceleration g arising from the earth's

gravitational pull. But the earth's gravitational pulls on these bodies are their

weights, so that using the second law of motion we obtain

WA = mAg,

wB = m Bg,

Wa m A

wB m B

or

In other words, the weights of bodies at the same place on the earth are exactly

proportional to their inertial masses as well. Hence, inertial mass and gravi-

tational mass are at least proportional to one another. In fact, they appear to

be identical.

Newton devised an experiment to test directly the apparent equivalence of

inertial and gravitational mass. If we go back (Section 15-5) and look up the

derivation of the period of a simple pendulum, we find that the period (for small

angles) was given by

T=2i m]_

m'g'

where m in the numerator refers to the inertial mass of the pendulum bob and

m' in the denominator is the gravitational mass of the pendulum bob, such

that m'g gives the gravitational pull on the bob. Only if we assume that m
equals m' , as we did there implicitly, do we obtain the expression

T=2ttJ-

for the period. Newton made a pendulum bob in the form of a thin shell. Into

this hollow bob he put different substances, being careful always to have the

same weight of substance as determined by a balance. Hence, in all cases the

force on the pendulum was the same at the same angle. Because the external

shape of the bob was always the same, even the air resistance on the moving
pendulum was the same. As one substance replaced another inside the bob,

any difference in acceleration could only be due to a difference in the inertial

mass. Such a difference would show up by a change in the period of the pen-

dulum. But in all cases Newton found the period of the pendulum to be the

same, always given by T = 2v VTJg. Hence, he concluded that m = m' and that

inertial and gravitational masses are equivalent.



In 1909, Eotvos devised an apparatus which could detect a difference of 5

parts in 109 in gravitational force. He found that equal inertial masses always

experienced equal gravitational forces within the accuracy of his apparatus. A
refined version of the Eotvos experiment was reported in 1964 by R. H. Dicke

and his collaborators, who improved the accuracy of the original experiment

by a factor of several hundred.*

In classical physics the equivalence of gravitational and inertial mass was
looked upon as a remarkable accident having no deep significance. But in mod-
ern physics this equivalence is regarded as a clue leading to a deeper under-

standing of gravitation (see Section 16-13). This was, in fact, an important clue

leading to the development of the general theory of relativity.

Up to this point we have taken the acceleration due to gravity g as a 16-5
constant. From Newton's law of gravitation, however, it is apparent that

g will vary with altitude, that is, with distance from the center of the

earth. We have already pointed this out specifically in the moon-apple

discussion. Let us compute the change in g that occurs as we proceed

outward from the earth's surface. From Eq. 16-1,

F=G mim-i

VARIATIONS IN
ACCELERATION DUE
TO GRAVITY

we obtain, on differentiating with respect to r,

T3

Combining these two equations, we obtain

F r

Therefore, the fractional change in F is twice the fractional change in r.

The minus sign indicates that the force decreases as the separation dis-

tance increases. If we let m-i be the earth's mass and m 2 the object's

mass, the gravitational force on the object attributable to the earth is

F = m>g

directed toward the earth. If we differentiate this expression, we obtain

dF = m-idg,

and on dividing this equation by the previous one we find that

df_=dg^_
2
dr

F g r
,16-3)

For example, in going up 16 km from the earth's surface, r changes from

about 6400 km to 6416 km, a relative increase of 1/400. Therefore,

t

g must change by about —1/200 over this distance, or from about 980

cm/s2 to about 975 cm/s2
. Hence, g is really very nearly constant near

the earth's surface at a given latitude. At higher altitudes, such as those

for a typical satellite orbit or for the moon's orbit, g drops appreciably,

as Table 16-1 shows.

* See "The Eotvos Experiment," by R. H. Dicke, Scientific American. Decembei 1961,

for an elegant review ol this Bllbjei I

' Equation 16 3 is a differentia] expression and is exacl The corresponding expression
'led when di is repla< ed by a finite change Aa is a good approximation pro> ided thai

Ar/r i mall.



Table 16-1

Variation of g with altitude at 45° latitude

Altitude, 8, Altitude, s,

meters meters/second2 meters meters/second2

9.806 32,000 9.71

1,000 9.803 100,000 9.60

4,000 9.794 500,000 8.53

8,000 9.782 1,000,000! 7.41

16,000 9.757 380,000,0002 0.00271

1 Typical satellite orbit altitude (= 620 mi)
2 Radius of moon's orbit (= 240,000 mi).

Measurements of g are an essential source of information about the shape of

the earth. To define the problem more closely we usually consider not the earth

itself but an imaginary closed surface called the geoid. Over the oceans the

geoid is defined to coincide with mean sea level, whereas over the continents it

is defined as a continuation of this level; in principle the position of the geoid

can be found by digging small sea-level canals across the continents and noting

the mean water level. The geoid is a surface of constant gravitational potential;

at any point the direction of a plumb line is at right angles to it.

The ancient Greeks believed the earth to be round and one of them, Eratos-

thenes (c 276-194 b.c), measured the radius of the earth on the assumption

that it is a sphere. He obtained a value of 7400 km, which is to be compared
with the modern value of 6371 km. Later it was learned by measurement that,

to a good second approximation, the geoid is not a sphere but is an ellipsoid of

revolution, flattened along the earth's rotational axis and bulging at the equator.

The equatorial radius, in fact, exceeds the polar radius by 21 km. This flattening

is caused by centrifugal effects in the rotating, plastic earth. The geoidic surface

is not exactly ellipsoidal, lying outside the ellipsoid of closest fit under moun-
tain masses and inside it over the oceans.

The fact that the equator is farther from the center of the earth than are the

poles means that there should be a steady increase in the measured value of g
as one goes from the equator (latitude 0°) to either pole (latitude 90°). This is

shown in Table 16-2. As Example 2 shows, however, about half of this variation

can be accounted for by another effect, namely, the change in the effective value

of g caused by the earth's rotation. If the earth were rotating fast enough, for

example, objects on its surface at the equator would seem to be weightless,

which means that the effective value of g = [W/m] would be zero. For all rota-

tional speeds less than this critical value, g has a definite nonzero value which
is, however, less than the value it would have at the same point on a nonrotating

earth.

Table 16-2

Variation of g with latitude at sea level

Latitude meters/second2 Latitude meters/second2

0° 9.78039 50° 9.81071
10° 9.78195 60° 9.81918
20° 9.78641 70° 9.82608
30° 9.79329 80° 9.83059
40° 9.80171 90° 9.83217

In 1959, it was observed that the orbit of the Vanguard artificial earth satel-

lite, calculated using values of g based on an ellipsoidal geoid, did not agree

exactly with the observed orbit. It was concluded that the geoid is best approxi-



mated not by an ellipsoid of revolution but by a slightly pear-shaped figure, the

small end of the "pear" being in the northern hemisphere and extending about

15 m above the reference ellipsoid. The motion of a satellite is governed at all

times by the value of g at its position. Thus an artificial earth satellite forms a

useful probe to explore the values of g near the surface of the earth and from this

to deduce information about the shape of the geoid.*

Effect on g of the rotation of the earth. Figure 16-5 is a schematic view of the

earth looking down on the north pole. In it we show an enlarged view of a body

of mass m hanging from a spring balance at the equator. The forces on this body

are the upward pull of the spring balance w, which is the apparent weight of the

body, and the downward pull of the earth's gravitational attraction F= GmMJ
R e

2
. This body is not in equilibrium because it experiences a centripetal ac-

celeration aR as it rotates with the earth. There must, therefore, be a net force

acting on the body toward the center of the earth. Consequently, the force F of

gravitational attraction [the true weight of the body) must exceed the upward
pull of the balance w (the apparent weight of the body).

From the second law of motion we obtain

GMem
R,

w = man,

mg = ma,t,

GMe

At the poles an = so that

GMe

Re2

a R at the equator.

at the poles.

This is the value of g we would obtain anywhere (assuming a spherical earth)

were the rotation of the earth to be neglected.

Actually the centripetal acceleration is not directed in toward the center of

the earth other than at the equator. It is directed perpendicularly in toward

the earth's axis of rotation at any given latitude. The detailed analysis is, there-

fore, really a two-dimensional one. However, the extreme case is at the equator.

There

, p
(2tt\ 2 4TT 2R e

Or = CO
2 Re = I

—
I Re = ^ '

in which w is the angular speed of the earth's rotation, T is the period, and Re

is the radius of the earth. Using the values

Re = 6.37 x 10B m,

T=8.64 x 10 4
s,

a,, = 0.0336 m/s-.

we obtain

Referring to Table 16-2, we see that this effect is enough to account for more
than half the difference between the observed values of g at low and high

latitudes.

EXAMPLE 2

(a)

Path of m

(b)

figure 16-5

Example 2. Effect of the earth's

rotation on the weight of a body as

measured by a spring balance.

Satellite Orbits ;ind Their Geophysical Implications," by D. C. King-Hele, Con-

temporary Physit s April 1961 Refining the Shape ol the Earth" by D. G. King Hele and

G l Cook, Nature, 246, 86 (1973), and "The Shape of the Earth by D. G King-Hele

1976.



We have already used the fact that a large sphere attracts particles outside it,

just as though the mass of the sphere were concentrated at its center. Let us now
prove this result.

Consider a uniformly dense spherical shell whose thickness t is small com-

pared to its radius r (Fig. 16-6). We seek the gravitational force it exerts on an

external particle P of mass m.

We assume that each particle of the shell exerts on P a force which is pro-

portional to the mass of the small part, inversely proportional to the square

of the distance between that part of the shell and P, and directed along the

line joining them. We must then obtain the resultant force on P attributable

to all parts of the spherical shell.

The small part of the shell at A attracts m with a force Fi. A small part of

equal mass at B, equally far from m but diametrically opposite A, attracts m
with a force F 2 . The resultant of these two forces on m is Fi + Fj. Notice, how-

ever, that the vertical components of these two forces cancel one another and

that the horizontal components, Fi cos a and F2 cos a, are equal. By dividing

the spherical shell into pairs of particles like these, we can see at once that all

transverse forces on m cancel in pairs. A small mass in the upper hemisphere

exerts a force having an upward component on m that will annul the downward
component of force exerted on m by an equal symmetrically located mass in the

lower hemisphere of the shell. To find the resultant force on m arising from the

shell, we need consider only horizontal components.

16-6
GRAVITATIONAL
EFFECT OF A
SPHERICAL
DISTRIBUTION
OF MASS

rdO figure 16-6
Gravitational attraction of a section

dS of a spherical shell of matter on
a particle of mass m.

Let us take as our element of mass of the shell a circular strip labeled dS in

the figure. Its length is ltr[r sin 0), its width is r do, and its thickness is t. Hence,

it has a volume

dV = 2-n-tr2 sin do.

Let us call the density p, so that the mass within the strip is

dM = p dV = lirtpr2 sin do.

The force exerted by dM on the particle of mass m at P is horizontal and has

the value

,„ m dM
dF = G — cos a

x2

= lirCtfymr
sin do

116-4)

cos a.

The variables x, a, and are related. From the figure we see that

R — r cos
cos a 116-5)



Since, by the law of cosines,

x2 = R 2 + r2 - IRr cos 0,

we have i cos 6 =
R 2 + r2

2R

[16-6)

[16-7]

On differentiating Eq. 16-6, we obtain

2x dx = 2Ri sin 6 d6

or sin do = — dx. 116-8)

We now put Eq. 16-7 into Eq. 16-5 and then put Eqs. 16-5 and 16-8 into Eq. 16-4.

As a result we eliminate and a and obtain

dF =
irGtpmi (R2 — r

R*
+ l)dx.

This is the force exerted by the circular strip dS on the particle m.

We must now consider every element of mass in the shell and sum up over

all the circular strips in the entire shell. This operation is an integration over

the shell with respect to the variable x. But x ranges from a minimum value

of R — i to a maximum value R + r.

Since

I

R+r /g2
+ \\dx = 4r,

we obtain the resultant force

fH+t

-L dF=G \4iTT2pt)m _ Mm
R 2

= G
R-

116-9)

where M = (47rr2 rp)

is the total mass of the shell. This is exactly the same result we would obtain

for the force between particles of mass M and m separated a distance R. We
have proved, therefore, that a uniformly dense spherical shell attracts an ex-

ternal mass point as if all its mass were concentrated at its center.

A solid sphere can be regarded as composed of a large number of concentric

shells. If each spherical shell has a uniform density, even though different shells

may have different densities, the same result applies to the solid sphere. Hence,

a body such as the earth, the moon, or the sun, to the extent that they are such

spheres, may be regarded gravitationally as point particles to bodies outside

them.

Notice that our proof applies only to spheres and then only when the density

is constant over the sphere or a function of radius alone.

An interesting result of some significance is the force exerted by a spherical

shell on a particle inside it. This force is zero. To prove this we refer to Fig.

16 7, where m is shown inside the shell. Notice that R is now smaller than r.

The limits of our integration over x are now r — R to R + r. But

I"""
/R 2 - r2

I r \ x2
+ 1 )dx = 0,

so that F = 0.

This last result, although not obvious, is plausible because the mass elements

ot the shell on opposite sides ol in now exert forces ot opposite directions on

in inside. The total annulment depends on the fact that the force varies precisely

as an inverse square of the separation distance of two particles. Sec Problem

18.) Important consequences of this result will be discussed in the chapters

on electricity. There we shall sec th.it the electrical force between charged pai

rdd

limn*- n;-7

Gravitational attraction ot a section

dS ot ,i spherical shell ol mattei on

,i panicle ol mass m. Here the

particle is inside the shell.



tides also depends inversely on the square of the distance between them. A
consequence of interest in gravitation is that the gravitational force exerted

by the earth on a particle decreases as the particle goes deeper into the earth,

assuming a constant density for the earth, for the portions of matter in shells

external to the position of the particle exert no force on it, the force becoming

zero at the center of the earth. Hence, g would be a maximum at the earth's

surface and decrease both outward and inward from that point if the earth had

constant density. Can you imagine a spherically symmetric distribution of the

earth's mass* which would not give this result!
1

(See Problem 16.)

Suppose a tunnel could be dug through the earth from one side to the other along

a diameter, as shown in Fig. 16-8.

[a] Show that the motion of a particle dropped into the tunnel is simple

harmonic motion. Neglect all frictional forces and assume that the earth has

a uniform density.

The gravitational attraction of the earth for the particle at a distance r from

the center of the earth arises entirely from that portion of matter of the earth

in shells internal to the position of the particle. The external shells exert no

force on the particle. Let us assume that the earth's density is uniform at the

value p. Then the mass inside a sphere of radius r is

M' = pv = p
Arrr3

This mass can be treated as though it were concentrated at the center of the

earth for gravitational purposes. Hence, the force on the particle of mass m is

„ -GM'm

The minus sign is used to indicate that the force is attractive and directed

toward the center of the earth.

Substituting for M' , we obtain

F = -G
[p4irr3)m

3r2

_ 477777 ^

-kr.

Here Gp4-n-m/3 is a constant, which we have called k. The force is, therefore,

proportional to the displacement r but oppositely directed. This is exactly the

criterion for simple harmonic motion.

[b] If mail were delivered through this chute, how much time would elapse

between deposit at one end and delivery at the other end"

The period of this simple harmonic motion is

777

277 JJ
3m 3tt

GpGp4 77777

Let us take p = 5.51 x 103 kg/m3 and G = 6.67 x 10"n N • m2/kg2
. This gives

V Gp
377

(6.67 x 10-»)(5.51 x 103
)

5050 s = 84.2 min.

The time for delivery is one-half period, or about 42 min. Notice that this time

is independent of the mass of the mail.

The earth does not really have a uniform density. Suppose p were some func-

tion of r, rather than a constant. What effect would this have on our problem'

* See, in this connection, "Comment on 'The Radial Variation of g in a Spherically Sym-
metric Mass with Nonuniform Density' " by K. Sundaralingam, in American fournal

of Physics, September 1974.

EXAMPLE 3

figure 16-8

Example 3. Particle moving in a

tunnel through the earth.



The motions of bodies in the solar system can be deduced from the laws

of motion and the law of universal gravitation. As Kepler pointed out

(see page 337), all planets move in elliptical orbits, the sun being at

one focus. We can learn a lot about planetary motion by considering

the special case of circular orbits. We shall neglect the forces between

planets, considering only the interaction between the sun and a given

planet. These considerations apply equally well to the motion of a satel-

lite (natural or artificial) about a planet.

Consider two spherical bodies of masses M and m moving in circular

orbits under the influence of each other's gravitational attraction. The
center of mass of this system of two bodies lies along the line joining

them at a point C such that mr = MR (Fig. 16-9). If there are no external

forces acting on this system, the center of mass has no acceleration.

In this case we choose C to be the origin of our reference frame. The
large body of mass M moves in an orbit of constant radius R and the

small body of mass m in an orbit of constant radius r, both having the

same angular velocity w. In order for this to happen, the gravitational

force acting on each body must provide the necessary centripetal ac-

celeration. Because these gravitational forces are simply an action-

reaction pair, the centripetal forces must be equal but oppositely di-

rected. That is, mu-r (the magnitude of the centripetal force exerted

by M on m) must equal Moj2R (the magnitude of the centripetal force

exerted by m on M). That this is so follows at once, for mr = MR so

that marr = M(o2R. The specific requirement, then, is that the gravi-

tational force on either body must equal the centripetal force needed

to keep it moving in its circular orbit, that is,

GMm
[R + r)

2
- = moj2

r. ,16-10)

If one body has a much greater mass than the other, as in the case of

the sun and a planet, its distance from the center of mass is much
smaller than that of the other body. Let us therefore assume that R
is negligible compared to r. Equation 16-10 then becomes

GMS = co
2 /-3

,

where M.s. is the mass of the sun. If we express the angular velocity in

terms of the period of the revolution, w = 27r/T, we obtain

CM, = Ait 2?
J'2

16-111

This is a basic equation of planetary motion; it holds also for elliptical

orbits if we define r to be the semi-major axis of the ellipse. Let us con-

sider some of its consequences.

One immediate consequence of Eq. 16-11 is that it predicts Kepler's

third law of planetary motion in the special case of circular orbits. For

we can express Eq. 16-11 as

4tt-

CM,

Notice that the mass of the planet is not involved in this expression.

Here, 4~ 2/(iMs is a constant, the same for all planets.

When the period T and radius r of revolution are known for any

planet, Eq. 16-11 can be used to determine the mass of the sun. For

example, the earth's period is

16-7
THE MOTIONS OF
PLANETS AND
SATELLITES

figure 16-9

Two bodies moving in circular

orbits under the influence of each

other's gravitational attraction.

They both have the same angular

velocity o>.

T= 365 days = 3. 15 x 10 7
s,



and its orbital radius is

r = 93 x 106 mi = 1.5 x 10 11 m.

Hence,

Ms =
47r 2r>

GT2

(47r 2
)(1.5 x 10" ml3

= 9 n X 1
30 kg

(6.67 x 10" 11 N • m2/kg2
)(3.15 x 10 7

s)
2 K "

The mass of the sun is thus about 300,000 times the mass of the earth.

The error made in neglecting R compared to r is seen to be trivial, for

R = — = 1

M T
300,000

r = 300 mi
; 7

100%ss
300rj

of 1%.

In a similar manner we can determine the mass of the earth from the

period and radius of the moon's orbit about the earth. (See Problem 22.)

If we know the mass of the sun Ms and the period of revolution T
of any planet about it, we can determine the radius of the planet's orbit

r from Eq. 16-11. Since the period is easily obtained from astronomical

observations, this method of determining a planet's distance from the

sun is fairly reliable.

Equation 16-11 holds also for the motion of artificial satellites about

the earth; we need only substitute the mass of the earth MP for Ms in

that equation.

Kepler's second law of planetary motion (see page 337) must, of

course, hold for circular orbits. In such orbits both o» and r are constant

so that equal areas are swept out in equal times by the line joining a

planet and the sun. For the exact elliptical orbits, however, or for any

orbit in general, both r and oj will vary. Let us consider this case.

Figure 16-10 shows a particle revolving about C along some arbitrary

path. The area swept out by the radius vector in a very short time

interval At is shown shaded in the figure. This area, neglecting the small

triangular region at the end, is one-half the base times the altitude or

approximately \[iu> At) • r. This expression becomes more exact in the

limit as At —> 0, the small triangle going to zero more rapidly than the

large one. The rate at which area is being swept out instantaneously is

therefore

, Krco At)(r) _ ,

AtAf—
1*01"

But mux2 is simply the angular momentum of the particle about C.

Hence, Kepler's second law, which requires that the rate of sweeping

*See "The Nature of Comets" by Fred L. Whipple, in Scientific American, February
1974, for a fascinating discussion of the properties and possible origin of comets.

figure 16-10

A comet* moving along an

elliptical path with the sun C
at the focus of the ellipse. In time

dt the comet (or a planet) sweeps

out an angle do = utdt.



out of area iwr2 be constant, is entirely equivalent to the statement

that the angular momentum of any planet about the sun remains con-

stant. The angular momentum of the particle about C cannot be

changed by a force on it directed toward C. Kepler's second law would,

therefore, be valid for any central force, that is, any force directed to-

ward the sun. The exact nature of this force — how it depends on dis-

tance of separation or other properties of the bodies — is not revealed

by this law.

It is Kepler's first law that requires the gravitational force to depend

exactly on the inverse square of the distance between two bodies, that

is, on 1/r2 . Only such a force, it turns out, can yield planetary orbits

which are elliptical with the sun at one focus.

A planet revolves around the sun in a elliptical orbit of eccentricity e. Find the

ratio of the time spent by the planet between the ends of the minor axis close

to the sun to the period of revolution.

By Kepler's first law, the sun is at one focus of the ellipse. (In Fig. 16-11,

the ellipse shown has a much larger eccentricity than does the orbit of any
planet in the solar system.) The major axis (length 2a) and the minor axis (length

2b) intersect at the center C of the ellipse and the distance CF from the center

of the ellipse to the focus F is ea by the definition of eccentricity. Notice that

for a circular orbit the eccentricity would be zero.

Let the period of revolution be T, and the time required for the planet to

travel from B to D, on that part of the ellipse which is close to the sun, be t.

Then, if A = area of the ellipse and A' = shaded area, we have, by the conser-

vation of angular momentum (or by the equivalent statement that the rate of

sweeping out of area is constant),

But, A'

and

Notice that this reduces to \ for a circular orbit [e = 0). Why is the ratio

less than one-half for elliptical orbits

?

A A'

T t

, where A ' = area of triangle BDF. Therefo

t A'

T A
\A - A"

A
1

2

A" _

A
~

1

2

&2b)[ae)

-nab

t 1 e

T~ 2 77

EXAMPLE 4

Planet

figure 16-11

Example 4. A planet revolves around

the sun in an elliptical orbit.

Newton's laws of motion and his law of universal gravitation are in almost com-
plete agreement with astronomical observations.* In our calculation we con-

sidered the motion of a planet about the sun as a "two-body" problem. How-
ever, we saw that the motion of the sun could be neglected while retaining a

high degree of accuracy because of the large ratio of solar mass to planetary

mass. This reduced the problem to that of motion of one body about a center

ol force. If we had required greater accuracy, we would have had to include the

sun's motion in our problem (see Problem 28). In fact, for an exact treatment

we would have to take into account the effect of other planets and satellites

on the motion of sun and planet. This "many-body" problem is quite formid-

able, but it can be solved by approximation methods to a high degree of accuracy.

The results of such calculations are in excellent agreement with astronomical

observations.

or axis <il the elliptical orbit of Mercury rotates slightly more than that pre

Newtonian rmxlwim-s wln-n tin- perturbing influence ol othei planets is in-

lis effect is accounted foi In the general theory ol relativit)

* The major axis ol the elli

dieted by

eluded. Th



A basic fact of gravitation is that two masses exert forces on one an- 16-8
other. We can think of this as a direct interaction between the two mass THE GRAVITATIONAL
particles, if we wish. This point of view is called action- at- a- distance, FIELD
the particles interacting even though they are not in contact. Another

point of view is the field concept, which regards a mass particle as

modifying the space around it in some way and setting up a gravita-

tional field. This field then acts on any other mass particle in it, exert-

ing the force of gravitational attraction on it. The field, therefore, plays

an intermediate role in our thinking about the forces between mass

particles. According to this view we have two separate parts to our

problem. First, we must determine the field established by a given dis-

tribution of mass particles; and secondly, we must calculate the force

that this field exerts on another mass particle placed in it.

For example, consider the earth as an isolated mass. If a body is now
brought in the vicinity of the earth, a force is exerted on it. This force

has a definite direction and magnitude at each point in space. The direc-

tion is radially in toward the center of the earth and the magnitude is

mg. We can, therefore, associate with each point near the earth a vec-

tor g which is the acceleration that a body would experience if it were

released at this point. We call g the gravitational field strength at the

point in question. Since

« = £' (16-12)

we may define gravitational field strength at any point as the gravita-

tional force per unit mass at that point.* We calculate the force from

the field simply by multiplying g by the mass m of the particle placed

at any point.

The gravitational field is an example of a vector field, each point in

this field having a vector associated with it. There are also scalar fields,

such as the temperature field in a heat-conducting solid. The gravita-

tional field arising from a fixed distribution of matter is also an ex-

ample of a stationary field, because the value of the field at a given

point does not change with time.

The field concept is particularly useful for understanding electro-

magnetic forces between moving electric charges. It has distinct ad-

vantages, both conceptually and in practice, over the action-at-a-

distance concept. The field concept was not used in Newton's day. It

was developed much later by Faraday for electromagnetism and only

then applied to gravitation. Subsequently, this point of view was
adopted for gravitation in the general theory of relativity. The chief

purpose of introducing it here is to give the student an early familiarity

with a concept that proves to be important in the development of phys-

ical theory.

* In Eq. 16-12 g is defined as the gravitational force per unit mass
;
at a point P a distance

R from the center of a spherically symmetric mass M, it is given by GM/R 2
. This g differs

from the g whose magnitude is displayed in Tables 16-1 and 16-2 in that, as Example 2

shows, the centripetal acceleration of a body moving around the earth is already taken

into account so that what is described in these tables is an effective g. For example, the

effective g in an orbiting earth satellite is zero, as we have all seen on television trans-

missions from such satellites. This is because GM/R 2 in Example 2 is exactly equal to

Qr in that example. However, the gravitational field at the site of the orbiting satellite,

which is given just by GM/R'2
, is not zero.



In Chapter 15 we derived the formula for the period of a simple pendulum,

T = 2tt V77g. Keeping in mind that the earth's gravitational field is not uni-

form over large distances, as was assumed for small distances, what is the

longest period a simple pendulum could have in the vicinity of the earth's

surface'

The formula T = 2tt V7/g, although not applicable when g varies over the

pendulum's path, suggests that we increase the length of the pendulum. Let us

make the length infinite. The pendulum bob would then travel along the arc

of a circle of infinite radius, that is, along a straight line, as shown in Fig. 16-12.

The direction of the earth's gravitational field is everywhere radially in toward

the center of the earth, so that its direction changes along the arc. Let us as-

sume that the bob of mass m has an amplitude that is small compared to the

radius of the earth. Then the bob is always a distance R e , the earth's radius,

from the center of the earth, to a good approximation. Then the force F on m is

F =
GMem
Re2

mg,

where Me is the mass of the earth. This force is directed toward the earth's

center as shown. The component of this vector force along x, the line of motion

of the bob, is

F cos
R,

GMem
Re3

x,

where the minus sign indicates that the force is directed opposite to the dis-

placement from x = 0. We can write this as

Fj- = —kx,

where k = GMem/R e
3

, a constant.

The formula for the period of a simple harmonic oscillator is T= 2tt \
/
wJk.

Hence,

T = Itt \\— = lit
m

GMrtn/Re3
= 277

R,

GMJR,.2
*/£•

because g at the earth's surface equals GMeIR 2
. Putting in R e = 6.37 x 10B m

and x = 9.80 m/s2
, we obtain T = 84.3 min as the longest period of a simple

pendulum in the vicinity of the earth's surface. (See Question 37.)

EXAMPLE 5

To infinity

,x =

Earth's

surface

figure 16-12

Example 5. A simple pendulum
suspended at infinity.

In Chapter 8 we discussed the gravitational potential energy of a par-

ticle (mass m) and the earth (mass M). We considered only the special

case in which the particle remains close to the earth so that we could

assume the gravitational force acting on the particle to be constant for

all positions of the particle. In this section we remove that restriction

and consider particle-earth separations that may be appreciably greater

than the earth's radius.

Equation 8-5b, which we may write as,

AL7= Uh -Ua = -W„ l„ ($-5b)

defines the change AL7 in the potential energy of any system, in which

a conservative force (gravity, say) acts, as the system changes from con-

figuration a to configuration h. W,,/, is the work done by that conserva-

tive force as the system changes.

The potential energy of the system in any arbitrary configuration b is

(see Eq. 8-5b)

16-9
GRAVITATIONAL
POTENTIAL ENERGY

U„ = - w„„ + U„. 16 131

To give a value to / 1,, we must (arbitrarily) choose configuration a to be



some agreed-upon reference configuration and we must assign to U„

some (arbitrarily) agreed-upon value, usually zero.

In Chapter 8 we chose as a reference configuration for the earth-par-

ticle system that in which the particle is resting on the surface of the

earth and we assigned to this configuration the potential energy U„ = 0.

When the particle is at a height y above the surface of the earth, the

potential energy U (= Ub ) is given from Eq. 16-13 as

U = -Wab + = -[-mg)[y) = mgy.

The conservative force in question, gravity, points down and has the

value [—mg)
}
the displacement of the particle (+y) points up from the

reference level; hence the difference in sign for these quantities.

For the more general case, in which the restriction y « R (in which

R is the radius of the earth) is not imposed, we find it convenient to

select a different reference configuration, namely that in which the par-

ticle and the earth are infinitely far apart. We assign the value zero to the

potential energy of the system in this configuration. Thus the zero-

potential-energy configuration is also the zero-force configuration. We
made a similar choice when we defined the zero-energy configuration

of a spring to be its normal unstressed state, for which the restoring

force is zero.

When the particle of mass m is a distance i from the center of the

earth, the system potential energy is given by Eq. 16-13 as

U[r) = -W xr + (16-14)

in which Wxr is the work done by the conservative force (gravity) on the

particle as the particle moves in from infinity to a distance r from the

center of the earth. For simplicity we assume for the present that the

particle moves toward the earth along a radial line. The gravitational

force F{r) acting on the particle (assuming r^R) will then be —GMm/r2
,

the minus sign indicating an attractive force, that is, a force that pulls

the particle toward the earth. We may then find U[r) from Eq. 16-14 as

U[r) = -Wxr

F(r)dr

GMm\
d

GMm

=-^- [.6-15,

The minus sign indicates that the potential energy is negative at any
finite distance; that is, the potential energy is zero at infinity and de-

creases as the separation distance decreases. This corresponds to the

fact that the gravitational force exerted on the particle by the earth is

attractive. As the particle moves in from infinity, the work W xr done by
this force on the particle is positive, which means, from Eq. 16-14, that

U[r) is negative.

Equation 16-15 holds no matter what path is followed by the particle

in moving in from infinity to radius r. We can show this by breaking up
any arbitrary path into infinitesimal steplike portions, which are drawn
alternately along the radius and perpendicular to it (Fig. 16-13). No work
is done along perpendicular segments, such as AB, because along them
the force is perpendicular to the displacement. But the work done along



the radial parts of the path, such as BC, adds up to the work done in

going directly along a radial path, such as AE. The work done in moving
the particle between two points in a gravitational field is, therefore, in-

dependent of the actual path connecting these points. Hence, the gravi-

tational force is a conservative force.

figure 16-13

Work done in taking a mass from

A to £ is independent of the path.

Equation 16-15 shows that the potential energy of the particles M
and m is a characteristic of the system M + m. The potential energy is

a property of the system of bodies, rather than of either body alone. The
potential energy changes whether M or m is displaced; each is in the

gravitational field of the other. Nor does it make any sense to assign

part of the potential energy to M and part of it torn. Often, however, we
do speak of the potential energy of a body m (planet or stone, say) in the

gravitational field of a much more massive bodyM (sun or earth, respec-

tively). The justification for speaking as though the potential energy

belongs to the planet or to the stone alone is this: When the potential

energy of a system of two bodies changes into kinetic energy, the lighter

body gets most of the kinetic energy. The sun is so much more massive

than a planet that the sun receives hardly any of the kinetic energy; and

the same is true for the earth in the earth-stone system.

We can derive the gravitational force from the potential energy. The
relation for spherically symmetric potential energy functions is F =
—dUldi; see Eq. 8-7. This relation is the converse of Eq. 16-15. From it

we obtain

dU = dl GMm \ GMm
dr dr

,16-16)

The minus sign here shows that the force is an attractive one, directed

inward along a radius opposite to the radial displacement vector.

We can, if we wish, associate a scalar field with gravitation. We first define,

quite generally, the gravitational potential V as the gravitational potential

energy per unit mass of a body in a gravitational field. Then, for the spherically

symmetrical body of mass M,

V =
U[r)

m
(,M

r
116-17)

Associated with every point in the space around a mass M we then have a mini

ber. the gravitational potential. Tins gives us a scalar Held, potential being .1

s< alai quantity I o determine the Eon e exerted by this field on a m.iss particle m
placed in it we simply compute clVUlr at the point in question and multiply

by m The force has a magnitude —m dV/clnmA .i direction radially in toward the

i enter of force M.



Escape velocity. We can readily find the gravitational potential energy of a par-

ticle of mass m at the surface of the earth as (Eq. 16-15) U{R) = —GMem/R e . The

amount of work required to move a body from the surface of the earth to infinity

is GMem/Re, or about 6.0 x 10 7
J/kg. If we could give a projectile more than this

energy at the surface of the earth, then, neglecting the resistance of the earth's

atmosphere, it would escape from the earth never to return. As it proceeds out-

ward its kinetic energy decreases and its potential energy increases, but its speed

is never reduced to zero. The critical initial speed, called the escape speed v
,

such that the projectile does not return, is given by

imvn*
GM,m
Re

or

Vo = A 2
GMe

R,
7.0 mi/s (25,000 mi/h) = 11.2 km/s.

Should a projectile be given this initial speed, it would escape from the earth.

For initial speeds less than this the projectile will return. Its kinetic energy be-

comes zero at some finite distance from the earth and the projectile falls back

to earth.*

The lighter molecules in the earth's upper atmosphere can attain high enough

speeds by thermal agitation to escape into outer space. Hydrogen gas, which

must have been present in the earth's atmosphere a long time ago, has now dis-

appeared from it. Helium gas escapes at a steady rate, much of it resupplied by

radioactive decay from the earth's crust. The escape speed for the sun is much
too great to allow hydrogen to escape from its atmosphere. On the other hand,

the speed of escape on the moon is so small that it can hardly keep any at-

mosphere at all. (See Problem 30.)

EXAMPLE 6

If two particles are separated by a distance r, their potential energy is

given from Eq. 16-14 as

U[r) W, 16-14)

in which Wxr is the work done by the gravitational force as the particles

move from an infinite separation to separation r. We now give another

interpretation to U[r).

Let us balance out the gravitational force by an external force applied

by some external agent and let us arrange it so that, at all times, this

external force is equal and opposite to the gravitational force for each

particle. The work done by the external force as the particles move from
an infinite separation to separation r is not Wxr but —W x , ;

this follows

because the displacements are the same but the forces are equal and

opposite. Thus we may interpret Eq. 16-14 as follows: The potential

energy of a system of particles is equal to the work that must be done
by an external agent to assemble the system, starting from the standard

reference configuration

Thus, if you lift a stone of mass m a distance of y above the earth's

surface, you are the external agent (separating earth and stone) and the

work you do in "assembling the system" is +mgy, which is also the

potential energy. Similarly, the work done by an external agent as a

body of mass m moves in from infinity to a distance r from the earth

16-10
POTENTIAL ENERGY
FOR MANY-PARTICLE
SYSTEMS

* We have ignored the forces exerted on the projectile by bodies other than the earth. At
sufficiently great distances from the earth we must take into account the gravitational

forces arising from the moon, the planets, the sun etc., so that we can no longer use the

simple "two-body" result. A projectile can escape from the earth by being "captured" by
another astronomical body, for example, in such "many-body" cases.



is negative because the agent must exert a restraining force on the body
;

this is in agreement with Eq. 16-14.

These considerations hold for systems that contain more than two
particles. Consider three bodies of masses m x , m>, and m :i . Let them
initially be infinitely far from one another. The problem is to compute
the work done by an external agent to bring them into the positions

shown in Fig. 16-14. Let us first bring m 2 in toward mi from an infinite

separation to the separation ri2 . The work done against the gravitational

force exerted by mi on m 2 is —Gmim 2/ri 2 . Now let us bring m 3 in from

infinity to the separation r^ from mi and r23 from m 2 . The work done

against the gravitational force exerted by mi on m 3 is —Gmim 3/ri 3 and
that against the gravitation force exerted by m 2 on m :! is — Gm?mzlivi.

The total work done in assembling this system is the total potential

energy of the system

/Gmim 2

K

Gmiiriz
,
Gm-iin-A

T13 r23

Notice that no vector operations are needed in this procedure.

No matter how we assemble the system, that is, regardless of which
bodies are moved or which paths are taken, we always find this same
amount of work required to bring the bodies into the configuration of

Fig. 16-13 from an initial infinite separation. The potential energy must,

therefore, be associated with the system rather than with any one or

two bodies. If we wanted to separate the system into three isolated

masses once again, we would have to supply an amount of energy

/Gmiin> Gfflim3 Gmim.3

Tva r23

This energy may be regarded as a sort of binding energy holding the mass
particles together in the configuration shown.

Just as we can associate elastic potential energy with the compressed

or stretched configuration of a spring holding a mass particle, so we can

associate gravitational potential energy with the configuration of a sys-

tem of mass particles held together by gravitational forces. Similarly, if

we want to think of the elastic potential energy of a particle as being

stored in the spring, so we can think of the gravitational potential

energy as being stored in the gravitational field of the system of par-

ticles. A change in either configuration results in a change of potential

energy.

These concepts occur again when we meet forces of electric or mag-

netic origin, or, in fact, of nuclear origin. Their application is rather

broad in physics. The advantage of the energy method over the dynam-
ical method is derived from the fact that the energy method uses

scalar quantities and scalar operations rather than vector quantities

and vector operations. When the actual forces are not known, as is often

the case in nuclear physics, the energy method is essential.

figure 16-14

Three masses m,, m>, and m :i

brought together from infinity.

What is the binding energy of the earth-sun system' Neglect the presence of

Othei pi.nuts in satellites.

For simplicity assume that the earth s orbit about the sun is circular at a

radius /•,,. The work done against the gravitational force to bring the earth and

sun from an infinite separation to a separation i. is

EXAMPLE 7

G
M SM, = -5.0 x 10"

|



where we takeMs = 330,000Me , Me = 6.0 x 1024 kg, res = 150 x 109 m. The minus

sign indicates that the force is attractive, so that work is done by the gravita-

tional force. It would take an equivalent amount of work by an outside agent to

separate these bodies completely from rest. Because the kinetic energy of the

earth in its orbit is half the magnitude of the potential energy of the earth-sun

system, only half of this work is needed to break up the system, so that the

effective binding energy, assuming that the earth-sun-system is at rest after

breakup, is about 2.5 x 1033
J.

What effect does the presence of the moon and other planets have on the

energy binding the earth to the solar system?

Consider again the motion of a body of mass m (planet or satellite, say)

about a massive body of mass M (sun or earth, say). We shall considerM
to be at rest in an inertial reference frame with the body m moving
about it in a circular orbit. The potential energy of the system is

U[r)
GMm

o2r2 = —
r

H GMm
r

1 GMm GMm GMm
2 i r It

where r is the radius of the circular orbit. The kinetic energy of the

system is

K = imoj2r 2

the sun being at rest. From the equation preceding Eq. 16-11 we obtain

GM
a>'T' =

so that

The total energy is

„ , T1 1 GMm GMm GMm
E = K + U —

-^
- —

^

llo-lo]

This energy is constant and is negative. Now the kinetic energy can

never be negative, but from Eq. 16-18 we see that it must go to zero as

the separation goes to infinity. The potential energy is always negative,

except for its zero value at infinite separation. The meaning of the total

negative energy, then, is that the system is a closed one, the planet m
always being bound to the attracting solar center M and never escaping

from it (Fig. 16-15).

Even when we consider elliptical orbits, in which r and w vary, the

total energy is negative. It is also constant, corresponding to the fact

that gravitational forces are conservative. Hence, both the total energy

and the total angular momentum are constant in planetary motion.

These quantities are often called constants of the motion. We obtain

the actual orbit of a planet with respect to the sun by starting with these

conservation relations and eliminating the time variable by use of the

laws of dynamics and gravitation. The result is that planetary orbits are

elliptical.

In the earlier theories of the atom, as in the Bohr theory of the hydro-

gen atom, these identical mechanical relations are used in describing

the motion of an electron about an attracting nuclear center. These
same relations are used for open orbits (total energy positive) as in the

experiments of Rutherford on the scattering of charged nuclear par-

ticles. Central forces, and particularly inverse square forces, are often

encountered in physical systems.

16-11
ENERGY
CONSIDERATIONS IN
THE MOTIONS OF
PLANETS AND
SATELLITES

figure 16-15

Kinetic energy K, potential energy

U, and total energy E = U + K of a

body in circular planetary motion.

A planet with total energy £ <
will remain in an orbit of radius r .

The farther the planet is from the

sun, the greater (that is, less

negative) its (constant) total energy

E. To escape from the center of

force and still have kinetic energy

at infinity, it would need positive

total energy.



In describing the experiments which were fundamental to our definitions of

force and mass, we had to assume some reference frame relative to which ac-

celerations could be measured. If the reference frame itself were erratically

accelerated, we would not observe any regularity in our measured accelerations.

As a matter of fact, our laboratory experiments are performed in a reference

frame which is fixed to the earth. We have already discussed the effect that the

rotation of the earth about its own axis has on our measurements. What effect

does the motion of the earth as a whole about the sun, or some other cosmic

body, have'

The acceleration of the earth with respect to the sun is w2 r or about 6 x 10 3

m/s2
. It would seem at first that this acceleration, small as it is, might prove

disturbing in experiments involving small forces. That this is not the case, how-

ever, follows from the universality of the law of gravitation. Not only the earth

but also the masses we use in our laboratory apparatus are accelerated toward

the sun at practically the same rate.

Let us compute the error made in neglecting the earth's orbital acceleration.

The acceleration of the earth toward the sun is k/r2
, where r is the distance from

the center of the sun and the center of the earth and k is GMS . Consider now a

body on that side of the earth most distant from the sun. We can imagine that

we are weighing it on a spring scale, for example. Then, the part of its accelera-

tion toward the sun which is due to the gravitational attraction of the sun it-

self is

[i + r
)

2 r

= A/
1
_2£o

much smaller terms

where i» is the radius of the earth. The difference between the acceleration of

the earth due to the sun's attraction (that is, k/r 2
) and the acceleration of the

apparatus due to the sun's attraction (the expression above) would be less than

[k/r2 )[2rjr). But 2r /r is about 10~ 4
. The difference, then, would be less than 10 4

of the earth's acceleration, or less than 10 6 m/s2
. The relative acceleration of

the body and the earth due to the sun's attraction is about one-ten-millionth as

strong as the gravitational acceleration of the body due to the earth. The moon
has a similar effect of comparable magnitude on the body. Hence, only if we
were measuring to one part in a million, would we need to consider seriously

the accelerating nature of a reference frame attached to the earth. For almost all

practical purposes the earth is good enough as an inertial reference frame.

16-12
THE EARTH AS AN
INERTIAL REFERENCE
FRAME

Consider two reference frames: (1) a nonaccelerating (inertial) reference frame

S in which there is a uniform gravitational field and (2) a reference frame S'

which is accelerating uniformly with respect to an inertial frame but in which

there is no gravitational field. In his general theory of relativity, Albert Einstein

showed that two such frames are exactly equivalent physically. That is, experi-

ments carried out under the same conditions in these two frames should give

the same results. This is the principle of equivalence.

Suppose that a spaceship is at rest in an inertial reference frame S in which

there is a uniform gravitational field, say at the surface of the earth. Inside the

spaceship objects such as an apple, which are released, will fall with an accelera-

tion, say g, in the gravitational field; objects which are at rest — such as an as-

tronaut sitting on the floor or a package on a spring scale attached to the ceiling

— will experience a force, exerted by the floor or the spring respectively, oppos-

ing their weight.

Now suppose that the rockets are turned on and that the spaceship proceeds

tii a region of outer space where there is no gravitational field, Let the accelera

tion of the spaceship, our new frame S', be a = —g with respect to the inertia]

reference frame .S'
;
that is, the ship is accelerating away from the earth beyond

the region where the earth's field (or any other gravitational field) is appreciable.

The conditions in the spa( (.ship will now be similar to those in a spaceship at

rest on the surface ni the earth, Inside the ship it the astronaut releases an

apple, it will accelerate downward relative to the spaceship with an accelera

16-13
THE PRINCIPLE OF
EQUIVALENCE



tion g. In fact, since all bodies that are free of any forces move with uniform

velocity relative to the inertial frame S, all such bodies appear to fall with the

same acceleration g with respect to the spaceship, S'. Furthermore, objects

which are at rest relative to the spaceship — such as an astronaut sitting on the

floor or a package on a spring scale attached to the ceiling — will experience

forces indistinguishable from the forces which balanced their weight in the

case when the spaceship was at rest in a gravitational field in S.

Indeed, if the astronaut did not know that rockets were accelerating his ship

from S, he would be justified in concluding that he was in a gravitational field —

a field whose pull accelerated the falling apple in S' and whose pull required

that a balancing force be applied to the package (the tension in the spring) and

to the spaceman (the normal force of the floor) to keep them at rest in S' . The
astronaut simply could not tell the difference, from observations in his own
frame, between a situation in which his ship was accelerating relative to an

inertial frame in a region having no gravitational field and a situation in which

the spaceship was unaccelerated in an inertial frame in which a uniform gravita-

tional field existed. The two situations are exactly equivalent.

Einstein pointed out that, from the principle of equivalence, it follows that

one cannot speak of the absolute acceleration of a reference frame, only a rela-

tive one, just as it followed from the special theory of relativity that one cannot

speak of the absolute velocity of a reference frame, only a relative one. It also

follows from the principle of equivalence that inertial mass and gravitational

mass are equal. For all bodies which are free of any forces will move with uni-

form velocity relative to an inertial reference frame no matter what their inertial

masses are, and they should, therefore, all have the same acceleration relative

to an accelerated reference frame. Hence, from the principle of equivalence of

S and S' , all bodies should fall with the same acceleration in a homogeneous
gravitational field.

From the discussion so far we see that a uniform gravitational field can be

imitated by a "field of acceleration." Indeed, a uniform gravitational field can

be "transformed away" by transforming to a reference frame accelerating in the

direction of the field with an acceleration equal in magnitude to that due to the

field. In this new frame a particle whose motion was originally subject to a gravi-

tational field is now a free particle. For example, in an artificial earth satellite

an apple released by an astronaut will not fall relative to the satellite and the

astronaut himself will be free of the forces which countered the pull of gravity

before launching, so that he feels weightless. In general, however, gravitational

fields, such as that of the earth, are not uniform through all space, so that one

cannot replace the gravitational fields throughout space simply by transforming

to a single reference frame accelerating with respect to the source of the field.

One would need a different accelerated frame at each point in space to imitate

the entire gravitational field.

Modern observational astronomy and navigation procedures make use of

the geocentric (or Ptolemaic) point of view (by using the rotating "celestial

sphere"). Is this wrong? If not, then what criterion determines the system

(the Copernican or Ptolemaic) we use' When would we use the heliocentric

(or Copernican) system?

If the force of gravity acts on all bodies in proportion to their masses, why
doesn't a heavy body fall correspondingly faster than a light body?

How does the weight of a body vary en route from the earth to the moon?
Would its mass change?

At the earth's surface a freely suspended object is given a horizontal blow
by a hammer. The object is taken to the moon, suspended freely, and given

an equal horizontal blow with the same hammer. How is the horizontal

speed resulting on the moon related to the horizontal speed on the earth?

Would we have more sugar to the pound at the pole or the equator? What
about sugar to the kilogram?

questions



6. What approximately is the gravitational force of attraction between a nor-

mal woman and a typical man 10 m away? When they are dancing" Com-
pare with typical body weights.

7. Does the concentration of the earth's mass near its center change the varia-

tion of g with height compared with a homogeneous sphere? How:

8. Because the earth bulges near the equator, the source of the Mississippi

River, although high above sea level, is nearer to the center of the earth than

is its mouth. How can the river flow "uphill"-'

9. The earth is an oblate spheroid because of the "flattening" effect of the

earth's rotation. Is a degree of latitude larger or smaller near either pole than

near the equator? Why?

10. Why can we learn more about the shape of the earth by studying the motion
of an artificial satellite than by studying the motion of the moon?

1 1. How can one determine the mass of the moon?

12. One clock is based on an oscillating spring, the other on a pendulum. Both

are taken to Mars. Will they keep the same time there that they kept on

Earth? Will they agree with each other? Explain. Mars has a mass 0.1 that

of Earth and a radius half as great.

13. From Kepler's second law and observations of the sun's motion as seen from

the earth, we can conclude that the earth is closer to the sun during winter

in the Northern hemisphere than during summer. Why isn't it colder in

summer than in winter?

14. Does the law of universal gravitation require the planets of our solar system

to have the actual orbits observed? Would planets of another star, similar to

our Sun, have the same orbits? Suggest factors that might have determined

the special orbits observed.

15. How is the orbital speed of a planet related to its |assumed circular) orbital

radius :

16. The gravitational force exerted by the sun on the moon is about twice as

great as the gravitational force exerted by the earth on the moon. Why then

doesn't the moon escape from the earth (during a solar eclipse, for example) :

17. Explain why the following reasoning is wrong. "The sun attracts all bodies

on the earth. At midnight, when the sun is directly below, it pulls on an

object in the same direction as the pull of the earth on that object; at noon,

when the sun is directly above, it pulls on an obiect in a direction opposite

to the pull of the earth. Hence, all objects should be heavier at midnight (or

night) than they are at noon (or day)."

18. The gravitational attraction of the sun and the moon on the earth produces

tides. The sun's tidal effect is about half as great as that of the moon's. The
direct pull of the sun on the earth, however, is about 175 times that of the

moon. Why is it then that the moon causes the larger tides?

19. If lunar tides slow down the rotation of the earth (owing to friction), the

angular momentum of the earth decreases. What happens to the motion of

the moon as a consequence of the conservation of angular momentum-"
Does the sun (and solar tides) play a role here? (See "Tides and the Earth-

Moon System" by Peter Goldreich, Scientific American, April 1972 and

"Tides of the British Seas" by Frank Sandon, in Physics Education, June

1975.)

20. Would you expect the total energy of the solar system to be constant? The
total angular momentum? Explain your answers.

21. Discuss how the period of a simple pendulum changes if it is in an assembly

that a rocket will propel from earth to a stable satellite orbit about the

earth

22. Does a rocket really need the escape speed of 25,000 mi/h initially to escape

from the earth?

.'
'. I objects .u icst on the earth's surface move in circulai paths with a period

of 24 h. Are they "in orbit in the sense thai .in earth satellite is in orbil



Why not? What would the length of the "day" have to be to put such objects

in true orbit"

24. An artificial satellite of the earth releases a package. Neglecting effects of

air resistance, determine whether the package will strike the earth and if so,

where— at a point ahead, directly below, or behind the satellite at the in-

stant of impact, or directly under the satellite at release time"

25. Neglecting air friction and technical difficulties, can a satellite be put into

an orbit by being fired from a huge cannon at the earth's surface? Explain.

26. Can a satellite move in a stable orbit in a plane not passing through the

earth's center? Explain.

27. As measured by an observer on earth would there be any difference in the

periods of two satellites, each in a circular orbit near the earth in an equa-

torial plane, but one moving eastward and the other westward?

28. After Sputnik I was put into orbit we were told that it would not return to

earth but would burn up in its descent. Considering the fact that it did not

burn up in its ascent, how is this possible?

29. In which case do astronauts experience greater acceleration, when being

launched into orbit or on reentry and return to earth?

30. Show that a satellite may speed down: that is, show that if frictional forces

cause a satellite to lose total energy, it will move into an orbit closer to the

earth and may have increased kinetic energy.

31. An artificial satellite is in a circular orbit about the earth. How will its orbit

change if one of its rockets is momentarily fired [a] toward the earth, \b)

away from the earth, (c) in a forward direction, [d] in a backward direction,

\e) at right angles to the plane of the orbit?

32. Inside a spaceship what difficulties would you encounter in walking? In

jumping? In drinking?

33. We have all seen TV transmissions from orbiting satellites and watched

objects floating around in effective zero gravity. Suppose an astronaut,

bracing himself against the satellite frame, kicks a floating bowling ball.

Will he stub his toe? Explain.

34. If a planet of given density were made larger, its force of attraction for an

object on its surface would increase because of the planet's greater mass but

would decrease because of the greater distance from the object to the center

of the planet. Which effect predominates?

35. Consider a hollow spherical shell. How does the gravitational potential

inside compare with that on the surface? What is the gravitational field

strength inside?

36. A stone is dropped along the center of a deep vertical mine shaft. Assume no

air resistance but consider the earth's rotation. Will the stone continue

along the center of the shaft? If not, describe its motion.

37. Use qualitative arguments to explain why the following four periods are

equal (all are 84 min, assuming a uniform earth density): [a] time of revolu-

tion of a satellite just above the earth's surface; [b] period of oscillation of

mail in a tunnel through the earth; (c) period of simple pendulum having a

length equal to the earth's radius in a uniform field 9.8 N/kg
;
[d] period of

an infinite simple pendulum in the earth's real gravitational field.

38. The "action-at-a-distance" view of the gravitational force implies that the

action is instantaneous. Actually, present physical theory assumes that

gravitation propagates with a finite speed and this is taken into account in

the modification of classical physics represented by general relativity

theory. (See "Gravitational Waves— a Progress Report" by Jonothan L.

Logan, in Physics Today, March 1973 for a discussion of the ideas and at-

tempts at experimental verification.) What would happen to classical de-

ductions if it were assumed there that the action were not instantaneous?

(See also "Infinite Speed of Propagation of Gravitation in Newtonian Phys-

ics" by I. J. Good, American Journal of Physics, July 1975.)



39. Can one regard gravity as a "fictitious" force arising from the acceleration

of one's reference frame relative to an inertial reference frame, rather than

a "real" force'

SECTION 16-2

1 . How far from the earth must a body be along a line toward the sun so that

the sun's gravitational pull balances the earth's- The sun is 9.3 x 10 ;

away and its mass is 3.24 x 105 Me . Answer: 1.6 x 10 5 mi.

problems

SECTION 16-3

2. What is the percentage change in the acceleration of the earth toward the

sun from a total eclipse of the sun to the point where the moon is on a side

of the earth directly opposite the sun"

SECTION 16-5

3. At what altitude above the earth's surface would the acceleration of gravity

be 4.9 m/s2 " The mass of the earth is 6.0 x 10 24 kg and its mean radius is

6.4 x 106 m.

Hi

Answer: 2.6 x 10* m.

4. [a] What is the period of a "seconds pendulum" (period = 2 s on earth) on the

surface of the moon" The moon's mass is 7.35 x 1022 kg and its radius is

1,720 km. [h) Why should a "seconds pendulum" have a period of two sec-

onds rather than one second 7

5. Certain neutron stars (extremely dense stars! are believed to be rotating at

about one revolution per second. If such a star has a radius of 20 km, what

must be its mass so that objects on its surface will be attracted to the star

and not "thrown off" by the rapid rotation!
1

Answer: 4.7 x 1024 kg.

6. The fact that g varies from place to place over the earth's surface drew atten-

tion when Jean Richer in 1672 took a pendulum clock from Paris to

Cayenne, French Guiana, and found that it lost 2.5 min/day. If g = 9.81 m/s2

in Paris, what is g in Cayenne"

7. If a pendulum has a period of exactly one second at the Equator, what would

be its period at the South Pole" Answer: 0.9974 s.

8. Masses m, assumed equal, hang from strings of different lengths on a bal-

ance at the surface of the earth, as shown in Fig. 16-16. If the strings have

negligible mass and differ in length by h, [a] show that the error in weighing,

associated with the fact that W is closer to the earth than W, is W — W =
8irGpmh/3 in which p is the mean density of the earth (5.5 g/cm3

). [b] Find

the difference in length which will give an error of one part in a million.

9. A scientist is making a precise measurement of g at a certain point in the

Indian Ocean (on the equator) by timing the swings of a pendulum of ac-

curately known construction. To provide a stable base the measurements

are conducted in a submerged submarine. It is observed that a slightly dif-

ferent result for g is obtained when the submarine is moving eastward

through the point than when it is moving westward, the speed in each case

being 16 km/h. Account for this difference and calculate the fractional

error Ag/g in g. Answer: 6.6 x 10 \

A body is suspended on a spring balance in a ship sailing along the equator

with a speed v. [a] Show that the scale reading will be very close to W n[l ±
2o>v/g), where &> is the angular speed of the earth and W» is the scale reading

when the ship is at rest, [b] Explain the plus or minus.

SECTION 1 6 6

1 1. Two concentric shells of uniform density of mass M, and M-- are situated

as shown in Fig. 16-17. Find the force on a particle of mass m when the pai

tide is located at [a] r= a, [b] r= b, and (c) r— c. The distance i is measured

from the center ot tin- sin lis

An G[Mi I
AM//)/,;' b) GMiTn/b*. \c) Zero

figure 16-1

Problem 8

figure 16-17

Problem 1

1



12.

13.

14.

15.

16.

With what speed would mail pass through the center of the earth if it were

delivered by the chute of Example 3?

The sun, mass 2.0 x 1030 kg, is revolving about the center of the Milky Way
galaxy, which is 2.4 x 1020 m away. It completes one revolution every

2.5 x 10 8 yr. Estimate the number of stars in the Milky Way, assuming a

circular orbit. Answer: 6.5 x 10 10
.

Consider an inertial reference frame whose origin is fixed at the center of

mass of the system earth + falling object, [a] Show that the acceleration

toward the center of mass of either body is independent of the mass of that

body, [b] Show that the mutual, or relative, acceleration of the two bodies

depends on the sum of the masses of the two bodies. Comment on the mean-

ing, then, of the statement that a body falls toward the earth with an ac-

celeration that is independent of its mass.

The following problem is from the 1946 "Olympic" examination of Moscow
State University (see Fig. 16-18): A spherical hollow is made in a lead sphere

of radius R, such that its surface touches the outside surface of the lead

sphere and passes through its center. The mass of the sphere before hollow-

ing was M. With what force, according to the law of universal gravitation,

will the lead sphere attract a small sphere of mass m, which lies at a dis-

tance d from the center of the lead sphere on the straight line connecting

the centers of the spheres and of the hollow :
.

Answer:
GmM
d*

1

1

8(1 -R/2d) 2
]

The variation of g in the earth's interior is given in the accompanying table.

The earth's radius is 6400 km.

H
Si
it

O
to
r-

figure 16-

Problem 15
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Depth, & Depth, g,

km m/s2 km m/s2

9.82 1400 9.88

33 9.85 1600 9.86

100 9.89 1800 9.85

200 9.92 2000 9.86

300 9.95 2200 9.90

413 9.98 2400 9.98

600 10.01 2600 10.09

800 9.99 2800 10.26

1000 9.95 2900 10.37

1200 9.91 4000 8.00

Within the earth's central core (below 2900 km) the values of g diminish

monotonically (not linearly) from 10.37 m/s2 to zero. The actual variation

of g below 4000 km is uncertain, [a] Plot qualitatively g versus r (where r

is the distance from the earth's center) from to 6400 km. {b) Explain care-

fully how the earth's density must vary as we proceed from its surface to

its center in order to account for this variation of g. (c) Take p = 1 at the

surface (its average value is actually 3.0 g/cm3
), and plot qualitatively p

versus r. Assume throughout that p and g are spherically symmetrical.

17. [a] Show that in a chute through the earth along a chord line, rather than

along a diameter, the motion of an object will be simple harmonic; assume
a uniform earth density, [b] Find the period, (c) Will the object attain the

same maximum speed along a chord as it does along a diameter?

Answer: [b] 84 min. (c) No.

18. Consider a mass particle at a point P anywhere inside a spherical shell of

matter. Assume the shell is of uniform thickness and density. Construct a

narrow double cone with apex at P intercepting areas dAi and dA> on the

shell (Fig. 16-19). [a] Show that the resultant gravitational force exerted

on the particle at P by the intercepted mass elements is zero, [b] Show then

figure 16-19

Problem 18



that the resultant gravitational force of the entire shell on an internal par-

ticle is zero everywhere. (This method was devised by Newton.)

SECTION 16-7

19. \a) Can a satellite be sent out to a distance where it will revolve about the

earth with an angular velocity equal to that at which the earth rotates,

so that it remains always above the same point on the earth' [b] What would
be the radius of the orbit of such a so-called synchronous earth satellite?

Answer: [a] Yes. The plane of the orbit must be equatorial, [b] 4.2 x 104 km.

20. [a) With what horizontal speed must a satellite be projected at 100 mi
(160 km) above the surface of the earth so that it will have a circular orbit

about the earth" Take the earth's radius as 4000 mi (6400 km), [b] What will

be the period of revolution'

21. The mean distance of Mars from the sun is 1.52 times that of Earth from

the sun. Find the number of years required for Mars to make one revolu-

tion about the sun. Answer: 1.87 yr.

22. Determine the mass of the earth from the period T and the radius r of the

moon's orbit about the earth: T = 27.3 days and r = 2.39 x 105 mi
(3.85 x 10 5 km).

23. [a] Satellite A is in a circular earth orbit with radius R and satellite B is

in a circular earth orbit with radius 4R. Calculate the ratio of the periods

of revolution, Ta/Tb. [b] A pendulum and a mass-spring system oscillate

with approximately the same frequency on the earth's surface. How do

their frequencies compare if they are mounted first in satellite A and then

in satellite B?

Answer: [a] Ta/Tb = i- (£>) The pendulum frequency is zero
;
the mass-spring

frequency is unchanged.

24. Consider an artificial satellite in a circular orbit about the earth. State how
the following properties of the satellite vary with the radius r of its orbit:

[a] period; [b] kinetic energy; (c) angular momentum; [d] speed.

25. Show how, guided by Kepler's third law (p. 337), Newton could deduce

that the force holding the moon in its orbit, assumed circular, must vary

as the inverse square of the distance from the center of the earth.

26. If a satellite in an elliptical orbit about the earth has a perigee (closest dis-

tance of approach) of 300 km above the surface of the earth, and an apogee

(furthest distance of approach) of 2000 km above the surface of the earth,

then what is the ratio of the orbital speed at perigee to that at apogee?

27. Three identical bodies of mass M are located at the vertices of an equilateral

triangle with side L. At what speed must they move if they all revolve under

the influence of one another's gravity in a circular orbit circumscribing the

triangle while still preserving the equilateral triangle?

Answer: VCM/L.

28. [a] Show that the two-body problem of Section 16-7 can be simplified to a

one- body problem by use of the reduced mass concept of Section 15-8. That

is, show that if we use /x = mM/\m + M) instead of m, we may solve for

the motion of m relative to M exactly as though M were the origin of our

inertial reference frame, [b] Show that the assumption made in Section

16-7 that R is negligibly small compared to r is equivalent to assuming

that the reduced mass fi is equal to m. (c) Compare /x for the earth-sun

system with the earth's mass
;
compare ix for the moon-earth system with

the moon's mass. \d) If we were to use the reduced mass /x of the two- body

system instead of m, how would this affect the equations oi Section 16-7?

SECTION 16-9

29. Mars has a mean diameter oi 6900 km Earth one of 1 \> 10* km. The mass
of Mars is 0.11 M, \a) How does the mean density oi M.ns < ompare with thai

oi Earth ;
[b\ Wh.it is the value of g on Mars? [c] what is the escape velocity

on Mars? Answei \a) pu 0.73 p*. [b\ 3.7 m/s c] i.O km/s



30. [a] Show that to escape from the atmosphere of a planet a necessary condi-

tion for a molecule is that it have a speed such that v2 > IGMIi, where M
is the mass of the planet and r is the distance of the molecule from the

center of the planet, [b) Determine the escape speed from the earth for an

atmospheric particle 1000 km above the earth's surface, (c) Do the same

for Mars.

31. It is conjectured that a "burned-out" star could collapse to a "gravitational

radius, " defined as the radius for which the work needed to remove an object

of mass m a from the star's surface to infinity equals the rest energy m c2

of the object. Show that the gravitational radius of the sun is GMJc2 and

determine its value in terms of the sun's present radius. (For a review of

this phenomenon see "Black Holes: New Horizons in Gravitational The-

ory" by Philip C. Peters, in American Scientist, Sept.-Oct. 1974.)

Answer: 2 x 10" 6 R s .

32. Show that the velocity of escape from the sun at the earth's distance from

the sun is VI times the speed of the earth in its orbit, assumed to be a

circle.

33. A projectile is fired vertically from the earth's surface with an initial speed

of 10 km/s. Neglecting atmospheric friction, how far above the surface of

the earth would it go- Take the earth's radius as 6400 km.

Answer: 2.6 x 104 km.

34. A rocket is accelerated to a speed of v = 2VgR e near the earth's surface

and then coasts upward, [a] Show that it will escape from the earth, [b]

Show that very far from the earth its speed is V = \ZlgR e .

35. Physicists have speculated about the possible existence of bodies with nega-

tive mass; for such hypothetical bodies it is postulated that m in the for-

mulas of physics should be replaced by —m. Suppose that two particles,

of mass +m and —m respectively, are placed a distance d apart. Show [a]

the force acting on each and \b) the acceleration of each. Describe the ex-

pected motion, assuming that both particles are initially at rest, and show
that this motion does not violate the laws of conservation of linear mo-
mentum or of mechanical energy. Such negative-mass particles have not

yet been found.

Answer: [a] The force, from Newton's law of gravitation, is repulsive, [b]

The accelerations, from Newton's second law, point in the same
direction, from the negative to the positive mass.

36. A sphere of matter, mass M, radius a, has a concentric cavity, radius b,

as shown in cross section in Fig. 16-20. [a] Sketch the gravitational force

F exerted by the sphere on a particle of mass m, located a distance r from

the center of the sphere, as a function of r in the range ^ r ^ °°. Consider

points r = 0, b, a, and oo in particular, [b] Sketch the corresponding curve

for the potential energy U[r) of the system, (c) From these graphs, how
would you obtain graphs of the gravitational field strength and the gravi-

tational potential due to the sphere?

37. Two particles of mass m and M are initially at rest an infinite distance

apart. Show that at any instant their relative velocity of approach attribut-

able to gravitational attraction is V2G(M + m)/d, where d is their separa-

tion at that instant.

figure 16-20
Problem 36



£§ 38. How long will it take a comet, moving in a parabolic path, to move from
w its point of closest approach to the sun through an angle of 90°, measured

at the sun' Let the distance of closest approach to the sun be equal to the

O radius of the earth's orbit, assumed circular. [Hint: See Example 4 and
£ Problem 32.

5 SECTION 16-10

^ 39. In a double star, two stars of mass 3 x 1030 kg each rotate about their com-
mon center of mass, 10" m away, [a) What is their common angular speed?

[b] Suppose that a meteorite passes through this center of mass moving at

right angles to the orbital plane of the stars. What must its speed be if it

is to escape from the gravitational field of the double star'

£ Answer: [a) 2 x 10 7 rad/s. [b] 9 x 104 m/s

40. An 800-kg mass and a 600-kg mass are separated by 0.25 m. \a) What is

the gravitational field strength due to these masses at a point 0.20 m from

the 800-kg mass and 0.15 m from the 600-kg mass!' \b) What is the gravi-

tational potential at this point due to these same masses?

41. Masses of 200 and 800 g are 12 cm apart, [a] Find the gravitational force on

an object of unit mass situated at a point on the line joining the masses

4.0 cm from the 200-g mass, [b] Find the gravitational potential energy per

unit mass at that point, (c) How much work is needed to move this object

to a point 4.0 cm from the 800-g mass along the line of centers?

Answers: [a] Zero, [b] -10 x 10~ 5 erg/g. (c) -5.0 x 10 6 erg.

42. For interstellar travel, a spaceship must overcome the sun's gravitational

field as well as that of the earth, [a] What is the total amount of energy re-

quired for a 1.0-kiloton (equivalent to 9.1 x 105 kg) spaceship to free itself

from the combined earth-sun gravitational field starting from an orbit

300 mi (480 km) above the earth's surface? Neglect all other bodies in the

solar system, [b] What fraction of this energy is used to overcome the sun's

field'

43. [a) Write an expression for the potential energy of a body of mass m in the

gravitational field of the earth and moon. Let Me be the earth's mass, M„,

the moon's mass, R the distance from the earth's center, and r the distance

from the moon's center, [b] At what point between the earth and moon
will the total gravitational field strength attributable to the earth and moon
be zero? (c) What will be the gravitational potential and the gravitational

field strength on the earth's surface? [d] Answer for the moon's surface.

Answer: [a] -Gm[M,,/R + MJr). [b] 3.4 x 10 8 m from earth, (c) -6.3 x 10 7

J/kg ;
9.8 m/s2

. |d) -3.9 x 10« J/kg ;
1.6 m/s2

.

SECTION 16-11

44. Consider two satellites A and B'ot equal mass m, moving in the same
circular orbit of radius r around the earth £ but in opposite senses of rota-

tion and therefore on a collision course (see Fig. 16-21). {a) In terms of G,

Me, m, and r, find the total mechanical energy EA 4- E« of the two-satellite-

plus-earth system before collision, [b] If the collision is completely inelastic

so that wreckage remains as one piece of tangled material (mass = 2m), find

the total mechanical energy immediately after collision, (c) Describe the ««-urt» ib-21
subsequent motion of the wreckage. p . i a*

45. {a) Does it take more energy to get a satellite up to 1000 mi above the earth

than to put it in orbit once it is there? [b] What about 2000 mi? \c) What
about 3000 mi? Take the earth's radius to be 4000 miles.

Answer: [a] No. \b) The same, (c) Yes.

46. Two earth satellites, A and B, each of mass m are to be Launched Lnto

(nearly) circular orbits about the earth's center. Satellite A is to orbit at an

altitude of 4000 mi. Satellite B is to orbit at an altitude of 12,000 mi. The
radius of the earth R, is 4000 mi (Fig. 16-22). [a) What is the ratio of the

potential energy of satellite B to th.it of satellite A, in orbit' [Explain the

jcsult in terms of the work required to gel eat h satellite from its orbit to

infinity.) [b] What is the ratio of the kineth energy of satellite B to thai of



satellite A, in orbit? (c) Which satellite has the greater total energy if each

has a mass of 1.0 slug? By how much?

47. A pair of stars rotates about a common center of mass. One of the stars

has a mass M which is twice as large as the mass m of the other, that is,

M = 2m. Their centers are a distance d apart, d being large compared to the

size of either star, [a) Derive an expression for the period of rotation of the

stars about their common center of mass in terms of d, m, and G. [b] Com-
pare the angular momenta of the two stars about their common center of

mass by calculating the ratio L,„/L,w . (c) Compare the kinetic energies of

the two stars by calculating the ratio K mIKM .

Answer: [a] 2Trd 3l2/V3Gm. [b] 2. (c) 2.

48. A satellite travels initially in an approximately circular orbit 640 km above

the surface of the earth; its mass is 220 kg. [a] Determine its speed, [b) De-

termine its period, (c) For various reasons the satellite loses mechanical

energy at the (average) rate of 1.4 x 105
J per complete orbital revolution.

Adopting the reasonable approximation that the trajectory is a "circle of

slowly diminishing radius," determine the distance from the surface of the

earth, the speed, and the period of the satellite at the end of its 1500th

orbital revolution, [d] What is the magnitude of the average retarding force?

(e) Is angular momentum conserved?

49. A particle of mass m is subject to an attractive central force of magnitude

k/r2 , k being a constant. If at the instant when the particle is at an extreme

position in its closed orbit, at a distance a from the center of force, its speed

is y/k/lma, find [a) the other extreme position, and [b] the speed of the

particle at this position.

Answer: [b) ZVkilma.

SECTION 16-12

50. Foucault Pendulum. A pendulum whose upper end is attached so as to

allow the pendulum to swing freely in any direction can be used to repeat

an experiment first shown publicly by Foucault in Paris in 1851. If the

pendulum is set oscillating, the plane of oscillation slowly rotates with
respect to a line drawn on the floor, even though the tension in the wire

supporting the bob and the gravitational pull of the earth on the bob lie in

a vertical plane, (a) Show that this is a result of the fact that the earth is

not an inertial reference frame, [b] Show that for a Foucault pendulum at

a latitude angle 8, the period of rotation of the plane is (24/sin 6) h. (c)

Explain in simple terms the result at 6 = 90° (the poles) and = 0° (the

equator).
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figure 16-22
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V
fluid statics

It is customary to classify matter, viewed macroscopically, into solids 17-1
and fluids. A fluid is a substance that can flow. Hence the term fluid FLUIDS
includes liquids and gases. Such classifications are not always clearcut.

Some fluids, such as glass or pitch, flow so slowly that they behave

like solids for the time intervals that we usually work with them.

Plasma, which is highly ionized gas, does not fit easily into any of these

categories; it is often called a "fourth state of matter" to distinguish it

from the solid, the liquid, and the gaseous state. Even the distinction

between a liquid and a gas is not clearcut because, by changing the pres-

sure and temperature properly, it is possible to change a liquid (water,

say) into a gas (steam, say) without the appearance of a meniscus and

without boiling; the density and viscosity change in a continuous

manner throughout the process.* In this text, however, we will define

a fluid as it is ordinarily understood, and we will be interested only in

those properties of fluids connected with their ability to flow. There-

fore, the same basic laws control the static and dynamic behavior of

both liquids and gases in spite of the differences between them that we
observe at ordinary pressures.

For solids, which have a definite size and shape, we formulated the

mechanics of rigid bodies, modified by the laws of elasticity for bodies

that cannot be considered perfectly rigid. Since fluids change their

shape readily and, in the case of gases, have a volume equal to that of

the container in which they are confined, we must develop new tech-

niques for solving problems in fluid mechanics. Our applications of

Pressures highei than the bo i oiled ( riti< .il poin< pressure must be employed to do tins

foi II ( ) i In i ntn .il pun n pressure is 118 atmospheres

:»70



mechanics to continuous media, both solids and fluids, are based on

Newton's laws of motion combined with the appropriate force laws.

For fluids, as for solids, however, we find it convenient to develop spe-

cial formulations of these basic laws.

There is a difference in the way a surface force acts on a fluid and on a

solid. For a solid there are no restrictions on the direction of such a

force, but for a fluid at rest the surface force must always be directed at

right angles to the surface. For a fluid at rest cannot sustain a tangen-

tial force; the fluid layers would simply slide over one another when
subjected to such a force. Indeed, it is the inability of fluids to resist

such tangential forces (or shearing stresses) that gives them their char-

acteristic ability to change their shape or to flow.

It is convenient, therefore, to describe the force acting on a fluid by

specifying the pressure p, which is defined as the magnitude of the

normal force per unit surface area. Pressure is transmitted to solid

boundaries or across arbitrary sections of fluid at right angles to these

boundaries or sections at every point. Pressure is a scalar quantity.

The SI unit of pressure is the pascal (abbreviation Pa, 1 Pa = 1 N/m2
).

This unit is named after the French scientist Blaise Pascal (1623-1662)

(see Section 17-4). Other units are bar (1 bar = 10 5 Pa), lb/in. 2
, atmo-

sphere (1 atm = 14.7 lb/in. 2 = 101,325 Pa), and mm-Hg (760 mm-Hg =
1 atm).

A fluid under pressure exerts a force on any surface in contact with

it. Consider a closed surface containing a fluid (Fig. 17-1). An element

of the surface can be represented by a vector S whose magnitude gives

the area of the element and whose direction is taken to be the outward

normal to the surface of the element. Then the force F exerted by the

fluid against this surface element is

F = pS.

Since F and S have the same direction, the pressure p can be written as

F

We assume that the element of area S is small enough so that the pres-

sure p, defined as above, is independent of the size of the element S.

The pressure may actually vary from point to point on the surface.

The density p of a homogeneous fluid (its mass divided by its vol-

ume) may depend on many factors, such as its temperature and the

pressure to which it is subjected. For liquids the density varies very

little over wide ranges in pressure and temperature, and we can safely

treat it as a constant for our present purposes; see entries under Water

1 7.2
PRESSURE AND DENSITY

figure 17-1

An element of surface S can be

represented by a vector S, equal to

its area in magnitude and normal

to it in direction.



Table 17-1

Densities of some materials and objects in kg/meter3

Interstellar space IO" 18 - 10-21

Best laboratory vacuum ~ io-17

Hydrogen: at 0°C and 1.0 atm 9.0 x IO'2

Air: at 0°C and 1.0 atm 1.3

at 100°C and 1.0 atm 0.95

at 0°C and 50 atm 6.5

Styrofoam -1 x IO 2

Ice 0.92 x IO 3

Water: at
CC and 1.0 atm 1.000 x 103

at 100°C and 1.0 atm 0.958 x IO3

at 0°C and 50 atm 1.002 x IO3

Aluminum 2.7 x IO3

Mercury 1.36 x 104

Platinum 2.14 x IO4

The earth: average density 5.52 x IO3

density of core 9.5 x IO3

density of crust 2.8 x IO3

The sun: average density 1.4 x IO3

density at center -1.6 x IO5

White dwarf stars (central densities) IO 8 - IO 15

A uranium nucleus -IO 17

in Table 17-1. The density of a gas, however, is very sensitive to changes

in temperature and pressure; see entries under Air in Table 17-1. This

table shows the range of densities that occur in nature. Note that the

variation is by a factor of about IO38
.

If a fluid is in equilibrium, every portion of the fluid is in equilibrium.

Let us consider a small element of fluid volume submerged within the

body of the fluid. Let this element have the shape of a thin disk and be

a distance y above some reference level, as shown in Fig. \7-2a. The
thickness of the disk is dy and each face has an area A. The mass of this

element is pA dy and its weight is pgA dy. The forces exerted on the

element by the surrounding fluid are perpendicular to its surface at each

point (Fig. 17-2b).

The resultant horizontal force is zero, for the element has no hori-

zontal acceleration. The horizontal forces are due only to the pressure

17-3
THE VARIATION OF
PRESSURE IN A FLUID
AT REST

(p + dp)A

Thickness

dy

pA

(a) (b)

Reference level, y =

figure 17-2

(a) A small volume element of fluid

at rest, (b) The forces on the

element.



of the fluid, and by symmetry the pressure must be the same at all

points within a horizontal plane at y.

The fluid element is also unaccelerated in the vertical direction, so

that the resultant vertical force on it must be zero. However, the verti-

cal forces are due not only to the pressure of the fluid on its faces but

also to the weight of the element. If we let p be the pressure on the

lower face and p + dp the pressure on its upper face, the upward force

is pA (exerted on the lower face) and the downward force is [p + dp)A

(exerted on the upper face) plus the weight of the element dw. Hence,

for vertical equilibrium

pA = [p + dp)A + dw

= [p + dp)A + pgA dy,

and
dp

dy
-pg- 17-1)

This equation tells us how the pressure varies with elevation above

some reference level in a fluid in static equilibrium. As the elevation

increases [dy positive), the pressure decreases [dp negative). The cause

of this pressure variation is the weight per unit cross-sectional area of

the layers of fluid lying between the points whose pressure difference is

being measured.

The quantity pg is often called the weight density of the fluid; it is

the weight per unit volume of the fluid. For water, for example, the

weight density is 62.4 lb/ft3 (= 9800 N/m3
).

If Pi is the pressure at elevation y\, and p> the pressure at elevation y2

above some reference level, integration of Eq. 17-1 gives

dp
[i/2

- Pg dy
Jy,

or P-i- Pi
JVi

pg dy. [17-2)

For liquids p is practically constant because liquids are nearly in-

compressible, and differences in level are rarely so great that any
change in g need be considered. Hence, taking p and g as constants, we
obtain

p% - Pi = -pg[yz - yi) (17-3)

for a homogeneous liquid.

If a liquid has a free surface, this is the natural level from which to

measure distances. To change our reference level to the top surface, we
take y> to be the elevation of the surface, at which point the pressure p>

acting on the fluid is usually that exerted by the earth's atmosphere

Po. We take yi to be at any level and we represent the pressure there as

p. Then,

Po pg{y*-yi

But y> — y x is the depth h below the surface at which the pressure is p
(see Fig. 17-3), so that

p = p„ + pgh. (17-4)

This shows clearly that the pressure is the same at all points at the same
depth.

For gases p is comparatively small and the difference in pressure at

two points is usually negligible (see Eq. 17-3). Thus, in a vessel con-

figure 17-3

A liquid whose top surface is open

to the atmosphere.



taining a gas the pressure can be taken as the same everywhere. How-
ever, this is not the case if y2 — y\ is very great. The pressure of the air

varies greatly as we ascend to great heights in the atmosphere. In fact,

in such cases the density p varies with altitude and p must be known as

a function of y before we can integrate Eq. 17-2.

We can get a reasonable idea of the variation of pressure with altitude in the EXAJMJ*LE
earth's atmosphere if we assume that the density p is proportional to the pres-

sure. This would be very nearly true if the temperature of the air remained the

same at all altitudes. Using this assumption, and also assuming that the varia-

tion of g with altitude is negligible, find the pressure p at an altitude y above

sea level.

From Eq. 17-1 we have

dp

Since p is proportional to p, we have

P_ = P_,

pu Po

where p„ and p are the known values of density and pressure at sea level. Then,

dp p

di
= ~8po

7o'

so that ^ = -^dy.
P Po

Integrating this from the value p» at the point y = (sea level) to the value p at

the point y (above sea level), we obtain

ln^ = -^y

or

However,

Po Po

n g-fl(Po <'""'.

g = 9.80 m/s2
, po = 1.20 kg/m3 (at 20°C),

po-1.01 x 10 r'N/m~ = 1.01 x 10 5 Pa,

so that g—= 1.16 x 10 4 m 1 = 0.116 km ».

Po

Hence, p = p„e "'•>.

where a = 0.1 16 km '.

We have seen that because liquids are almost incompressible the lower

layers are not noticeably compressed by the weight of the upper layers super-

imposed on them and the density p is practically constant at all levels. For

gases at uniform temperature the density p of any layer is proportional to the

pressure p at that layer. The variation of pressure with distance above the

bottom of the fluid for a gas is different from that for a liquid. Figure 17-4 shows
the pressure distribution in water and in air.

Equation 17-3 gives the relation between the pressures at any two

points in a fluid, regardless of the shape of the containing vessel. For no

matter what the shape of the containing vessel two points in the fluid

can be connected by a path made up oi vertical and horizontal steps.

I mi example, consider points A and H in the homogeneous liquid eon



i i
•

i

'

i
'

i

'—'—i— '— i——

r

10 86420246
Depth, km Sea

level

I
'

I
'

I
' I ' I

'
I

' T"7-!

-1-
!

10 12 14 16 18 20 22 24 26 28 30

Altitude, km

figure 17-4

Example 1. Variation of pressure

with altitude in air and with depth

in water, assuming p = 1 atm
(exactly) at sea level. Note that the

pressure scales are different for

altitude and depth. The solid line

for air is calculated on the

assumption that the air has a

constant temperature and that g

does not change with altitude. The
dashed line (the U.S. Standard

Atmosphere— 1962) is a more
refined calculation in which these

assumptions are not made.

— < > A

B <

ii

: 2

A- < b

h.

\ /

Ci

J {

- ^Interface
y* « c

\

f^^=^P VW
M m

tained in the U-tube of Fig. 17 -5a. Along the zigzag path from A to B
there is a difference in pressure pgy' for each vertical segment of length

y' , whereas along each horizontal segment there is no change in pres-

sure. Hence, the difference in pressure Pb~Pa is pg times the algebraic

sum of the vertical segments from A to B, or pg(y> — y\).

If the U-tube contains different imiscible liquids, say a dense liquid

in the right tube and a less dense one in the left tube, as shown in Fig.

\7-5b, the pressure can be different at the same level on different sides.

In the figure the liquid surface is higher in the left tube than in the right.

The pressure at A will be greater than at B. The pressure at C is the same
on both sides, but the pressure falls less from C to A than from C to B,

for a column of liquid of unit cross-sectional area connecting A and C
will weigh less than a corresponding column connecting B and C.

figure 17-5

(a) The difference in pressure

between two points A and B in a

homogeneous liquid depends only

on their difference in elevation

y% — Vi. (b) Two points A and B at

the same elevation can be at

different pressures if the densities

there differ.

figure 17-6

Example 2.

A U-tube is partly filled with water. Another liquid, which does not mix with

water, is poured into one side until it stands a distance d above the water level

on the other side, which has meanwhile risen a distance / (Fig. 17-6). Find the

density of the liquid relative to that of water.

In Fig. 17-6 points C are at the same pressure. Hence, the pressure drop from
C to each surface is the same, for each surface is at atmospheric pressure.

The pressure drop on the water side is pwgll, the 21 comes from the fact that

EXAMPLE 2



the water column has risen a distance 1 on one side and fallen a distance 1 on
the other side, from its initial position. The pressure drop on the other side is

pg[d + 21), where p is the density of the unknown liquid. Hence,

and

pwg2l = pg[d

p_ 27

pu

ID

21 + d)

The ratio of the density of a substance to the density of water is called the

relative density (or the specific gravity) of that substance.

Figure 17-7 shows a liquid in a cylinder that is fitted with a piston to

which we may apply an external pressure p». The pressure p at any arbi-

trary point P a distance h below the upper surface of the liquid is given

by Eq. 17-4, or

p=Po + pgh.

Let us increase the external pressure by an arbitrary amount Ap (which

need not be small compared to p ). Since liquids are virtually incom-

pressible, the density p in the preceding equations remains essentially

constant during the process. The equation shows that, to this extent,

the change in pressure Ap at the arbitrary point P is equal to Ap . This

result was stated by Blaise Pascal (see p. 371) and is called Pascal's

principle. It is usually given as follows: Pressure applied to an enclosed

fluid is transmitted undiminished to every portion of the fluid and the

walls of the containing vessel. This result is a necessary consequence

of the laws of fluid mechanics, rather than an independent principle.

Although we often assume liquids to be incompressible, they are, in

fact, slightly compressible. This means that a change of pressure ap-

plied to one portion of a liquid propagates through the liquid as a wave
at the speed of sound in that liquid. Once the disturbance has died out

and equilibrium is established, it is found that Pascal's principle is

valid. The principle holds for gases with slight complications of inter-

pretation caused by the large volume changes that may occur when
the pressure on a confined gas is changed.

Archimedes' principle is also a necessary consequence of the laws

of fluid statics. When a body is wholly or partly immersed in a fluid

(either a liquid or a gas) at rest, the fluid exerts pressure on every part

of the body's surface in contact with the fluid. The pressure is greater

on the parts immersed more deeply. The resultant of all the forces is

an upward force called the buoyancy of the immersed body. We can

determine the magnitude and direction of this resultant force quite

simply as follows.

The pressure on each part of the surface of the body certainly does

not depend on the material the body is made of. Let us suppose, then,

that the body, or as much of it as is immersed, is replaced by fluid like

the surroundings. This fluid will experience the pressures that acted on

the immersed body (Fig. 17-8) and will be at rest. Hence, the resultant

upward force on it will equal its weight and will act vertically upward
through its center of gravity. From this follows Archimedes principle.

namely, that a body wholly or partly immersed in a fluid is buoyed up

with a force equal to the weight of the fluid displaced by the body. We
have seen that the force acts vertically up through the center of gravity

oi the fluid before its displacement. The corresponding point in the

immersed body is called its < entei o) buoyancy.

17-4
PASCAL'S PRINCIPLE
AND ARCHIMEDES'
PRINCIPLE

figure 17-7

A fluid in a cylinder fitted with a

movable piston. The pressure at

any point P is due not only to the

weight of the fluid above the level

of P but also to the force exerted

by the piston.

figure I 7 -it

Illustrating Archimedes principle

The fluid exerts .1 resultant upward

force on the Immersed body.



What fraction of the total volume of an iceberg is exposed- The density of ice EXAMPLE 3
is pt = 0.92 gram/cm3 and that of sea water is pw = 103 gram/cm3

. The weight

of the iceberg is

W, = p,V,g,

where V, is the volume of the iceberg; the weight of the volume Vw of sea water

displaced is the buoyant force

B = pwVwg.

But B equals W,, for the iceberg is in equilibrium, so that

Pu-Vu-g = PiVig,

Vw P, 0.92
and

V, p u - 1.03
89%.

The volume of water displaced W is the volume of the submerged portion of the

iceberg, so that 1 1 % of the iceberg is exposed.

Evangelista Torricelli (1608-1647) devised a method for measuring the

pressure of the atmosphere by his invention of the mercury barometer

in 1643.* The mercury barometer is a long glass tube that has been

filled with mercury and then inverted in a dish of mercury, as in Fig.

17-9. The space above the mercury column contains only mercury

vapor, whose pressure is so small at ordinary temperatures that it can

be neglected. It is easily shown (see Eq. 17-3) that the atmospheric

pressure p» is

Po = pgh.

Most pressure gauges use atmospheric pressure as a reference level

and measure the difference between the actual pressure and atmo-

spheric pressure, called the gauge pressure. The actual pressure at a

point in a fluid is called the absolute pressure. Gauge pressure is given

either above or below atmospheric pressure.

The pressure of the atmosphere at any point is numerically equal to

the weight of a column of air of unit cross-sectional area extending from

that point to the top of the atmosphere. The atmospheric pressure at a

point, therefore, decreases with altitude. There are variations in atmo-

spheric pressure from day to day because the atmosphere is not static.

The mercury column in the barometer will have a height of about 76

cm at sea level, varying with the atmospheric pressure. A pressure

equivalent to that exerted by exactly 76 cm of mercury at 0°C under
standard gravity, g = 32.174 ft/s2 = 980.665 cm/s2

, is called one atmo-
sphere (1 atm). The density of mercury at this temperature is 13.5950

gram/cm3
. Hence, one atmosphere is equivalent to

1 atm = (13.5950 gram/cm3)(980.665 cm/s2 )(76.00 cm)

= 1.013 x 10 5 N/m2 [= 1.013 x 10 5 Pa)

= 2116 lb/ft2

= 14.70 lb/in. 2

Often pressures are specified by giving the height of mercury column,

* See The History of the Barometer, by W. E. K. Middleton, The Johns Hopkins Press (1964)

for a fascinating account of the development of the concept of atmospheric pressure and
of devices to measure it.

17-5
MEASUREMENT
OF PRESSURE

figure 17-9

The Torricelli barometer.



at 0°C under standard gravity, which exerts the same pressure. This is

the origin of the expression "centimeters of mercury (cm-rig)" or

"inches of mercury (in-Hg)" pressure. Pressure is the ratio of force to

area, however, and not a length.

Torricelli described his experiments with the mercury barometer in letters in

1644 to his friend Michelangelo Ricci in Rome. In them he says that the aim of

his investigation was "not simply to produce a vacuum, but to make an instru-

ment which shows the mutations of the air, now heavier and dense, and now
lighter and thin.

'

' On hearing of the Italian experiments, Blaise Pascal, in France,

reasoned that if the mercury column was held up simply by the pressure of the

air, the column ought to be shorter at a high altitude. He tried it on a church

steeple in Paris, but desiring more decisive results, he wrote to his brother-in-

law to try the experiment on the Puy de Dome, a high mountain in Auvergne.

There was a difference of 3 inches in the height of the mercury, "which ravished

us with admiration and astonishment." Pascal himself constructed a barometer

using red wine and a glass tube 46 feet long.

The chief significance of these experiments at the time was the realization it

brought that an evacuated space could be created. Aristotle believed that a

vacuum could not exist, and as late a writer as Descartes held the same view. For

2000 years philosophers spoke of the "horror" that nature had for empty

space — the horror vacui. Because of this nature was said to prevent the forma-

tion of a vacuum by laying hold of anything nearby and with it instantly filling

up any vacuated space. Hence, the mercury or wine should fill up the inverted

tube because "nature abhorred a vacuum." The experiments of Torricelli and

Pascal showed that there were limitations to nature's ability to prevent a vac-

uum. They created a sensation at the time. The goal of producing a vacuum be-

came more of a practical reality through the development of pumps by Otto von

Guericke in Germany around 1650 and by Robert Boyle in England around 1660.

Even though these pumps were relatively crude, they did provide a tool for ex-

perimentation. With a pump and a glass jar, an experimental space could be

provided in which to study how the properties of heat, light, sound, and later

electricity and magnetism, are affected by an increasingly rarefied atmosphere.

Although even today we cannot completely remove every trace of gas from a

closed vessel, these seventeenth-century experimenters freed science from the

bugaboo of horror vacui and spurred efforts to create highly evacuated systems.

Interestingly, within several decades in the seventeenth century no fewer

than six important instruments were developed. They are the barometer, air

pump, pendulum clock, telescope, microscope, and thermometer. All excited

great wonder and curiosity.

The open-tube manometer (Fig. 17-10) measures gauge pressure. It

consists of a U-shaped tube containing a liquid, one end of the tube

being open to the atmosphere and the other end being connected to the

system (tank) whose pressure p we want to measure. From Eq. 17-4 we
obtain

P ~ Po = pgh.

Thus the gauge pressure, p — p», is proportional to the difference in

height of the liquid columns in the U-tube. If the vessel contains gas

under high pressure, a dense liquid like mercury is used in the tube;

water can be used when low gas pressures are involved.

P-2 = PoX

h = -v > " >1

P\ = P\

To tank - -- \—~

—

m I

L\JL

>2

figure 17-10

The open- tube manometer, as used

to measure the pressure in a tank.

An open tube mercury manometer Fig. 17 101 is connected to a gas tank. The
mercury is 39.0 cm higher on the right side than on the left when a barometei

nearby reads 75 cm Hg What is the absolute pressure ol the gas? I xpress the

answer in cm 1 \y. .it in Pa and lb/in. 2
.

Th' sun is the pressure ai the top ol the lefi mercur) column ["his

EVV1IPLE4



is the same as the pressure at the same horizontal level in the right column. The w

pressure at this level is the atmospheric pressure (75.0 cm-Hg) plus the pressure

exerted by the extra 39.0-cm column of Hg, or (assuming standard values of mer-

cury density and gravity) a total of 1 14 cm-Hg. Therefore, the absolute pressure q
of the gas is S

114 cm-Hg = Watra= 1.50 atm = 1.52 x 10 5 Pa. = (1.50)(14.7) lb/in. 2 O

= 22.1 lb/in. 2
.

What is the gauge pressure of the gas? a:

questions1. Make an estimate of the average density of your body. Explain a way in

which you could get an accurate value using ideas in this chapter.

2. Persons confined to bed are less likely to develop sores on their bodies if

they use a water bed rather than an ordinary mattress. Explain.

3. [a] Two bodies (for example, balls) have the same shape and size but one is

denser than the other. Assuming the air resistance to be the same on each,

show that when they are released simultaneously from the same height the

heavier body will reach the ground first, [b] Two bodies (for example, rain-

drops) have the same shape and density but one is larger than the other.

Assuming the air resistance to be proportional to the body's speed through

the air, which body will fall faster?

4. Water is poured to the same level in each of the three vessels shown, all of

the same base area (Fig. 17-11). If the pressure is the same at the bottom of \

each vessel, the force experienced by the base of each vessel is the same. Vz-
Why then do the three vessels have different weights when put on a scale? tH? e~~J
This apparently contradictory result is commonly known as the "hydro- V_-_-_-I-I-----y

static paradox."

5. Can a mountain climber climb high enough so that the atmospheric pres- "gure 17-11

sure is reduced to one-half of its sea-level value? Question 4.

6. [a) An ice cube is floating in a glass of water. When the ice melts, will the

water level rise? Explain, [b] If the ice cube contains a piece of lead, the

water level will fall when the ice melts. Explain.

7. When a slice of lemon is first put into a cup of tea it sinks to the bottom.

Later it is found to be floating. What is a likely explanation?

8. Does Archimedes' law hold in a vessel in free fall? In a satellite moving in a

circular orbit? Explain.

9. A spherical bob made of cork floats half submerged in a pot of tea at rest on
the earth. Will the cork float or sink aboard a spaceship coasting in free

space? On the surface of Jupiter?

10. Two hollow bodies of equal weight and volume and having the same shape,

except that one has an opening at the bottom and the other is sealed, are

immersed to the same depth in water. Is less work required to immerse one

than the other? If so, which one and why?

11. A ball floats on the surface of water in a container exposed to the atmo-

sphere. Will the ball remain immersed at its former depth or will it sink or

rise somewhat if [a] the container is covered and the air is removed or

[b] the container is covered and the air is compressed?

12. Explain why an inflated balloon will rise to a definite height once it starts

to rise, whereas a submarine will always sink to the bottom of the ocean

once it starts to sink, if no changes are made.

13. Explain how a submarine rises, falls, and maintains a fixed depth. Do fish

use the same principles? (See "The Buoyancy of Marine Animals" by Eric

Denton in Scientific American, July 1960 and "Submarine Physics" by
G. P. Hamwell in American Journal of Physics, March 1948.)



14. A soft plastic bag weighs the same when empty as when filled with air at

atmospheric pressure. Why? Would the weights be the same if measured in

a vacuum?

15. A leaky tramp steamer that is barely able to float in the North Sea steams

up the Thames estuary toward the London docks. It sinks before it arrives.

Why?

16. Is it true that a floating object will only be in stable equilibrium if its center

of buoyancy lies above its center of gravity? Illustrate with examples.

17. Why didn't American Indians put seats in their canoes?

18. Very often a sinking ship will turn over as it becomes immersed in water.

Why?

19. According to Example 3, 89% of an iceberg is submerged. Yet occasionally

icebergs turn over, with possibly disasterous results to nearby shipping.

How can this happen considering that so much of their mass is below sea

level?

20. A barge filled with scrap iron is in a canal lock. If the iron is thrown over-

board, what happens to the water level in the lock?

21. A bucket of water is suspended from a spring balance. Does the balance

reading change when a piece of iron suspended from a string is immersed in

the water? When a piece of cork is put in the water?

22. Logs dropped upright into a pond do not remain upright, but float "flat" in

the water. Explain.

23. Explain why a uniform wooden stick which will float horizontally if it is

not loaded will float vertically if enough weight is added to one end. (See

Problem 30.)

24. A solid cylinder is placed in a container in contact with the base. When liq-

uid is poured into the container, none of it goes beneath the solid, which
remains closely in contact with the base. Is there a buoyant force on the

solid? Explain.

25. Estimate with some care the buoyant force exerted by the atmosphere on
you.

26. Although there are practical difficulties it is possible in principle to float

an ocean liner in a few barrels of water. How would you go about doing this?

27. Is the water at the bottom of the Marianas Trench (11,000 m deep) substanti-

ally [a] less or [b] more buoyant than the water on the surface?

28. Mountain climbers use aneroid barometers to estimate their altitude. How
can they be useful, considering that the atmospheric pressure at a given

location is not constant?

29. What is wrong with this statement? "The atmospheric pressure is 753 mm-
Hg when the atmosphere supports, in a barometer, a mercury column 753

mm lonj;.

30. In a barometer, how important is it that the inner diameter of the barom-

eter tube be uniform ? That the barometer tube be absolutely vertical-'

31. An open-tube manometer has one tube twice the diameter of the other.

Explain how this would affect the operation of the manometer. Does it

matter which end is connected to the chamber whose pressure is to be mea-
sured?

32. Explain how a physician can determine your blood pressure.

33. Liquid containers tend to leak when taken aloft in an airplane. Why? Does
it matter whether or not they arc right-side up? Does it matter whether or

not they are initially completely full?

34. Assuming that a mercury barometer at standard atmospheric pressure on

the earth's surface reads 76.0 cm height ol mercury column estimate what
would be the height of the mercury column in an artificial earth satellite

in orbit about the earth.

35. An open Inn ki i of watei is or a smooth plane in< Lined .it an angle a to the



horizontal. Find the equilibrium inclination to the horizontal of the free sur-

face of the water when [a) the bucket is held at rest, a = and v=
;
[b] the

bucket is allowed to slide down at constant speed, a = 0, v = constant;

(c) the bucket slides down without restraint, a = constant. If the plane is

curved so that a ^ constant, what will happen

?

36. If a U-tube containing water is rotated about a vertical axis through the cen-

ter of one limb, the water level will fall in one limb and rise in the other

compared to the rest position. Explain carefully. (See Problem 18.)

37. Explain how it can be that pressure is a scalar quantity when forces, which

are vectors, can be produced by the action of pressures.

38. A thin-walled pipe will burst more easily if, when there is a pressure dif-

ferential between inside and outside, the excess pressure is on the outside.

Explain.

39. We have considered liquids under compression. Can liquids be put under

tension? If so, will they tear under sufficient tension as do solids' (See "The

Tensile Strength of Liquids" by Robert E. Apfel in Scientific American,

December 1972.)

u
ce

"a

o
to
r-
ta

2

SECTION 17-2

1. Find the pressure increase in the fluid in a syringe when a nurse applies a

force of 42 N to the syringe's piston of radius 1.1 cm.

Answer: 1.1 x 10 5 Pa.

2. An airtight box having a lid with an area of 12 in. 2 is partially evacuated. If

a force of 108 lb is required to pull the lid off the box, and the outside at-

mospheric pressure is 15 lb/in. 2
, what was the pressure in the box?

3. In 1654 Otto von Guericke, burgomeister of Magdeburg and inventor of the

air pump, gave a demonstration before the Imperial Diet in which two
teams of eight horses could not pull apart two evacuated brass hemi-

spheres, [a) Show that the force F required to pull apart the hemispheres is

F = ttR 2P where R is the (outside) radius of the hemispheres and P is the dif-

ference in pressure outside and inside the sphere (Fig. 17-12). \b) Taking

R equal to 1.0 ft and the inside pressure as 0.10 atm, what force would the

team of horses have had to exert to pull apart the hemispheres-' (c) Why
were two teams of horses used-

1 Would not one team prove the point just

as well- Answer: (b) 6000 lb.

problems

figure 17-12
Problem 3

SECTION 17-3

4. Find the total pressure, in lb/in. 2 (Pa), 500 ft (150 m) below the surface of

the ocean. The relative density of sea water is 1.03 and the atmospheric

pressure at sea level is 14.7 lb/in. 2 (1.0 x 10 s Pa).

5. Estimate the hydrostatic difference in blood pressure in a person of height

1.83 m (6.00 ft), between the brain and the foot, assuming that the density

of blood is 1.06 x 10 3 kg/m 3 (2.06 slug/ft 3
).

Answer: 1.90 x 10 4 Pa (2.75 lb/in. 2
).

6. The human lungs can operate against a pressure differential of less than one-

twentieth a standard atmosphere. If a diver uses a snorkel (long tube) for

breathing, how far below water level can he swim"

7. Find the pressure in the atmosphere 16 km (10 mi) above sea level.

Answer: 1.6 X 10 4 Pa (2.3 lb/in. 2
).

8. The height at which the pressure in the atmosphere is just 1/e that at sea

level is called the scale height of the atmosphere at sea level, (a) Show that

the scale height H at sea level is also the height of an atmosphere that has

the same density everywhere as at sea level and that will exert the same
pressure at sea level as the actual infinite atmosphere does, (b) Show that

the scale height at sea level is 8.6 km.



figure 17-13

Problem 12

9. What would be the height of the atmosphere if the air density [a) were con-

stant and \b) decreased linearly to zero with height 7 Assume a sea-level

density of 1.3 kg/m 3
. Answer: [a] 8.0 x 10 3 m. \b) 16 x 10 3 m.

10. A swimming pool has the dimensions 80 ft x 30 ft x 8.0 ft. [a] When it is

filled with water, what is the force (due to the water alone) on the bottom

?

On the ends? On the sides- [b) If you are concerned with whether or not the

concrete walls will collapse, is it appropriate to take the atmospheric pres-

sure into account-'

11. A simple U-tube contains mercury. When 13.6 cm of water is poured into

the right arm, how high does the mercury rise in the left arm from its initial

level' Answer: 0.50 cm.

12. Water stands at a depth D behind the vertical upstream face of a dam, as

shown in Fig. 17-13. Let W be the width of the dam. \a) Find the resultant

horizontal force exerted on the dam by the gauge pressure of the water and

\b) the net torque due to the gauge pressure of the water exerted about a

line through O parallel to the width of the dam. (c) What is the line of ac-

tion of the equivalent resultant force?

13. Three liquids that will not mix are poured into a cylindrical container. The
amounts and densities of the liquids are 0.50 liter, 2.6 g/cm 3

;
0.25 liter, 1.0

g/cm 3
; and 0.40 liter, 0.80 g/cm 3

. What is the total force acting on the bot-

tom of the container" (Ignore the contribution due to the atmosphere.)

Answer: 18 N.

14. Two identical cylindrical vessels with their bases at the same level each

contain a liquid of density p. The area of either base is A, but in one vessel

the liquid height is hi and in the other h->. Find the work done by gravity in

equalizing the levels when the two vessels are connected.

15. [a] Consider a container of fluid subject to a vertical upward acceleration a.

Show that the pressure variation with depth in the fluid is given by

p = ph [g + a),

where h is the depth and p is the density. \b) Show also that if the fluid as a

whole undergoes a vertical downward acceleration a, the pressure at a

depth h is given by

p = ph[g - a).

(c) What is the state of affairs in free fall?

16. [a] Consider the horizontal acceleration of a mass of liquid in an open tank.

Acceleration of this kind causes the liquid surface to drop at the front of the

tank and to rise at the rear. Show that the liquid surface slopes at an angle

H with the horizontal, where tan = a/g, a being the horizontal accelera-

tion, [b] How does the pressure vary with h, the vertical depth below the

surface?

1 7. The surface of contact of two fluids of different densities that are at rest and

do not mix is horizontal. Prove this general result [a] from the fact that the

potential energy of a system must be a minimum in stable equilibrium;

[b) from the fact that at any two points in a horizontal plane in either fluid

the pressures are equal.

18. [a) A fluid mass is rotating at constant angular velocity w about the central

vertical axis of a cylindrical container. Show that the variation of pressure

in the radial direction is given by

dp- = poJ -r.

[b] Take p = p, al the axis oi rotation [r = 0) and show that the pressure p al

any point r is

p = p,. + \noi-r-.
'

'

2H figure 17-11

|c) Show that the liquid surface is of paraboloidal form Fig I

7
I4);thatis a Problem 18



vertical cross section of the surface is the curve y
the variation of pressure with depth is dp = pg dh.

u>
2r2/2g. |d) Show that

SECTION 17-4

19. A piston of small cross-sectional area a is used in the hydraulic press to

exert a small force f on the enclosed liquid. A connecting pipe leads to a

larger piston of cross-sectional area A (Fig. 17-15). {a) What force F will the

larger piston sustain" [b] If the small piston has a diameter of 1.5 in. and the

large piston one of 21 in., what weight on the small piston will support

2.0 tons on the large piston? Answer: [a] fA/a. [b] 20 lb.

20. A cubical object of dimensions L (2.0 ft) on a side and weight W (1000 lb) in

a vacuum is suspended by a rope in an open tank of water of density p (2.0

slug/ft3
) as in Fig. 17-16. [a] Find the total downward force exerted by the

water and the atmosphere on the top of the object of area A (4.0 ft
2
), [b] Find

the total force on the bottom of the object, (c) Find the tension in the rope.

21. [a) What is the minimum area of a block of ice 1.0 ft. (0.3 m) thick floating

on water that will hold up an automobile weighing 2500 lb (mass =1100
kg)" [b] Does it matter where the car is placed on the block of ice?

Answer: [a) 500 ft
2 (46 m2

). (b) Yes.

22. Three boys each of weight W (80 lb) make a log raft by lashing together logs

of diameter D (1.0 ft) and length L (6.0 ft). How many logs will be needed to

keep them afloat? Take the relative density of wood to be 0.80.

23. A block of wood floats in water with two-thirds of its volume submerged.

In oil it has 0.90 of its volume submerged. Find the density of [a] the wood
and [b) the oil. Answer: [a] 6.7 x 102 kg/m3

. (b) 7.4 x 102 kg/m3
.

24. A block of wood has a mass of 3.67 kg and a relative density of 0.60. It is to

be loaded with lead so that it will float in water with 0.90 of its volume im-

mersed. What weight of lead is needed (a) if the lead is on top of the wood?
[b] if the lead is attached below the wood? The density of lead is 1.13

x 104 kg/m3
.

25. Assume the density of brass weights to be 8.0 g/cm3 and that of air to be

0.0012 g/cm3
. What percent error arises from neglecting the buoyancy of

air in weighing an object of mass m and density p on a beam balance?

Answer: 0.12[l/p - 118), with p in g/cm3
.

26. A hollow spherical iron shell floats almost completely submerged in water.

If the outer diameter is 2.00 ft and the relative density of iron is 7.80, find

the inner diameter.

27.

28.

29

30

An iron casting containing a number of cavities weighs 60 lb (mass = 27 kg)

in air and 40 lb (mass = 18 kg) in water. What is the volume of the cavities

in the casting? Assume the relative density of iron to be 7.8.
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figure 17-15
Problem 19
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figure 17-16
Problem 20

Answer: 0.20 ft
3 (5.5 x 10

A cube floating on mercury has one-fourth of its volume submerged. If

enough water is added to cover the cube, [a) what fraction of its volume will

remain immersed in mercury? \b) Does the answer depend on the shape of

the body?

A U-tube is filled with a single homogeneous liquid. The liquid is tempo-
rarily depressed in one side by a piston. The piston is removed and the level

of the liquid in each side oscillates. Show that the period of oscillation is

nVlL/g where L is the total length of the liquid in the tube.

A cylindrical wooden log is loaded with lead at one end so that it floats up-

right in water as in Fig. 17-17. The length of the submerged portion is

/ = 8.0 ft. The log is set into vertical oscillation, (a) Show that the oscilla-

tion is simple harmonic, [b] Find the period of the oscillation. Neglect the

fact that the water has a damping effect on the motion.

31. A long uniform wooden bar with square cross section floats on water either

with two opposite surfaces parallel to the water or with all four surfaces at

45° with the water. Which of these positions is assumed for densities of

0.20, 0.50, and 0.80 g/cm3
?

figure 17-17

Problem 30
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32. The tension in a string holding a solid block below the surface of a liquid

|of density greater than the solid) is T when the containing vessel (Fig.

17-18) is at rest. Show that the tension T, when the vessel has an upward

vertical acceleration a, is given by T {1 + alg).

figure 17-18

Problem 32

a.
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fluid

dynamics
One way of describing the motion of a fluid is to divide the fluid into 18-1
infinitesimal volume elements, which we may call fluid particles, and GENERAL CONCEPTS
to follow the motion of each of these particles. This is a formidable task. Qf PLUID FLOW
We would give coordinates x, y, z to each such fluid particle and would

specify these as functions of the time t. The coordinates x, y, z at the

time t of the fluid particle which was at x
, y0/ z<> at the time to would

be determined by functions x(xo,y ,Zo,to,£), y(x ,yo,z ,to,t), z(xo,y ,z ,to,t),

which then describe the motion of the fluid. This procedure is a direct

generalization of the concepts of particle mechanics and was first de-

veloped by Joseph Louis Lagrange (1736-1813).

There is a treatment, developed by Leonhard Euler (1707-1783),

which is more convenient for most purposes. In it we give up the at-

tempt to specify the history of each fluid particle and instead specify

the density and the velocity of the fluid at each point in space at each

instant of time. This is the method we shall follow here. We describe

the motion of the fluid by specifying the density p[x,y,z,t) and the ve-

locity \[x,y,z,t) at the point [x,y,z] at the time t. We thus focus our at-

tention on what is happening at a particular point in space at a par-

ticular time, rather than on what is happening to a particular fluid

particle. Any quantity used in describing the state of the fluid, for ex-

ample the pressure p, will have a definite value at each point in space

and at each instant of time. Although this description of fluid motion
focuses attention on a point in space rather than on a fluid particle,

we cannot avoid following the fluid particles themselves, at least for

short time intervals dt. For it is the particles, after all, and not the

space points, to which the laws of mechanics apply. In order to under-

stand the nature of the simplifications we shall make, let us consider

first some general characteristics of fluid flow. 385



1. Fluid flow can be steady or nonsteady. When the fluid velocity v

at any given point is constant in time, the fluid motion is said to be

steady. That is, at any given point in a steady flow the velocity of each

passing fluid particle is always the same. At some other point a par-

ticle may travel with a different velocity, but every other particle which

passes this second point behaves there just as this particle did when it

passed this point. These conditions can be achieved at low flow speeds;

a gently flowing stream is an example. In nonsteady flow, as in a tidal

bore, the velocities v are a function of the time. In the case of turbulent

flow, such as rapids or a waterfall, the velocities vary erratically from

point to point as well as from time to time.

2. Fluid flow can be rotational or irrotational. If the element of fluid

at each point has no net angular velocity about that point, the fluid

flow is irrotational. We can imagine a small paddle wheel immersed in

the moving fluid (Fig. 18-1). If the wheel moves without rotating, the

motion is irrotational; otherwise it is rotational. Rotational flow in-

cludes vortex motion, such as whirlpools.

3. Fluid flow can be compressible or incompressible. Liquids can usu-

ally be considered as flowing incompressibly. But even a highly com-

pressible gas may sometimes undergo unimportant changes in density.

Its flow is then practically incompressible. In flight at speeds much
lower than the speed of sound in air (described by subsonic aerody-

namics), the motion of the air relative to the wings is one of nearly

incompressible flow. In such cases the density p is a constant, inde-

pendent of x, y, z, and t, and the mathematical treatment of fluid flow

is thereby greatly simplified.

4. Finally, fluid flow can be viscous or nonviscous. Viscosity in fluid

motion is the analog of friction in the motion of solids. In many cases,

such as in lubrication problems, it is extremely important. Sometimes,

however, it is negligible. Viscosity introduces tangential forces between
layers of fluid in relative motion and results in dissipation of mechan-
ical energy.

We shall confine our discussion of fluid dynamics for the most part

to steady, irrotational, incompressible, nonviscous flow. The mathe-

matical simplifications resulting should be obvious. We run the danger,

however, of making so many simplifying assumptions that we are no
longer talking about a meaningfully real fluid.* Furthermore, it is some-

times difficult to decide whether a given property of a fluid— its vis-

cosity, say— can be neglected in a particular situation. In spite of all

this, the restricted analysis that we are going to give has wide applica-

tion in practice, as we shall see.

figure 18-1

We place a small free-floating

paddle wheel in a flowing liquid.

If it rotates, we call the flow

rotational; if not, we call the flow

irrotational.

In steady flow the velocity v at a given point is constant in time. Con-
sider the point /

;
(Fig. 18-2) within the fluid. Since v at P does not change

in time, every particle arriving at P will pass on with the same speed in

the same direction. The same is true about the points Q and R. Hence,

if we trace out the path of the particle, as is done in the figure, that

curve will be the path of every particle arriving at P. This curve is called

.] streamline. A streamline is parallel to the velocity of the fluid par-

ticles at every point. No two streamlines can cross one another, for if

18-2
STREAMLINES
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figure 18-2

A particle passing through points

P, Q, and R traces out a streamline,

assuming steady flow. Any other

particle passing through P must be

traveling along the same streamline

in steady flow.

they did, an oncoming fluid particle could go either one way or the

other, and the flow could not be steady. In steady flow the pattern of

streamlines in a flow is stationary with time.*

In principle we can draw a streamline through every point in the

fluid. Let us assume steady flow and select a finite number of stream-

lines to form a bundle, like the streamline pattern of Fig. 18-3. This

tubular region is called a tube of flow. The boundary of such a tube con-

sists of streamlines and is always parallel to the velocity of the fluid

particles. Hence, no fluid can cross the boundaries of a tube of flow and

the tube behaves somewhat like a pipe of the same shape. The fluid that

enters at one end must leave at the other.

In Fig. 18-4 we have drawn a thin tube of flow. The velocity of the fluid

inside, although parallel to the tube at any point, may have different

magnitudes at different points. Let the speed be v { for fluid particles at

P and v> for fluid particles at Q. Let Ai and A 2 be the cross-sectional

areas of the tubes perpendicular to the streamlines at the points P and Q,
respectively. In the time interval At a fluid element travels approxi-

mately the distance v At. Then the mass of fluid Ami crossing Ai in the

time interval At is approximately

Ami = Pi^4iVi At

or the mass flux Ami/At is approximately piAiVi. We must take At small

enough so that in this time interval neither v nor A varies appreciably

over the distance the fluid travels. In the limit as At -* 0, we obtain the

precise definitions:

and

mass flux at P = piAiVi,

mass flux at Q = p-iA-iV-y,

where pi and p 2 are the fluid densities at P and Q respectively. Because

no fluid can leave through the walls of the tube and there are no
"sources" or "sinks" wherein fluid can be created or destroyed in the

tube, the mass crossing each section of the tube per unit time must be

the same. In particular, the mass flux at P must equal that at Q:

or

PiAiVi = p>A>v-2,

pAv = constant.

figure 18-3

A tube of flow made up of a bundle

of streamlines.

18-3
THE EQUATION OF
CONTINUITY

figure 18-4

A tube of flow used in proving the

equation of continuity.

18-1)

*The family of streamlines in a fluid is so drawn that, at any point in the fluid, the

direction of the instantaneous velocity v for the fluid particle at that point is tangent to

the streamline at that point. In nonsteady flow the pattern of streamlines in the fluid

changes as time goes on and the path of an individual fluid particle through the fluid

does not coincide with a streamline of a given instant. The streamline and the line of

motion of the particle touch each other at the point, locating the particle at the instant

in question. The path or line of motion and the streamline coincide only for steady flow.



This result |Eq. 18-1) expresses the law of conservation of mass in fluid

dynamics.

Would you expect Eq. 18-1 to hold when the flow is [a] nonsteady,

[b] rotational, |c) compressible, or [d] viscous"

In the more general case in which sources or sinks are present and in which the

density varies with time as well as position, mass must still be conserved and

we can write (without proof) an equation of continuity that expresses this fact.

It is

d[pVX )

|

djpVy) d[PVZ )

|

fy _ <; jl82)
dx dy dz dt

in which vx , vUl and v: are the velocity components of the fluid; like the density

p they vary both with position and time.*

Let us consider a small volume element in such a fluid. It can be shown that:

1. The sum of the first three terms of Eq. 18-2 gives the net outflow, per unit

volume, of mass from the volume element.

2. The fourth term gives the rate, per unit volume, at which mass is accumu-

lating within the volume element.

3. The last term, S, gives the rate, per unit volume, at which mass is being intro-

duced into volume element from a "source" (if S is positive) or is disappear-

ing from the volume element into a "sink" (if S is negative).

It is clear that, with these interpretations of its terms, Eq. 18-2 is a statement

of the conservation of mass for fluid flow. Is this equation dimensionally cor-

rect?

If S = in Eq. 18-2, there are no sources or sinks. If the sum of the first three

terms is negative, there is a net inflow of mass to the volume element. Thus the

mass contained in the element must increase with time as fluid "piles up." This

is in agreement with Eq. 18-2 because, for the conditions stated, dp/dt must be

positive, which means that the density of the fluid (and thus the mass of the

fluid) in the volume element is increasing as time goes on.

If the fluid is incompressible, as we shall henceforth assume, then

Pi — p-i and Eq. 18-1 takes on the simpler form

A\V X
= A->v>.

or Av = constant, (18-3)

The product Av gives the volume flux or flow rate, as it is often called.

Its SI units are m'Vs. Notice that it predicts that in steady incompressible

flow the speed of flow varies inversely with the cross-sectional area,

being larger in narrower parts of the tube. The fact that the product Av
remains constant along a tube of flow allows us to interpret the stream-

line picture somewhat. In a narrow part of the tube the streamlines

must crowd closer together than in a wide part. Hence, as the distance

between streamlines decreases, the fluid speed must increase. There-

fore, we conclude that widely spaced streamlines indicate regions of

low speed and closely spaced streamlines indicate regions of high speed.

We can obtain another interesting result by applying Newton's sec-

ond law of motion to the flow of fluid between P and Q (Fig. 18-4). A
fluid particle at P with speed Vi must be decelerated in the forward

direction in acquiring the smaller forward speed v-> at Q. Hence the fluid

is decelerated in going from /' to Q. The deceleration can come about

luse these foui quantities are functions oi more than mu' variable we have written

the il' in 1 1| IN l as pa it tal derivatives



from a difference in pressure acting on the fluid particle flowing from

P to Q or from the action of gravity. In a horizontal tube of flow the

gravitational force does not change. Hence we can conclude that in

steady horizontal flow the pressure is greatest where the speed is least.

Were you ever in a crowd when it started to push its way through a

small opened door' Outside in the back of the crowd the cross-sectional

area was large, the pressure was great, but the speed of advance rather

small. Through the door of small cross section the pressure was relieved

and the speed of advance gratifyingly increased. This particular "human
fluid" is compressible and viscous and the flow is sometimes turbulent

and rotational.
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Bernoulli's equation is a fundamental relation in fluid mechanics. Like

all equations in fluid mechanics it is not a new principle but is deriv-

able from the basic laws of Newtonian mechanics. We will find it con-

venient to derive it from the work-energy theorem (see Section 7-4), for

it is essentially a statement of the work-energy theorem for fluid flow.

Consider the nonviscous, steady, incompressible flow of a fluid

through the pipeline or tube of flow in Fig. 18-5. The portion of pipe

shown in the figure has a uniform cross section A\ at the left. It is hori-

zontal there at an elevation yi above some reference level. It gradually

widens and rises and at the right has a uniform cross section A 2 . It is

horizontal there at an elevation y2 . Let us concentrate on the portion of

fluid represented by both cross-shading and horizontal shading and call

this fluid the "system." Consider then the motion of the system from
the position shown in (a) to that in [b). At all points in the narrow part

of the pipe the pressure is pi and the speed v-y-, at all points in the wide
portion the pressure is p2 and the speed v>.

The work-energy theorem (see Eq. 7-14) states: The work done by the

18-4
BERNOULLI'S
EQUATION*
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figure 18-5

A portion of fluid (cross-shading and

horizontal shading) moves through

a section of pipeline from the

position shown in (a) to that shown
in (b).

* There are eight Bernoullis listed in the Encyclopedia Brittanica (1 1th ed.). We refer here

to Daniel Bernoulli (1700-1782), perhaps the most renowned member of this famous
family.



resultant force acting on a system is equal to the change in kinetic

energy of the system. In Fig. 18-5 the forces that do work on the system,

assuming that we can neglect viscous forces, are the pressure forces

PiAi and p 2A> that act on the left- and right-hand ends of the system,

respectively, and the force of gravity. As fluid flows through the pipe

the net effect, as a comparison of Figs. 18-5a and b shows, is to raise an

amount of fluid represented by the cross-shaded area in Fig. \8-5a to the

position shown in Fig. 18-5b. The amount of fluid represented by the

horizontal shading is unchanged by the flow.

We can find the work W done on the system by the resultant force as

follows:

1. The work done on the system by the pressure force p tAi is p tAi Al t .

2. The work done on the system by the pressure force p-iA* is —p-iA-i Al>.

Note that it is negative, which means that positive work is done by
the system.

3. The work done on the system by gravity is associated with lifting the

cross-shaded fluid from height y x to height y2 and is —mg[y-i — y x ) in

which m is the mass of fluid in either cross-shaded area. It too is

negative because work is done by the system against the gravita-

tional force.

The work W done on the system by the resultant force is found by
adding these three terms, or

W = p xAi A7i — p>Ao A72 — rng(y-> — y { ).

Now A x A/i(= A* A72 ) is the volume of the cross-shaded fluid element,

which we can write as m/p, in which p is the (constant) fluid density.

Recall that the two fluid elements have the same mass, so that in setting

A i All = A> AI2 we have assumed the fluid to be incompressible. With
this assumption we have

W = [p\ - p->)[mlp) - mg[y, - y,). (18-4d)

The change in kinetic energy of the fluid element is

AK = imv/ - imvi 2
. (18-4b)

From the work-energy theorem (Eq. 7-14) we then have

W = AK

or [pi - p>)[m/p) - mg\yt - y x )
= imv> 2 - imvi 2

,
(18-5a)

which can be rearranged to read

P\ + ipv, 2 + pgy x
= p-> + ipvr + pgy>. [ 1 8-5b)

Since the subscripts 1 and 2 refer to any two locations along the pipe-

line, we can drop the subscripts and write

p + |pv2 + pgy = constant. [18-6]

Equation 18-6 is called Bernoulli's equation for steady, nonviscous, in-

( i impressible flow. It was first presented by Daniel Bernoulli in his

Hydrodynamica in 1738.

Bernoulli's equation is strictly applicable only to steady flow, the

quantities involved being evaluated along a streamline. In our figure the

streamline used is along the axis of the pipeline. If the flow is irrota

tional, however, it can be shown [see Problem 25 for a special case) that

the constant in Eq. 18-6 is the same foi all streamlines.



In a nonviscous incompressible fluid we cannot change the temperature of the

fluid by mechanical means. Hence, Bernoulli's equation, as we stated it, refers

to isothermal (constant temperature) processes. It is possible, however, to

change the temperature of a nonviscous compressible fluid by mechanical

means. We can generalize this equation to include a compressible fluid by add-

ing to the left of Eq. 18-6 a term u, which represents the internal energy per unit

volume of the fluid. This term (and the pressure p) will have a value that de-

pends on the temperature.

If the flow is viscous, forces of a frictional nature act on the fluid so that some
of the work done that appeared as a change in kinetic energy in the nonviscous

case appears now as heat energy in the fluid. We must then write Eq. 18-5a as

(Pi - P-i\[mlp) - mg[y2 - yi) = imv2
2 - imvi 2 + Q

where Q represents the heat energy generated in the viscous flow from point 1

to point 2. In practice, Bernoulli's equation can be modified accordingly by use

of empirical corrections for conversion of mechanical energy to heat energy.

However, if the pipe is smooth and the diameter is large compared to the length,

and if the fluid flows slowly and has a small viscosity, the heat energy gen-

erated is negligible.

Just as the statics of a particle is a special case of particle dynamics,

so fluid statics is a special case of fluid dynamics. It should come as no
surprise, therefore, that the law of pressure change with height in a

fluid at rest is included in Bernoulli's equation as a special case. For let

the fluid be at rest; then Vi = v* — and Eq. 18-5b becomes

or

Pi + pgyi = p-2 + pgy-i

Pt-Pi = -pg{y-2 - yi

which is the same as Eq. 17-3.

In Eq. 18-6 all terms have the dimension of a pressure (check this).

The pressure p + pgh, which would be present even if there were no flow

[v= 0), is called the static pressure; the term ipv2
is called the dynamic

pressure.

Bernoulli's equation can be used to determine fluid speeds by means of

pressure measurements. The principle generally used in such measur-

ing devices is the following: The equation of continuity requires that

the speed of the fluid at a constriction increase; Bernoulli's equation

then shows that the pressure must fall there. That is, for a horizontal

pipe ipv2 + p equals a constant; if v increases and the fluid is incom-
pressible, p must decrease. This result was also deduced from dynamic
considerations in Section 18-3.

18-5
APPLICATIONS OF
BERNOULLI'S
EQUATION AND THE
EQUATION OF
CONTINUITY

This (Fig. 18-6) is a gauge put in a flow pipe to measure the flow speed

of a liquid. A liquid of density p flows through a pipe of cross-sectional

area A. At the throat the area is reduced to a and a manometer tube is

attached, as shown. Let the manometer liquid, such as mercury, have a

density p'. By applying Bernoulli's equation and the equation of con-

tinuity at points 1 and 2, you can show that the speed of flow at A is

2(p' ~ P)gh

p[A 2 - a 2
)

If we want the volume flux or flow rate R, which is the volume of liquid

transported past any point per second, we simply compute

The Venturi Meter

R = vA.



figure 18-6

The Venturi meter, used to measure

the speed of flow of a fluid.

This device (Fig. 18-7) is used to measure the flow speed of a gas. Con-

sider the gas, say air, flowing past the openings at a. These openings are

parallel to the direction of flow and are set far enough back so that the

velocity and pressure outside the openings have the free-stream values.

The pressure in the left arm of the manometer, which is connected to

these openings, is then the static pressure in the gas stream, pa . The
opening of the right arm of the manometer is at right angles to the

stream. The velocity is reduced to zero at b and the gas is stagnant at

that point. The pressure at b is the full ram pressure, pi,. Applying Ber-

noulli's equation to points a and b, we obtain

Pa ipv2
Pb,

where, as shown in the figure, pu is greater than p n . If h is the difference

in height of the liquid in the manometer arms and p is the density of

the manometer liquid, then

pa + p'gh = pb .

Comparing these two equations, we find

Ipv2 = p'gh

or
V p

which gives the gas speed. This device can be calibrated to read v di-

rectly and is then known as an air-speed indicator.

Dynamic lift is the force that acts on a body, such as an airplane wing,

a hydrofoil, or a helicopter rotor, by virtue of its motion through a fluid.

We must distinguish it from static lift, which is the buoyant force that

acts on a balloon or an iceberg in accord with Archimedes' principle

(Section 17-4).

Figure 18-8 shows the streamlines about an airfoil (or wing cross

section) attached to an aircraft.* Let us choose the aircraft as our frame

i
it i cference, as in a wind tunnel experiment, and let us assume that the

air is moving past the wing from right to left.

Bi rnciulli and Newton in Fluid Mechanics," Norm.m I Smith The Physics Teat hei

No-.' i '2.

.ilsn The Flettnei s/ji/i, an article by Albert I Lnstein in Ins book Essays in S< ient e,

Philosophical Library, New York. The Flettnei ship like .1 sailboat derives us motive

power from the wind instead m .1 s.nl n has .1 large ( j lindei that is 1 aused M rotate about

a vertical axis by a small motoi ["he resulting dynamii lift in tins case horizontal]

propi I isel

The Pitot Tube

W
figure 18-7

Cross-sectional diagram of a Pitot

tube.

Dynamic Lift



figure 18-8

Streamlines about an airfoil. The
velocity of the approaching air va is

horizontal. That of the leaving air

V; has a downward component.

Thus, because the airfoil has forced

the air down, the air, from

Newton's third law, must have

forced the airfoil up. This is

represented by the "lift" F.

The angle of attack of the wing causes air to be deflected downward.

From Newton's third law the reaction of this downward force of the

wing on the air is an upward force F, the lift, exerted by the air on the

wing.

The pattern of streamlines is consistent. Above the wing (point 1) the

streamlines are closer together than they are below the wing (point 2).

Thus Vi > v 2 and, from Bernoulli's principle, pi < p>, which must be

true if there is to be a lift.

As our final example let us compute the thrust on a rocket produced by

the escape of its exhaust gases. Consider a chamber (Fig. 18-9) of cross-

sectional area A filled with a gas of density p at a pressure p. Let there

be a small orifice of cross-sectional area A at the bottom of the cham-

ber. We wish to find the speed v with which the gas escapes through the

orifice.

Let us write Bernoulli's equation (Eq. 18-5b) as

p 2 = pg[y-z -yi) + MviPi vy

For a gas the density is so small that we can neglect the variation in

pressure with height in a chamber (see Section 17-3). Hence, if p repre-

sents the pressure p\ in the chamber and p„ represents the atmospheric

pressure p 2 just outside the orifice, we have

Po = ip{v 2 -

or vv
_2(p-po) + v2

, ;is-7)

where v is the speed of the flowing gas inside the chamber and v is the

speed of efflux of the gas through the orifice. Although a gas is com-
pressible and the flow may become turbulent, we can treat the flow as

steady and incompressible for pressure and efflux speeds that are not

too high.

Now let us assume continuity of mass flow (in a rocket engine this

is achieved when the mass of escaping gas equals the mass of gas created

by burning the fuel), so that (for an assumed constant density)

Av = A vu .

If the orifice is very small so that A n « A, then v » v, and we can

neglect v2 compared to v 2 in Eq. 18-7. Hence, the speed of efflux is

V 2(P ~ Po)
(II

Thrust on a Rocket

figure 18-9

Fluid streaming out of a chamber.



If our chamber is the exhaust chamber of a rocket, the thrust on the

rocket (Section 9-7) is v dM/dt. But the mass of gas flowing out in time

dt is dM = pA v dt, so that

dM—r- = VopAoVo pA Vo2 ,

and from Eq. 18-8 the thrust is

2A [p Po). 118-9)

In Newtonian particle mechanics the derivation of the laws of conservation of

linear momentum and angular momentum makes explicit use of Newton's

third law of motion. The internal forces and torques in a mechanical system

cancel one another because of this third law, leaving only the external forces

and torques to contribute to the momenta. In the case of a fluid the internal

forces are represented by the pressure within the fluid. But the very concept of

pressure itself contains Newton's third law implicitly. The force produced by

pressure exerted in one direction across any surface element is equal and oppo-

site to the force exerted in the opposite direction across the same surface ele-

ment. Also, each of these two forces is applied at the same place, namely at the

surface element. Both forces must have the same line of action. Hence, in the

equations for the time rate of change of linear momentum or of angular momen-
tum of a fluid, the internal pressures will cancel out. We can conclude then that

the time rate of change of the total linear momentum in a volume V of moving

fluid is equal to the total external force acting on it. Likewise, the time rate of

change of the total angular momentum in a volume V of moving fluid is equal

to the total external torque acting on it. The conservation laws of linear and

angular momentum follow.

18-6
CONSERVATION OF
MOMENTUM IN FLUID
MECHANICS

In the chapter on gravitation we saw how to summarize the physical

state of affairs near masses by use of a field. Each point in the field can

be regarded as having a vector associated with it, namely g, the gravita-

tional force per unit mass at that point. Or, alternately, we can associate

a scalar quantity with each point in space, namely the gravitational

potential V. We can then draw a surface, called an equipotential surface,

through all points that have the same potential. We draw several such

surfaces, the potential on one differing by a constant amount from that

on the next one, and so on. The gravitational force at any point is then

directed along a line passing through this point perpendicular to these

surfaces, and its magnitude is determined from the rate of change of

potential with distance in this direction, as indicated by the spacing and

orientation of the equipotential surfaces. By drawing in lines of force we
can picture vividly how space is affected by the presence of mass.

Likewise, in fluid dynamics we can summarize the physical state of

affairs within a moving fluid by means of a field of flow. In general, the

field of flow is a vector field. We associate a vector quantity with each

point in space, namely the flow velocity v at that point. For a steady

flow the field of flow is stationary. Of course, even in this case a par-

ticular fluid particle may still have a variable velocity as it moves from

point to point in the field. The field gives the properties of the space

from which we deduce the behavior of particles in that space. If the flow

is irrotational, as well as steady, we call it potential flow. Then the flow

velocity v can be related to a velocity potential i|/, just as in gravitation g

can be related to the gravitational potential V. If we draw in surfaces ol

equal velocity potential .is we drew in surfaces ol equal gravitational

18-7
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potential, we can deduce v from the equipotential flow surfaces just asg

is deduced from the equipotential gravitational surfaces. Hence, a field

for potential flow is analogous to a conservative force field.

A flowing fluid mass can always be divided into tubes of flow. When the flow is

steady, the tubes remain unchanged in shape and the fluid that is at one instant

in a tube remains inside this tube thereafter. We have seen that the flow velocity

inside a tube of flow is parallel to the tube and has a magnitude inversely pro-

portional to the area of the cross section (Eq. 18-1). Let us assign such cross sec-

tions to the tubes that the constant of proportionality is the same for all of them
;

if possible we take this constant to be unity. That is, the volume flux is the same
for all tubes, namely unit flux. Then the magnitude of the flow velocity can be

determined from the areas of the cross sections of the tubes of flow. There is

another procedure equivalent to this which consists of setting up a unit area

perpendicular to the direction of flow and drawing through it just as many
streamlines as the number of units of magnitude of the velocity at that point.

Let us consider some examples of fields of flow. For drawing purposes we con-

sider only two-dimensional examples. In these the flow velocity is the same
at all points on a line perpendicular to the plane at any point.

In Fig. 18-10 we have drawn a homogeneous field of flow. Here all the stream-

lines are parallel and the flow velocity v is the same at all points. We have seen

that there are two equivalent ways of deriving the relative magnitudes of the

flow velocities from such fields of flow: (a) from the widths of the tubes of flow

and [b] from the distances between lines of equal velocity potential. The latter

method applies to steady irrotational flow only. For such flows we draw in the

lines of equal velocity potential as dashed lines.

In Fig. 18-11 we show the field for a uniform rotation (see Problem 18, Chap-

ter 17). Here v is proportional to r. In Fig. 18-12 we draw the field of flow of a

vortex. In this case v is proportional to 1/r (see Problem 29). Notice that both

figure 18-11

(a) Uniform rotational field of flow.

(b) Variation of fluid velocity from
the center.

figure 18-12
(a) Vortical field of flow, (b)

Variation of fluid velocity from the

center.



uniform rotation and vortex motion are represented by circular streamlines but

are entirely different kinds of flow. Obviously, the shapes of the streamlines

give only limited information; their spacing is needed too.

Figure 18-13 represents the field of flow for a source. All streamlines are di-

rected radially outward. The source is a line through the center perpendicular

to the paper emitting a mass per unit time Q. The field of flow around a linear

sink is the same as the source except for the sign of the flow, which is directed

radially inward.

For a linear source and linear sink which have the same strengths, Q and — Q,

and are slightly separated, we obtain the combined field called linear dipole

flow, shown in Fig. 18-14.

As we shall see later the electrostatic field, the magnetic field, and the field

of flow for an electric current are also vector fields. In this connection, the

homogeneous field (Fig. 18-10) corresponds to the electric field of a plane capaci-

tor, the source field or sink field (Fig. 18-13) correspond to the electric field of a

cylindrical capacitor or straight wire of positive or negative charge respectively,

and the linear dipole field (Fig. 18-14) corresponds to the electric field of two
oppositely charged wires. In all these the field of flow is potential flow and the

electric fields are conservative.

The homogeneous field of Fig. 18-10 also represents the magnetic field inside

a solenoid. The vortex field of Fig. 18-12 represents the magnetic field around a

straight current-carrying wire. This last is an example of a field that is rota-

tional (about the vortex axis).

Because of these analogies between fluid and electromagnetic fields, we can

often determine a field of flow, which is difficult to calculate by present mathe-

matical methods, by experimental measurements on appropriate electrical

devices.

As we have seen throughout this chapter, the basic field ideas and conserva-

tion principles find application in many areas of physics. We shall encounter

them many times again.

(a) (b)

figure 18-13

(a) Flow from a linear source, (b) Fluid flow map of the same. The map in

tins tigurc is made by allowing water to flow between a horizontal layer of

plate glass and a horizontal layer of plaster. In (b) the water comes up

through a hole in the center ol the plaster and (lows out toward the edges.

The direction ol the flow is made visible by sprinkling the plaster with

issium permanganate crystals which dissolve and coloi the watei .i

deep purple I he fluid (low map was made and photographed In Professoi

\ 1 1 Moore al the University of Michigan and is taken from Introduction

to Electric Fields, by W. E. Rogers McGrau Hill Book Co 1954



(b)

1. Briefly describe what is meant by each of the following and illustrate with

an example: [a) steady fluid flow
;

{b) nonsteady fluid flow
;

(c) rotational

fluid flow; [d] irrotational fluid flow
;

(e) compressible fluid flow
; [f] incom-

pressible fluid flow; (g) viscous fluid flow
;

\h) nonviscous fluid flow.

2. Can you assign a coefficient of static friction between two surfaces, one of

which is a fluid surface'

3. It is found that liquid will flow faster and more smoothly from a sealed can

when two holes are punctured in the can than when one hole is made. Ex-

plain.

4. List all the assumptions made in deriving Bernoulli's equation (Eq. 18-6).

5. Describe the forces acting on an element of fluid as it flows through a pipe

of nonuniform cross section.

6. In a lecture demonstration a ping-pong ball is kept in midair by a vertical

jet of air. Is the equilibrium stable, unstable, or neutral' Explain.

7. The height of the liquid in the standpipes indicates that the pressure drops

along the channel, even though the channel has a uniform cross section and
the flowing liquid is incompressible (Fig. 18-15). Explain.

8. The taller the chimney the better the draft taking the smoke out of the fire-

place. Explain. Why doesn't the smoke pour into the room containing the

fireplace-

9. [a] Explain how a pitcher can make a baseball curve to his right or left' Can
we justify applying Bernoulli's equation to such a spinning baseball' (See

the Smith reference on p. 392 for an explanation.) [b] Why is it easier to

throw a curve with a tennis ball than with a baseball'

10. Not only a ball with a rough surface but also a smooth ball can be made to

curve when thrown, but these balls will curve in opposite directions. Why'
(See "Effect of Spin and Speed on the Curve of a Baseball; and the Magnus
Effect for Smooth Spheres" by Lyman

J. Briggs, in American Journal of

Physics, November 1959.)

11. Two rowboats moving parallel to one another in the same direction are

pulled toward one another. Two automobiles moving parallel are also pulled

together. Explain such phenomena on the basis of Bernoulli's equation.

12. In building "skyscrapers," what forces produced by the movement of air

must be counteracted' How is this done' (See "The Wind Bracing of Build-

ings" by Carl W. Condit in Scientific American, February 1974.)

13. Can the action of a parachute in retarding free fall be explained by Ber-

noulli's equation-'

14. Liquid is flowing inside a horizontal pipe which has a constriction along its

length. Vertical tube manometers are attached at both the wide portion and
the narrow portion of the pipe. If a stopcock at the exit end is closed, will

the liquid in the manometer tubes rise or fall' Explain.

figure 18-14

(a) Linear dipole flow. The source is

on the left, the sink on the right.

(b) A fluid flow map of the same.

(The fluid flow map was made and

photographed by Professor A. D.

Moore at the University of

Michigan, and is taken from

Introduction to Electric Fields, by

W. E. Rogers, McGraw-Hill Book

Co., 1954.)
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figure 18- IS
Question 7



15. A stream of water from a faucet becomes narrower as it falls. Explain.

16. Can you explain why water flows in a continuous stream down a vertical

pipe, whereas it breaks into drops when falling freely:

17. How does the flush toilet work" Really. (See Flushed with Pride: The Story

of Thomas Crapper, by W. Reyburn, Englewood Cliffs, N.J.: Prentice-Hall,

1969.)

18. Can you explain why an object falling from a great height reaches a steady

terminal speed"

19. Bernoulli's equation (Eq. 18-6) is a statement of energy conservation for

fluid motion. In connection with the Venturi meter (p. 391) can you see a

formal relationship to energy changes occurring in a roller coaster when it

dips down into a valley and climbs up the other side-

20. Sometimes people remove letters from envelopes by cutting a sliver from a

narrow end, holding it firmly and blowing toward it. Does Bernoulli's equa-

tion play a role in this enterprise" Explain.

21. On takeoff would it be better for an airplane to move into the wind or with

the wind" On landing . . .

"

22. Does the difference in pressure between the lower and upper surfaces of an

airplane wing depend on the altitude of the moving plane" Explain.

23. The accumulation of ice on an airplane wing may change its shape in such

a way that its lift is greatly reduced. Explain.

24. How is an airplane able to fly upside down"

25. An aeronautical engineer claims that he can design a helicopter that will

make a "soft" landing without causing a "down draft." Explain whether or

not you think this is possible and why.

26. "The characteristic banana-like shape of most returning boomerangs has

hardly anything to do with their ability to return. . . . The essential thing is

the cross section of the arms, which should be more convex on one side than

on the other, like the wing profile of an airplane." (From, "The Aerodynam-
ics of Boomerangs" by Felix Hess, in Scientific American, November
1968.) Explain.

27. What powers the flight of soaring birds" (See "The Soaring Flight of Birds"

by C. D. Cone, Jr. in Scientific American, April 1962.)

28. Why does the factor "2" appear in Eq. 18-9, rather than "1"? One might

naively expect that the thrust would simply be the pressure difference times

the area, that is, A»[p — p„).

29. The destructive effect of a tornado (twister) is greater near the center of the

disturbance than near the edge. Explain.

30. When a stopper is pulled from a filled basin, the water drains out while cir-

culating like a small whirlpool. The angular velocity of a fluid element

about a vertical axis through the orifice appears to be greatest near the

orifice. Explain.

31. Is it true that in bathtubs in the northern hemisphere the water drains out

with a counterclockwise rotation and in those in the southern hemisphere

with a clockwise rotation" If so, explain and predict what would happen at

the equator. (See "Bath-Tub Vortex" by Ascher H. Shapiro in Nature. De-

cember 15, 1962.)

32. The longer the board and the shallower the water, the farther will a surf

board skim across the water. Explain. (See "The Surf Skimmer" by R. D.

Edge, in American journal of Physics, luly 1968.)

33. When poured from a teapot water has a tendency to run along the underside

(it the spout. Explain. (See "The Teapot Effect ... a Problem" by Markus
Reiner in Physh Today, September 1956.)

Prairie dogs live in large colonies in complex interconnected burrow sys-

tems. They face the problem oi maintaining a sufficient ah suppl) to theii

burrows t" avoid suffocation, They avoid tins In building conical earth

mounds about some oi theii many burrow openings fa terms oi Bernoulli's



35.

36.

equation (Eq. 18-6) how does this air conditioning scheme work" Note that

because of viscous forces the wind speed over the prairie is less close to

ground level than it is even a few inches higher up. (See New Scientist,

p. 191, 27 January 1972.)

Use the criterion of the paddle wheel (Fig. 18-1) to determine which flow

fields (Figs. 18-10 through 18-14) are rotational.

In steady flow the velocity vector v at any point is constant. Can there then

be accelerated motion of the fluid particles? Discuss.

SECTION 18-3

1. A garden hose having an internal diameter of 0.75 in. is connected to a lawn

sprinkler that consists of an enclosure with 24 holes, each 0.050 in. in

diameter. If the water in the hose has a speed of 3.0 ft/s, at what speed does

it leave the sprinkler holes? Answer: 28 ft/s.

2. How much work is done by pressure in forcing 50 ft
3 (1.4 m3

) of water

through a 0.50-in. (13-mm) pipe if the difference in pressure at the two ends

of the pipe is 15 lb/in. 2 (1.0 x 105 Pa)?

3. Water flows continuously from the outlet of a faucet of internal diameter d

at an initial speed v t) . Determine the diameter of the stream in terms of the

distance h below the outlet. (Neglect air resistance and assume droplets are

not formed.)

problems
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Answer: d
Vo

VV„2 + 2ghi

4. Water is pumped steadily out of a flooded basement at a speed of 5.0 m/s

through a uniform hose of radius 1.0 cm. The hose passes out through a

window 3.0 m above the water line. How much power is supplied by the

pump?

SECTION 18-4

5. A hollow tube has a disc DD attached to its end. When air is blown through

the tube, the disc attracts the card CC. Let the area of the card be A and let

v be the average airspeed between CC and DD (Fig. 18-16); calculate the

resultant upward force on CC. Neglect the card's weight.

Answer: jpv2A, where p is the density of air.

6. In a horizontal oil pipeline of constant cross-sectional area the pressure

decrease between two points 1000 ft apart is 5.0 lb/in. 2
. What is the energy

loss per cubic foot of oil per unit distance?

7. Figure 18-17 shows liquid discharging from an orifice in a large tank at a

distance h below the water level, [a] Apply Bernoulli's equation to a stream-

line connecting points 1, 2, and 3, and show that the speed of efflux is

v=Vlgh.

This is known as Torricelli's law. [b] If the orifice were curved directly up-

figure 18-16

Problem 5

figure 18-17
Problem 7



ward, how high would the liquid stream rise? [c] How would viscosity or

turbulence affect the analysis' Answer: [b] It would rise to height h.

A tank is filled with water to a height H. A hole is punched in one of the

walls at a depth h below the water surface (Fig. 18-18). (a) Show that the dis-

tance x from the foot of the wall at which the stream strikes the floor is given

by x = 2\/h{H — h). [b] Could a hole be punched at another depth so that

this second stream would have the same range" If so, at what depth"

figure 18-18

Problem 8

9. The upper surface of water in a standpipe is a height H above level ground.

[a] At what depth h should a small hole be put to make the emerging hori-

zontal water stream strike the ground at the maximum distance from the

base of the standpipe : \b) What is this maximum distance?

Answer: (a) H/2. [b] H.

10. (a) Consider the stagnant air at the front edge of a wing and the air rushing

over the wing surface at a speed v. Assume pressure at the leading edge to

be approximately atmospheric and find the greatest value possible for v in

streamline flow
;
assume air is incompressible and use Bernoulli's equation.

Take the density of air to be 1.2 x 10 3 g/cml [b] How does this compare

with the speed of sound of 770 mi/h? Can you explain the difference? Why
should there be any connection between these quantities?

11. If a person blows air with a speed of 15 m/s across the top of one side of a

U-tube containing water, what will be the difference between the water

levels on the two sides? Assume the density of air is 1.2 kg/m3
.

Answer: 1.4 cm.

12. A siphon is a device for removing liquid from a container that cannot be

tipped. It operates as shown in Fig. 18-19. The tube must initially be filled,

but once this has been done the liquid will flow until its level drops below

the tube opening at A. The liquid has density p and negligible viscosity,

la) With what speed does the liquid emerge from the tube at C? [b] What is

the pressure in the liquid at the topmost point B- (c) What is the greatest

possible height h, that a siphon may lift water?

> t h2

figure 18-1»

Problem 12

SECTION 18-5

13. A Pitot tube is mounted on an airplane wing to determine the speed of

the plane relative to the air, which is at a temperature of 0°C. The tube

contains alcohol and indicates a level difference of 26 cm. What is the

plane's speed relative to the air : The density of alcohol is 0.81 x 10 3 kg/m 3
.

Answer 200 km/h.

14. Models of torpedoes are sometimes tested in a horizontal pipe ot flowing

water, much as a wind tunnel is used to test model airplanes. Considei a

circular pipe ol interna] diametei 10 in. and a torpedo model, aligned along

the axis of the pipe with a diametei ol 2.0 in. The torpedo is to be tested

with vvatei Sowing past it at 8.0 ft/s. (a) With what speed must the watei



flow in the unconstricted part of the pipe? [b] What will the pressure dif-

ference be between the constricted and unconstricted parts of the pipe?

15. Water is moving with a speed of 5.0 m/s through a pipe with a cross-

sectional area of 4.0 cm2
. The water gradually descends 10 m as the pipe

increases in area to 8.0 cm2
, [a] What is the speed of flow at the lower

level? [b] If the pressure at the upper level is 1.50 x 10 5 Pa, what is the

pressure at the lower level- Answer: [a] 2.5 m/s. \b) 2.6 x 105 Pa.

16. Suppose that two tanks, 1 and 2, each with a large opening at the top, con-

tain different liquids. A small hole is made in the side of each tank at the

same depth h below the liquid surface, but the hole in tank 1 has half the

cross-sectional area of the hole in tank 2. [a] What is the ratio p\lp-i of

the densities of the fluids if it is observed that the mass flux is the same
for the two holes' (b) What is the ratio of the flow rates (volume flux) from

the two tanks? (c) To what height above the hole in the second tank should

fluid be added or drained to equalize the flow rates?

17. A small plane has a wing area (each wing) of 100 ft
2 (9.3 m2

). At a certain

air speed, air flows over the upper wing surface at 160 ft/s (49 m/s) and over

the lower wing surface at 130 ft/s (40 m/s). What is the weight of the plane?

Assume that the plane travels at constant velocity and that the lift effects

associated with the fuselage and tail assembly are small. Discuss the lift

if the plane, flying at the same air speed, is [a) in level flight, [b] climbing

at 15°, and (c) descending at 15°. Take the density of air to be 2.33 x 10~3

slug/ft3 (1.2 kg/m3
).

Answer: 2000 lb (8900 N). Lift is the same in all three cases.

18. If the speed of air flow past the lower surface of a wing is 350 ft/s, what
speed of flow over the upper surface will give a lift of 20.0 lb/in. 2

? Take
the density of air to be 2.33 x 10~ 3 slug/ft3 .

19. Consider a uniform U-tube with a diaphragm at the bottom and filled with

a liquid to different heights in each arm (see Fig. 18-20). Now imagine that

the diaphragm is punctured so that the liquid flows from left to right, [a]

Show that application of Bernoulli's principle to points 1 and 3 leads to a

contradiction, [b] Explain why Bernoulli's principle is not applicable here.

[Hint: Is the flow steady?)

20. Calculate the speed of efflux of a liquid from an opening in a tank, taking

into account the velocity of the top surface of the liquid, as follows, [a]

Show, from Bernoulli's equation, that

21

22.

23.

Vn2 2gh

where v is the speed of the top surface, [b] Then consider the flow as one

big tube of flow and obtain v/v from the equation of continuity, so that

v = V2glz/[1 -[AolAY]

where A is the tube cross section at the top and A H is the tube cross section

at the opening, (c) Then show that if the hole is small compared to the area

of the surface,

v = Vlg~h [1 +MAJA) 2
].

By applying Bernoulli's equation and the equation of continuity to points

1 and 2 of Fig. 18-6, show that the speed of flow at the entrance is

v = a
2(p' - p)gh

p[A*

A Venturi meter has a pipe diameter of 10 in. and a throat diameter of 5.0 in.

If the water pressure in the pipe is 8.0 lb/in. 2 and in the throat is 6.0 lb/in. 2
,

determine the rate of flow of water in ft
3/s (volume flux).

Consider the Venturi tube of Fig. 18-6 without the manometer. Let A equal

5a. Suppose the pressure at A is 2.0 atm. (a) Compute the values of v at A
and v' at a that would make the pressure p' at a equal to zero, [b] Compute
the corresponding volume flow rate if the diameter at A is 5.0 cm. The

•a
So

O
to
t-i

t-n

©
®

figure 18-

Problem 19



phenomenon at a when p' falls to nearly zero is known as cavitation. The
water vaporizes into small bubbles.

Answer: [a] 20 m/s. [b] 8.0 x 10"3 m3
/s.

SECTION 18-6

24. [a) Consider a stream of fluid of density p with speed vt passing abruptly

from a cylindrical pipe of cross-sectional area a\ into a wider cylindrical

pipe of cross-sectional area a-2 (see Fig. 18-21). The jet will mix with the

surrounding fluid and, after the mixing, will flow on almost uniformly

with an average speed v2 . Without referring to the details of the mixing,

use momentum ideas to show that the increase in pressure due to the mix-

ing is approximately

p>- Pi = pv2 [vi - Vz).

[b] Show from Bernoulli's principle that in a gradually widening pipe we
would get

Pt ~Pi = ipWi 2 - v.,
2

).

(c) Find the loss of pressure due to the abrupt enlargement of the pipe.

Can you draw an analogy with elastic and inelastic collisions in particle

mechanics?

'•iO Pi p2

a\

figure 18-21

Problem 24

°2

SECTION 18-7

25. Show that the constant in Bernoulli's equation (Eq. 18-6) is the same for

all streamlines in the case of the steady, irrotational flow of Fig. 18-10.

26. A force field is conservative if § F -ds = 0. The circle on the integration

sign means that the integration is to be taken along a closed curve (a round

trip) in the field. A flow is a potential flow (hence irrotational) if f v • ds =

for every closed path in the field.

Using this criterion, show that the fields of Figs. \a) 18-10 and \b) 18-13

are fields of potential flow.

27. The so-called Poiseuille field of flow is shown in Fig. 18-22. The spacing

of the streamlines indicates that although the motion is rectilinear, there

is a velocity gradient in the transverse direction. Show that such a flow is

rotational.

28. In flows that are sharply curved centrifugal effects are appreciable. Con-

sider an element of fluid which is moving with speed v along a streamline

of a curved flow in a horizontal plane (Fig. 18-23).

[a] Show that dpldr = pv2
lr, so that the pressure increases by an amount

pv2/r per unit distance perpendicular to the streamline as we go from the

concave to the convex side ot the streamline

(b) Then use Bernoulli's equation and this result to show that vr equals

a constant, so that speeds increase toward the center of curvature Nunc
Streamlines that are uniformly spaced in a straight pipe will be crowded

tow.ml the innei wall of a curved passage and widely spaced toward the

miter wall. 1 his problem should be compared to Problem is ot Chapter l
7

figure 18-22

Problem 27



in which the curved motion is produced by rotating a container. There the

speed varied directly with r, but here it varies inversely.

(c) Show that this flow is irrotational.

29. Before Newton proposed his theory of gravitation, a model of planetary

motion proposed by Rene Descartes was widely accepted. In Descartes'

model the planets were caught in and dragged along by a whirlpool of ether

particles centered around the sun. Newton showed that this vortex scheme
contradicted observations, for: [a] The speed of an ether particle in the

vortex varies inversely as its distance from the sun. [b] The period of revo-

lution of such a particle varies directly as the square of its distance from

the sun. (c) This result contradicts Kepler's third law. Prove [a), [b], and (c).

(
p + dp

'>y

4.

e
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figure 18-23
Problem 28
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waves in

elastic media
Wave motion appears in almost every branch of physics. We are all 19-1
familiar with water waves. There are also sound waves, as well as light MECHANICAL WAVES
waves, radio waves, and other electromagnetic waves. One formulation

of the mechanics of atoms and subatomic particles is called wave
mechanics. Clearly the properties and behavior of waves are very im-

portant in physics.

In this chapter and the next we confine our attention to waves in de-

formable or elastic media. These waves, among which ordinary sound

waves in air are one example, might be called mechanical waves. They
originate in the displacement of some portion of an elastic medium
from its normal position, causing it to oscillate about an equilibrium

position. Because of the elastic properties of the medium, the distur-

bance is transmitted from one layer to the next. This disturbance, or

wave, consequently progresses through the medium. Note that the

medium itself does not move as a whole along with the wave motion;

the various parts of the medium oscillate only in limited paths. For ex-

ample, in water waves small floating objects like corks show that the

actual motion of various parts of the water is slightly up and down and

back and forth. Yet the water waves move steadily along the water. As
they reach floating objects they set them in motion, thus transferring

energy to them.* Energy can be transmitted over considerable distances

by wave motion. The energy in the waves is the kinetic and potential

energy of the matter, but the transmission ot the energy comes about by

its being passed along from one part of the matter to the next not by any

long-range motion of the matter itself. Mechanical waves are charac-

See OceanWaves by Willard Bascora Scientific American August 1959.

KM



terized by the transport of energy through matter by the motion of a §
disturbance in that matter without any corresponding bulk motion of

the matter itself

It is necessary to have a material medium to transmit mechanical g
waves. We do not need such a medium, however, to transmit electro- °"

magnetic waves, light passing freely, for example, through the near §
vacuum of space from the stars. The properties of the medium that de- ^

termine the speed of a wave through that medium, as we will see in <

Section 19-5, are its inertia and its elasticity. All material media, in-

cluding, say, air, water, and steel, possess these properties and can trans

mit mechanical waves. It is the elasticity that gives rise to the restoring

forces on any part of the medium displaced from its equilibrium posi

tion
;

it is the inertia that tells us how this displaced portion of the £

medium will respond to these restoring forces. Together these two

factors determine the wave speed.

In listing water waves, light waves, and sound waves as examples of 19-2
wave motion, we are classifying waves according to their broad physical TYPES OF WA VES
properties. Waves can be classified in other ways.

We can distinguish different kinds of mechanical waves by consider-

ing how the motions of the particles of matter are related to the direc-

tion of propagation of the waves themselves. If the motions of the

matter particles conveying the wave are perpendicular to the direction

of propagation of the wave itself, we then have a transverse wave. For

example, when a vertical string under tension is set oscillating back and

forth at one end, a transverse wave travels down the string; the dis-

turbance moves along the string but the string particles vibrate at right

angles to the direction of propagation of the disturbance (Fig. 19- la).

Light waves are not mechanical waves. The disturbance that travels

along is not a motion of matter but an electromagnetic field (Chapter

41). But because the electric and magnetic fields are perpendicular to

the direction of propagation, light waves are also transverse waves.

If, however, the motion of the particles conveying a mechanical wave
is back and forth along the direction of propagation, we then have a

longitudinal wave. For example, when a vertical spring under tension

is set oscillating up and down at one end, a longitudinal wave travels

along the spring; the coils vibrate back and forth in the direction in

which the disturbance travels along the spring (Fig. 19-lb). Sound waves
in a gas are longitudinal waves. We shall discuss them in greater detail

in Chapter 20.

Some waves are neither purely longitudinal nor purely transverse.

For example, in waves on the surface of water the particles of water

move both up and down and back and forth, tracing out elliptical paths

as the water waves move by.

Waves can also be classified as one-, two-, and three-dimensional

waves, according to the number of dimensions in which they propagate

energy. Waves moving along the string or the spring of Fig. 19-1 are one-

dimensional. Surface waves or ripples on water, caused by dropping a

pebble into a quiet pond, are two-dimensional. Sound waves and light

waves which emanate radially from a small source are three-dimen-

sional.

Waves may be classified further according to the behavior of a particle

of the matter conveying the wave during the course of time the wave
propagates. For example, we can produce a pulse traveling down a



figure 19-1

(a) In a transverse wave the

particles of the medium (stretched

string) vibrate at right angles to the

direction in which the wave itself

is propagated, (b) In a longitudinal

wave the particles of the medium
(stretched spring) vibrate in the

same direction as that in which the

wave itself is propagated.

(a)

I

(b)

stretched string by applying a single sidewise movement at its end. Each

particle remains at rest until the pulse reaches it, then it moves during a

short time, and then it again remains at rest. If we continue to move the

end of the string back and forth (Fig. 19- la), we produce a train of waves
traveling along the string. If our motion is periodic, we produce a peri-

odic train of waves in which each particle of the string has a periodic

motion. The simplest special case of a periodic wave is a simple har-

monic wave which gives each particle a simple harmonic motion.

Consider a three-dimensional pulse. We can draw a surface through

all points undergoing a similar disturbance at a given instant. As time

goes on, this surface moves along showing how the pulse propagates.

We can draw similar surfaces for subsequent pulses. For a periodic wave
we can generalize the idea by drawing in surfaces, all of whose points

.m in the same phase of motion. These surfaces are called wa\ efronts.

If the medium is homogeneous and isotropic, the direction ot propaga-



tion is always at right angles to the wavefront. A line normal to the

wavefronts, indicating the direction of motion of the waves, is called

a ray.

Wavefronts can have many shapes. If the disturbances are propa-

gated in a single direction, the waves are called plane waves. At a given

instant conditions are the same everywhere on any plane perpendicular

to the direction of propagation. The wavefronts are plane and the rays

are parallel straight lines (Fig. \9-2a). Another simple case is that of

spherical waves. Here the disturbance is propagated out in all directions

from a point source of waves. The wavefronts are spheres and the rays

are radial lines leaving the point source in all directions (Fig. \9-2b). Far

from the source the spherical wavefronts have very small curvature, and

over a limited region they can often be regarded as plane. Of course,

there are many other possible shapes for wavefronts.

JJJJJJJJ-

(a)

figure 19-2

(a) A plane wave. The planes represent wavefronts spaced a wavelength

apart, and the arrows represent rays, (b) A spherical wave. The rays are

radial and the wavefronts, spaced a wavelength apart, from spherical shells.

Far out from the source, however, small portions of the wavefronts become
nearly plane.

We shall refer to all these wave types as we progress through the

wave phenomena of physics. In this chapter we often use the transverse

wave in a string to illustrate the general properties of waves. In the next

chapter we shall see the consequences of these properties for sound, a

longitudinal mechanical wave. Later in the text we will discuss the

properties of nonmechanical waves such as light waves.

Let us consider a long string stretched in the x-direction along which a

transverse wave is traveling. At some instant of time, say t — 0, the

shape of the string can be represented by

fix) t = 0, 119-11

where y is the transverse displacement of the string at the position x. In

Fig. 19-3fl we show a possible waveform (a pulse) on the string at t = 0.

Experiment shows that as time goes on such a wave travels along the

string without changing its form, provided internal frictional losses are

small enough. At some time t later the wave has traveled a distance vt

to the right, where v is magnitude of the wave velocity, assumed con-

stant. The equation of the curve at the time t is therefore

y = f[x-vt) t=t. (19-2)

This gives us the same waveform about the point x = vt at time t as we

19-3
TRAVELING WAVES



figure 19-3

(a) The shape of a stretched string

lin this case a pulse) at t = 0.

(b) At a later time t the pulse has

traveled to the right a distance

x= vt.

had about x — at the time £ = (Fig. \9-3b). Equation 19-2 is the gen-

eral equation representing a wave of any shape traveling to the right. To
describe a particular shape we must specify exactly what the function

fis*

Let us look more carefully at this equation. If we wish to follow a par-

ticular part |or phase) of the wave as times goes on, then in the equation

we look at a particular value of y (say, the top of the pulse just de-

scribed). Mathematically this means we look at how x changes with t

when (x — vt) has some particular fixed value. We see at once that as t

increases x must increase in order to keep (x — vt) fixed. Hence, Eq. 19-2

does in fact represent a wave traveling to the right (increasing x as time

goes on). If we wished to represent a wave traveling to the left, we
would write

y = f[x + vt), [19-3)

for here the position x of some fixed phase (x+ vt) of the wave decreases

as time goes on. The velocity of a particular phase of the wave is easily

obtained. For a particular phase of a wave traveling to the right we re-

quire that

x — vt — constant.

Then differentiation with respect to time gives

dx
dt
-v=0 or

dx

dt
19-4)

so that v is really the phase velocity of the wave. For a wave traveling to

the left we obtain —v, in the same way, as its phase velocity.t

The general equation of a wave can be interpreted further. Note that

for any fixed value of the time t the equation gives y as a function of x.

This defines a curve, and this curve represents the actual shape of the

string at this chosen time. It gives us a snapshot of the wave at this time.

Suppose, on the other hand, we wish to focus our attention on one point

of the string, that is, a fixed value of x. Then the equation gives us y as

a function of the time t. This describes how the transverse position of

this point on the string changes with time.

• When we say that "y is a function of [x 1 1) we mean that the variables x and I occui

only in the combination x — vt. For example, sin k[x - vt). Log (x vt\ and \ vt]s are

functions oi x vt, but x2 — vt* is not.

I

in disturbances that can be represented as a group oi waves, the energy ma) be trans

ported with a velo< it) different hum the phase velocit) of an> individual wave rhis gioup

velocity will I" considered m Chapter 4] in connection with electromagnetic waves

Until then whenevei we use the term wave velocity we mean the phase velocity oi the

wave.



The argument just presented holds for longitudinal waves as well as

for transverse waves. The analogous longitudinal example is that of a

long straight tube of gas whose axis is taken as the x-axis, and the wave

or pulse is a pressure change traveling along the tube. Then the same
reasoning leads us to an equation, having the form of Eqs. 19-2 and 19-3,

which gives the pressure variations with time at all points of the tube.

(See Section 20-3.)

Let us now consider a particular waveform, whose importance will

soon become clear. Suppose that at the time t = we have a wavetrain

along the string given by

2tt
y = ym sin— x. 119-5)

The wave shape is a sine curve (Fig. 19-4). The maximum displacement

ym is the amplitude of the sine curve. The value of the transverse dis-

placement y is the same at x as it is at x + X, x + 2X, etc. The symbol X is

called the wavelength of the wavetrain and represents the distance

between two adjacent points in the wave having the same phase. As
times goes on let the wave travel to the right with a phase velocity v.

Hence, the equation of the wave at the time r is

. 2tt,
,y = ym sin— (x - vt). 119-6)

Notice that this has the form required for a traveling wave (Eq. 19-2).

3

s
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figure 19-4

At t = 0, the string has a shape

y = ym sin lirxlk (solid line). At a

later time t the sine wave has

moved to the right a distance

x = vt, and the string has a shape

given by y = y,„ sin 2tt[x — vt)/\.

The period T is the time required for the wave to travel a distance of

one wavelength X, so that

X=vT. (19-7)

Putting this relation into the equation of the wave, we obtain

y = y,„ sin 2tt (19-8)

From this form it is clear that y, at any given time, has the same value at

x + X, x + 2X, etc., as it does at x, and that y, at any given position, has
the same value at the time t + T, t + IT, etc., as it does at the time t.

To reduce Eq. 19-8 to a more compact form, we define two quanti-

ties, the wave number k and the angular frequency <o (see Eq. 15-12).

They are given by

k =
2tt

and (X)

277

T
' ;i9-9)

In terms of these quantities, the equation of a sine wave traveling to the



right ipositive x-direction) is

y = ym sin [kx — <at). [19- 10a)

For a sine wave traveling to the left (negative x-direction), we have

y = ym sin [kx + at). (19-10b)

Comparing Eqs. 19-7 and 19-9, we see that the phase velocity v of the

wave is given by

A.

T
CO

F ,19-11)

In the traveling waves of Eqs. 19- 10a and 19- 10b we have assumed
that the displacement y is zero at the position x = at the time t = 0.

This, of course, need not be the case. The general expression for a sinus-

oidal wavetrain traveling to the right is

y = y,„ sin {kx — wt — </>),

where 4> is called the phase constant. For example, if 4> = —90°, the dis-

placement y at x and r = is y,„. This particular example is

y = y,» cos [kx — a>r),

for the cosine function is displaced by 90° from the sine function.

If we fix our attention on a given point of the string, say x = ir/k, the

displacement y at that point can be written* as

y = ym sin [wt + (f>).

This is similar to Eq. 15-29 for simple harmonic motion. Hence, any par-

ticular element of the string undergoes simple harmonic motion about

its equilibrium position as this wavetrain travels along the string.

It is an experimental fact that for many kinds of waves two or more
waves can traverse the same space independently of one another. The
fact that waves act independently of one another means that the dis-

placement of any particle at a given time is simply the sum of the

displacements that the individual waves alone would give it. This pro-

cess of vector addition of the displacements of a particle is called super-

position. For example, radio waves of many frequencies pass through a

radio antenna; the electric currents set up in the antenna by the super-

posed action of all these waves are very complex. Nevertheless, we can

still tune to a particular station, the signal that we receive from it being

in principle the same as that which we would receive if all other stations

were to stop broadcasting. Likewise, in sound we can listen to notes

played by individual instruments in an orchestra, even though the

sound wave reaching our ears from the full orchestra is very complex.

For waves in deformable media the superposition principle holds

whenever the mathematical relation between the deformation and the

restoring force is one of simple proportionality. Such a relation is ex-

pressed mathematically by a linear equation. For electromagnetic waves
the superposition principle holds because the mathematical relations

between the electric and magnetic fields are linear.

I he superposition prin< iple seems so obvious that it is worthwhile to poinl out

th.it it tines not always hold. Superposition fails when the equations governing

19-4
THE SUPERPOSITION
PRINCIPLE
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wave motion are not linear. Physically this happens when the wave disturbance

is relatively large and the ordinary linear laws of mechanical action no longer

hold. For example, beyond the elastic limit Hooke's law no longer holds and the

linear relation F = —kx can no longer be used.

As for sound, violent explosions create shock waves. Although shock waves

are longitudinal elastic waves in air, they behave differently from ordinary

sound waves. The equation governing their propagation is quadratic, and super-

position does not hold. With two very loud notes the ear hears something more

than just the two individual notes. Those familiar with high-fidelity apparatus

will know that "intermodulation distortion" between two tones arises when the

system fails to combine the tones linearly, and that this distortion is more ap-

parent when the amplitude of the tones is high. A more obvious physical

example is water waves. Ripples cannot travel independently across breakers as

they can across gentle swells.

The importance of the superposition principle physically is that,

where it holds, it makes it possible to analyze a complicated wave mo-
tion as a combination of simple waves. In fact, as was shown by the

French mathematician f. Fourier (1768-1830), all that we need to build

up the most general form of periodic wave are simple harmonic waves.

Fourier showed that any periodic motion of a particle can be represented

as a combination of simple harmonic motions. For example, if y(t) repre-

sents the motion of a source of waves having a period T, we can analyze

y[t) as follows:

y[t) = A + Ai sin cot + A 2 sin 2u>t + A 3 sin 3o)t + • • •

+ Bi cos (at + Bo cos 2a)t + B3 cos 3(ot + • •
•

where w = litIT. This expression is called a Fourier series. The A's and

B's are constants which have definite values for any particular periodic

motion y[t). (See Fig. 19-5, for example.) If the motion is not periodic, as

figure 19-5

(a) The dashed line is a sawtooth

wave commonly encountered in

electronics. It can be written

y[t) = (a>/27r) t - | for < t < 2tt7w,

as y[t) = (to/27r) t - | for 2t7-/w < t <
47i7to, etc. The Fourier series for this

function is y[t) = —sin cot — i sin

2tot — i sin 3wt — . . . . The solid

line is the sum of the first six terms

of this series and can be seen to

approximate the sawtooth quite

closely, except for overshooting near

the discontinuities. As more terms

of the series are included, the

approximation becomes better and

better, (b) Here are shown the first

six terms of the Fourier series

which, when added together, yield

the solid curve in (a).

— sin wt



a pulse, the sum is replaced by an integral — the so-called Fourier inte-

gral. Hence, any motion of a source of waves can be represented in terms

of simple harmonic motions. Because the motion of the source creates

the waves, it should come as no surprise that the waves themselves can

be analyzed as combinations of simple harmonic waves. Herein lies the

importance of simple harmonic motion and simple harmonic waves.

When the elasticity of the medium is such that (for mechanical waves) Hooke's

law is not exactly obeyed, then a wave pulse produced at the end of a stretched

string may change its shape as it travels along the string. Although each of the

component harmonic waves travels without changing its shape, the speed of

each component is now different for each frequency (or wavelength). This phe-

nomena is called dispersion and the medium is said to be dispersive for the

wave type in question. As a result the pulse shape can change and the pulse

speed may depend on the details of its initial shape. Examples of nondispersive

situations are mechanical waves propagated along an ideal (perfectly flexible)

stretched string and electromagnetic waves (including light) propagated through

a vacuum. Examples of dispersive situations are ocean waves and light waves

propagated through a transparent medium such as glass.

Another way in which the wave pulse may change its shape is by loss of

mechanical energy to the medium or its surroundings; for example, by air re-

sistance, viscosity, or internal friction. Then the amplitude of the wave de-

creases with time and the wave is said to be attenuated.

For the moment, we will assume that the medium is nondispersive and that

there is no dissipation of energy as the wave travels through the medium.

Given the characteristics of the medium it should be possible to calcu- 19-5
late the wave speed from the basic principles of Newtonian mechanics. WAVE SPEED
In this section we continue to focus our attention on transverse waves
in a stretched string and in Supplementary Topic III we show how to

calculate the speed of such waves in the most general way. Here we con-

sider two other approaches— a treatment based on dimensional analysis

and a somewhat less general mechanical analysis in which we compute
the speed of a transverse pulse along a stretched string.

We stated in Section 19-1 that the wave speed for a medium depends

on the elasticity of the medium and on its inertia. For a stretched string

the elasticity is measured by the tension F in the string; the greater the

tension the greater will be the elastic restoring force on an element of

the string that is pulled sideways. The inertia characteristic is measured

by fM, the mass per unit length of the string. Assuming then, that the

wave speed v depends only on F and \x, we can use dimensional analysis

to find how v depends on these quantities. In terms of mass M, length

L, and time T, the dimensions of F are MLT 2 and the dimensions of /x

are ML '. The only way these dimensions can be combined to get a

velocity (which has the dimensions LT ') is to take the square root of

F/fj.. That is, F//a has the dimensions L 2T 2 and VF//x has the dimensions

LT ' of a velocity. Dimensional analysis cannot account for any dimen-

sionless quantities, so that the result

- (19-12)

may or may not be complete. The most we can say is that the wave
speed is equal to a dimensionless constant times VF//x. The value of the

i 'instant can be obtained from a mechanical analysis of the problem or

from experiment. These methods show that the constant is equal to

unity and that Eq. 19-12 is correct as it stands



Now let us derive the velocity of a pulse in a stretched string by a mechanical

analysis. In Fig. 19-6 we show a wave pulse proceeding from right to left in the

string with a speed v. We can imagine the entire string to be moved from left to

right with this same speed so that the wave pulse remains fixed in space,

whereas the particles composing the string successively pass through the pulse.

This simply means that, instead of taking our reference frame to be the walls

between which the string is stretched, we choose a reference frame which is in

uniform motion with respect to that one. Because Newton's laws involve only

accelerations, which are the same in both frames, we can use them in either

frame. We just happen to choose a more convenient frame.

We consider a small section of the pulse of length Ai to form an arc of a circle

of radius R, as shown in the diagram. If ll is the mass per unit length of the

string, the so-called linear density, then /a Ai, is the mass of this element. The

tension F in the string is a tangential pull at each end of this small segment of

the string. The horizontal components cancel and the vertical components are

each equal to F sin 6. Hence, the total vertical force is IF sin 6. Because 8 is

small, we can take sin 8 = 6 and

->.•

IF sin 8 = 2F8
IA7/2) A/.

This gives the force supplying the centripetal acceleration of the string par-

ticles directed toward O. Now the centripetal force acting on a mass ll Ai

moving in a circle of radius R with speed v is ll A/ v2/R
;
see Section 6-3. Notice

that the tangential velocity v of this mass element along the top of the arc is

horizontal and is the same as the pulse speed. Combining the equivalent ex-

pressions just given we obtain

_ Ai _ (x, M v2

-jAip-

figure 19-6

Derivation of wave speed by

considering the forces on a section

of string of length Ai.

R R

or

If the amplitude of the pulse were very large compared to the length of the

string, we would have been unable to use the approximation sin 6 = 8. Further-

more, the tension F in the string would be changed by the presence of the

pulse, whereas we assumed F to be unchanged from the original tension in the

stretched string. Therefore, our result, like superposition, holds only for rela-

tively small transverse displacements of the string — which case, however, is

widely applicable in practice. Notice also that the wave speed is independent

of the shape of the wave, for no particular assumption about the actual shape of

the pulse was used in the proof.

The frequency of a wave is naturally determined by the frequency

of the source. The speed with which the wave travels through a me-
dium is determined by the properties of the medium, as previously

illustrated. Once the frequency v and speed v of the wave are deter-

mined, the wavelength A is fixed. In fact, from Eq. 19-7 and the rela-

tion, v= 1/T, we have

v
[19-13)

A transverse sinusoidal wave is generated at one end of a long horizontal string

by a bar which moves the end up and down through a distance of 0.50 cm. The
motion is continuous and is repeated regularly 120 times per second.

[a) If the string has a linear density of 0.25 kg/m and is kept under a tension

of 90 N, find the speed, amplitude, frequency, and wavelength of the wave
motion.

EXAMPLE 1



The end moves 0.25 cm away from the equilibrium position, first above it,

then below it
;
therefore, the amplitude y,„ is 0.25 cm.

The entire motion is repeated 120 times each second so that the frequency

is 120 vibrations per second, or 120 Hz.

The wave speed is given by v= V/V/i. But F= 90 N and /x= 0.25 kg/m, so that

'0.25 kg/m

The wavelength is given by A. = vlv, so that

19 m/s

90 N io /19 m/s.

120 vib/s
= 16 cm.

\b) Assuming the wave moves in the +x-direction and that, at r = 0, the end

of the string described by x = is in its equilibrium position y = 0, write the

equation of the wave.

The general expression for a transverse sinusoidal wave moving in the

+x-direction is

y = ym sin [kx — cut — c/>).

Requiring that y = for the conditions x = and r = yields

= ym sin (-</>),

which means that the phase constant 4> may be taken to be zero. You should

show that integral multiples of 77 yield the same final results. Hence for this

wave

y = y>n sin [kx — cur),

and with the values just found,

y,„ = 0.25 cm,

A = 16 cm or k =— = — = 0.39 cm -1
,

A 16 cm

v= 19m/s=1900cm/s or w = vk= (1900 cm/s)|0.39 cm 1

)
= 740s-' = 740 Hz,

we obtain as the equation for the wave

y = 0.25 sin (0.39x - 740t)

where x and y are in centimeters and t is in seconds.

As this wave passes along the string, each particle of the string moves up and EXAMPLE 2
down at right angles to the direction of the wave motion. Find the velocity and

acceleration of a particle 2.0 ft from the end.

The general form of this wave is

y = ym sin [kx — cor) = y,» sin k[x — vt).

The v in this equation is the constant horizontal velocity of the wavetrain. What
we are after now is the velocity of a particle in the string through which this

wave moves; this particle velocity is neither horizontal nor constant. In fact,

each particle moves vertically, that is, in the y-direction. In order to determine

the particle velocity, which we shall designate by the symbol u, let us fix our

attention on a particle at a particular position x-that is, x is now a constant in

this equation— and ask how the particle displacement y changes with time.

With x constant we obtain

u = — = — y,„ai cos kx — o>r
,

<<t

in which the partial deri\ >in\ < 9j Idt reminds us thai although in general v is a



function of both x and t, we here assume that x remains constant so that t be-

comes the only variable. The acceleration a of the particle at this (constant)

value of x is

d2y ^u
,— =— = -y,„a>2 sin (kx - tat)

dtz at
-cay.

This shows that for each particle through which this transverse sinusoidal wave
passes we have precisely SHM (simple harmonic motion), for the acceleration

a is proportional to the displacement y, but oppositely directed.

For a particle at x = 62 cm with the wave of Example 1, in which

y„, = 0.25 cm, k = 0.39 cm 1

,
ta = 740 S" 1

,

we obtain u = —ymv cos [kx — tit)

or u = -0.25 (740) cos [(0.39)(62) - |740)t] = -185 cos (24 - 740 t)

and a = —ta2
y

or a = -(740) 2 0.25 sin [(0.39)(62) - (740)t] = -13.7 x 104 sin (24 - 740 t)

where t is expressed in seconds u in cm/s and a in cra/s2
.

Can you describe the motion of this particle at the time t = 4 s?

In Fig. 19-7 we draw an element of the stretched string at some position x and

at a particular time t. The transverse component of the tension in the string

exerted by the element to the left of x on the element of the right of x is

1 trans L «
OX

F is the tension in the string; dy/dx gives the tangent of the angle made by the

direction of F with the horizontal at the time t in question and, because we
assume small displacements, this can be taken equal also to the sine of the

angle. The transverse force is in the direction of increasing y ;
in the figure the

slope is negative, so the transverse force is positive. The transverse velocity of

the particle at x is dy/dt, which may be positive or negative. The power being

expended by the force at x, or the energy passing through the position x per unit

time in the positive x-direction (see Section 7-6), is

P = Ftrans "
dx/ dt

Suppose that the wave on the string is the simple sine wave

y = ym sin (Ax — cot).

Then the magnitude of the slope at x is

— = ky,„ cos kx — (at),

dx
[t = constant]

and the transverse force is

.ay.—F— = —Fkym cos {kx — tit).

aX

The transverse velocity of a particle of the string at x is

By
u =— = —cay,,, cos [kx — tat), [x = constant]

.

dt

Hence, the power transmitted through x is

P = {-Fkym )[-tiy,n) cos2 (kx - tat),

= y,„
2ktaF cos2 (kx — cat).

19-6
POWER AND INTENSITY
IN WAVE MOTION

figure 19-7

The transverse component of the

tension in the string at each point

x is F (dy/dx).



Notice that the power or rate of flow of energy is not constant. The power is not

constant because the power input oscillates. As the energy is passed along the

string, it is stored in each element of string as a combination of kinetic energy

of motion and potential energy of deformation. The situation is much like that

in an alternating current circuit; there energy is stored both in the inductor and

in the capacitor and the power input also oscillates. For a string the power is

absorbed by internal friction and viscous effects and appears as heat energy; in

the circuit the power is expended in the resistor and appears as heat energy. The
power input to the string or the circuit is often taken to be the average over one

period of motion. The average power delivered is

1 f'
+T

P = -k\ P dt,

where T is the period. Using the fact that the average value of sin2 8 or cos2 6

over one cycle is |, we obtain for the string

P = iym2ka>F=27r2ym2v*->

a result which does not depend on x or t. For the string, however, v = VF/fi,

so that

P = 27r2
y,„

2
i/
2/xv.

The fact that the rate of transfer of energy depends on the square of the wave
amplitude and square of the wave frequency is true in general, holding for all

types of waves.

Confirm that, if we had picked a wave traveling in the negative x-direction,

we would have obtained the negative of this result.. That is, the wave delivers

power in the direction of wave propagation.

In a three-dimensional wave, such as a light wave or a sound wave from a

point source, it is more significant to speak of the intensity of the wave. In-

tensity is defined as the power transmitted across a unit area normal to the di-

rection in which the wave is traveling. Just as with power in the wave in a

string, the intensity of a space wave is always proportional to the square of the

amplitude.

As a wave progresses through space, its energy may be absorbed. For ex-

ample, in a viscous medium, such as syrup or lead, mechanical waves would
rapidly decay in amplitude and disappear, owing to absorption of energy by in-

ternal friction. In most cases of interest to us, however, absorption will be

negligible. Throughout this chapter we have assumed that there is no loss of

energy in a given wave, no matter how far it travels.

Spherical waves travel from a source of waves whose power output, assumed EXAMPLE •$
constant, is P; see Fig. 19-8. Find how the wave intensity depends on the dis-

tance from the source. We assume that the medium is isotropic and that the

figure 19-8

Example 3.



source radiates uniformly in all directions, that is, that its emission is spheri-

cally symmetrical.

The intensity of a three-dimensional wave is the power transmitted across a

unit area normal to the direction of propagation. As the wavefront expands from

a distance n from the source at the center to a distance r->, its surface area in-

creases from 4ttti 2 to 4irr>2
. If there is no absorption of energy, the total energy

transported per second by the wave remains constant at the value P, so that

P = 477-r,
2
/, = 47n-2

2/2 ,

where U and h are the wave intensities at ii and r2 respectively. Hence,

h r,
2

and the wave intensity varies inversely as the square of its distance from the

source. Since the intensity is proportional to the square of the amplitude, the

amplitude of the wave must vary inversely as the distance from the source.

Interference refers to the physical effects of superimposing two or more
wavetrains. Let us consider two waves of equal frequency and ampli-

tude traveling with the same speed in the same direction (+x) but with

a phase difference 4> between them. The equations of the two waves

will be

Y\ = Ym sin [kx — (at —
<f>)

and y2 = ym sin [kx — (at).

We can rewrite the first equation in two equivalent forms

[19-14)

119-15)

or

yi = ym sin

yi = y„, sin

x — $)

kx- (a[t +

(19-14a)

:i9-14b)

Equations 19-14<a and 19-15 suggest that if we take a "snapshot" of the

two waves at any time t, we will find them displaced from one another

along the x-axis by the constant distance 4>/k. Equations 19- 14b and

19-15 suggest that if we station ourselves at any position x, the two
waves will give rise to two simple harmonic motions having a constant

time difference 4>/(a. This gives some insight into the meaning of the

phase difference (/>.

Now let us find the resultant wave, which, on the assumption that

superposition occurs, is the sum of Eqs. 19-14 and 19-15 or

y = y\ + y-2 = y,„[sin [kx — a>t —
(f>)
+ sin [kx — (at)].

From the trigonometric equation for the sum of the sines of two
angles

sin B + sin C = 2 sin |(B + C) cos |(C - B),

we obtain y = y* 2 sin( kx — (at — ^ )cos y

2y„, cos f )
sin

(

^

x ~ <3it ~\

119-16)

119-17)

This resultant wave corresponds to a new wave having the same fre-

quency but with an amplitude 2ym cos [<f>/2). It </> is very small (com-

pared to 180°), the resultant amplitude will be nearly 2y,„. That is, when

19-7
INTERFERENCE OF
WAVES



4> is very small, cos |<£/2) = cos 0° = 1. When <$> is zero, the two waves

have the same phase everywhere. The crest of one corresponds to the

crest of the other and likewise for the troughs. The waves are then said

to interfere constructively. The resultant amplitude is just twice that

of either wave alone. If <t> is near 180°, on the other hand, the resultant

amplitude will be nearly zero. That is, when $ = 180°, cos (</>/2) = cos

90° = 0. When $ is exactly 180°, the crest of one wave corresponds

exactly to the trough of the other. The waves are then said to interfere

destructively. The resultant amplitude is zero.

In Fig. 19-9(3 we show the superposition of two wavetrains almost in

phase [<f> small) and in Fig. 19-9b the superposition of two wavetrains

almost 180° out of phase (<p = 180°). Notice that in these figures the

algebraic sum of the ordinates of the thin (component) curves at any

value of x equals the ordinate of the thick (resultant) curve. The sum
of two waves can, therefore, have different values, depending on their

phase relations.

+ y-i

figure 19-9

(a) The superposition of two waves

of equal frequency and amplitude

that are almost in phase results in a

wave of almost twice the amplitude

of either component, (b) The
superposition of two waves of equal

frequency and amplitude and

almost 180° out of phase results in

a wave whose amplitude is nearly

zero. Note that in both the resultant

frequency is unchanged. (The

drawings correspond to the instant

t = 0.)

The resultant wave will be a sine wave, even when the amplitudes

of the component sine waves are unequal. Figure 19-10, for example,

illustrates the addition of two sine waves of the same frequency and

velocity but different amplitudes. The resultant amplitude depends on

the phase difference, which is taken as zero in this figure. The result

foi other phase differences could be obtained by shifting one of the

component waves sideways with respect to the other and would give

,i smaller resultant amplitude. The smallest resultant amplitude would

be the difference in the amplitudes of the components, obtained when
the phases differ by 180°. However, the resultant is always a sine wave.

The addition of any number of sine waves having the same frequency

and velocity gives ,i similar result. The resultant waveform will always

have a constant amplitude because the component waves (and their

figure 19-10
The addition of two waves of the

same frequency and phase hut

differing amplitudes light lines)

yields a third wave of the s.mu'

frequency and phase [heavy line)



resultant) all move with the same velocity and maintain the same rela-

tive position. The actual state of affairs can be pictured by having all

the waves in Figs. 19-9 and 19-10 move toward the right with the

same speed.

In practice, interference effects are obtained from wavetrains which

originate in the same source (or in sources having a fixed phase relation-

ship to one another) but which follow different paths to the point of

interference. The phase difference $ between the waves arriving at a

point can be calculated by finding the difference between the paths

traversed by them from the source to the point of interference. The
path difference is <f)/k or [<t>/2ir)\. When the path difference is 0, A., 2A,

3X, etc., so that <f>
= 0, 277, Att, etc., the two waves interfere construc-

tively. For path differences of \\, f\, fA., etc.,
<f>

is tt, 377, 577, etc., and the

waves interfere destructively. We shall return to these matters later in

more detail.

4.
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The waves we have considered thus far have been of the simple harmonic type,

in which the displacements at any time are represented by a sine curve. We
have seen that superposition of any number of such waves having the same
frequency and velocity, but arbitrary amplitudes and phases, still gives rise to a

resultant wave of this simple type. If, however, we superimpose waves that

have different frequencies, the resulting wave is complex. In a complex wave
the motion of a particle is no longer simple harmonic motion, and the wave
shape is no longer a sine curve. In this section we consider only the qualita-

tive aspects of complex waves. The analytical treatment of such waves will be

given when we encounter physical situations described by them. We will look

at the results of adding graphically two or more waves traveling with the same
speed in the same direction but having various relative frequencies, amplitudes,

and phases.

19-8
COMPLEX WAVES

figure 19-11

The addition of two waves with a

frequency ratio 3:1 (light lines)

yields a wave whose shape (heavy

line) depends on the phase

relationship of the components.

Compare (a) and (b).

In Figs. 19-1 la and 19- lib we add two waves having the same amplitude but

having frequencies in the ratio 3 to 1
;
the phase relation is changed from a to b

and we see how changing the phase relation may produce a resultant of very

different form. If these represent sound waves, our eardrums will vibrate in a

way represented by the resultant in each case, but we will hear and interpret

these as the two original frequencies, regardless of their phase relation. If the

resultant waves represent visible light, our eyes will receive the same sensation

of a mixture of two colors, regardless of the phase relation of the components.
In Fig. 19-12 three waves of different frequencies and amplitudes are added.

The resultant complex wave is quite different from a simple periodic wave and,

in this respect resembles waveforms normally generated by musical instru-



figure 19-12

The addition of three waves (top)

of differing frequencies yields a

complex waveform (bottom).

figure 19-13

The addition (heavy line) of two

waves of widely differing frequency

(light lines).

ments. In Fig. 19-13 a wave of very high frequency is added to one of very low

frequency. Each component frequency is clearly discernible in the resultant. In

Fig. 19-14 two waves of nearly the same frequency are added. The resultant

wave consists of groups which, in the case of sound, produce the familiar phe-

nomenon of beats (Section 20-6).

C>Q^7\/\^^y90(y7<^7V^y^O
figure 19-14

The addition (bottom) of two waves

with nearly the same frequency

(top), illustrating the phenomenon
of beats (see Chapter 20).

In all of these figures the resultant wave is obtained under the assumption
that the principle of superposition holds, by simply adding the displacements

caused by the individual waves at every point. Because all the component
waves travel with the same velocity, the resultant waveform moves with this

same velocity and the wave shape is unchanged.

The cathode-ray oscilloscope (Chapter 27) gives the simplest way of ob-

serving how complex waves can be synthesized and analyzed in terms of sim-

ple harmonic waves.

In a one-dimensional body of finite size, such as a taut string held by

two clamps a distance / apart, traveling waves in the string are reflected

from the boundaries of the body, that is, from the clamps. Each such

reflection gives rise to a wave traveling in the string in the opposite

direction. The reflected waves add to the incident waves according to

the principle of superposition.

Consider two wavetrains of the same frequency, speed, and ampli-

tude which are traveling in opposite directions along a string. Two such

l!MI
STANDING WAVES



waves may be represented by the equations

yi = ym sin [kx — tat),

y> = y,n sin (Ax + wr).

Hence, the resultant may be written as

y = y x + y> — ym sin [kx — a>t) + ym sin [kx + wr) (19- 18a)

or, making use of the trigonometric relation of Eq. 19-16, as

y = 2ym sin kx cos o>f. (19-18b)

Equation 19-18Z? is the equation of a standing wave.* Notice that a

particle at any particular point x executes simple harmonic motion as

time goes on, and that all particles vibrate with the same frequency. In

a traveling wave each particle of the string vibrates with the same
amplitude. Characteristic of a standing wave, however, is the fact that

the amplitude is not the same for different particles but varies with the

location x of the particleA In fact, the amplitude, 2y„, sin kx, has a

maximum value of 2y,„ at positions where

, 77 377 577
/cx= 2'T'T' etc "

\ 3X 5X
or x = —i —> —

' etc.
4 4 4

These points are called antinodes and are spaced one-half wavelength

apart. The amplitude has a minimum value of zero at positions where

kx = 77, 277, 3t7
;
etc.

or x = -' A.,
—

' 2X, etc.

These points are called nodes and are spaced one-half wavelength

apart. The separation between a node and an adjacent antinode is one-

quarter wavelength.

It is clear that energy is not transported along the string to the right

or to the left, for energy cannot flow past the nodal points in the string

which are permanently at rest. Hence, the energy remains "standing"

in the string, although it alternates between vibrational kinetic energy

and elastic potential energy. We call the motion a wave motion because

we can think of it as a superposition of waves traveling in opposite di-

rections (Eq. 19-18a). We can equally well regard the motion as an
oscillation of the string as a whole (Eq. 19- 18b), each particle oscillating

with SHM of angular frequency o> and with an amplitude that depends

on its location. Each small part of the string has inertia and elasticity,

and the string as a whole can be thought of as a collection of coupled

oscillators. Hence, the vibrating string is the same in principle^ as a

spring-mass system, except that a spring-mass system has only one

natural frequency, and a vibrating string has a large number of natural

frequencies (Section 19-10).

* Standing waves may also be produced in finite bodies of two or three dimensions,- see

Chapters 20 and 38 for examples.

t The combining waves moving in opposite directions along the string will still produce

standing waves even if their amplitudes are unequal. We consider only the equal-ampli-

tude case here
;
see Problem 29, however.

t For a general discussion see "On the Teaching of 'Standing Waves,' " f. Rekveld, Ameri-

can [ournal of Physics, March 1958.



figure 19-15
Standing waves as the superposition

of left- and right-going waves,- 1 and
2 are the components, 3 the

resultant.

t=\T

(b)

t=\T

(d)

In Fig. 19-15, in [a], [b], (c), and \d), we show a standing wave pattern

separately at intervals of one-quarter of a period in the lower figures, 3.

The traveling waves, one moving in the positive x-direction and the

other moving in the negative x-direction, whose superposition can be

considered to give rise to the standing wave, are shown for the same
quarter-period intervals in the upper figures 2 and 1. Standing waves

can also be produced with electromagnetic waves and with sound

waves.

In Fig. 19-16 we show how the energy associated with the oscillating

string shifts back and forth between kinetic energy of motion K and

potential energy of deformation U during one.cycle. Compare this with

Fig. 8-4, which shows the same thing for a mass-spring oscillator. Oscil-

lating strings often vibrate so rapidly that the eye perceives only a blur

whose shape is that of the envelope of the motion; see Fig. 19-17.

""I f I

U K

(b) iMr^f^Hl (d)

t
V K V K

<a> KXXN
U K

m rr^h^Mi

figure 19-16

A standing wave in a stretched

string, showing one cycle of

oscillation. At fa) the string is

momentarily at rest and the energy

of the system is all potential energy

of elastic deformation associated

with the transverse displacement of

the string, fb) An eighth-cycle later

the displacement is reduced and the

string is in motion. The two arrows

show the velocities of the string

|L_ /^~X I

{i)
particles at the positions shown.

^~"^ ^~^^
K and U have the same value, fc)

The string is not displaced, but its

particles have their maximum
speeds; the energy is all kinetic. The

motion continues until the initial

condition fa) is reached after which

the cycle continues to repeat itself.

U K

U A u I f | fl

_
n a
(/ K



The superposition of an incident wave and a reflected wave, being

the sum of two waves traveling in opposite directions, will give rise to

a standing wave. We shall now consider the process of reflection of a

wave more closely. Suppose a pulse travels down a stretched string

which is fixed at one end, as shown in Fig. 19-I8a. When the pulse

arrives at that end, it exerts an upward force on the support. The sup-

port is rigid, however, and does not move. By Newton's third law the

support exerts an equal but oppositely directed force on the string. This

reaction force generates a pulse at the support, which travels back along

the string in a direction opposite to that of the incident pulse. We say

that the incident pulse has been reflected at the fixed endpoint of the

string. Notice that the reflected pulse returns with its transverse dis-

placement reversed. If a wavetrain is incident on the fixed endpoint, a

reflected wavetrain is generated at that point in the same way. The
displacement of any point along the string is the sum of the displace-

ments caused by the incident and reflected wave. Since the endpoint is

fixed, these two waves must always interfere destructively at that

point so as to give zero displacement there. Hence, the reflected wave
is always 180° out of phase with the incident wave at a fixed boundary.

We say that on reflection from a fixed end a wave undergoes a phase

change of 180°.

Let us now consider the reflection of a pulse at a free end of a

stretched string, that is, at an end that is free to move transversely. This

can be achieved by attaching the end to a very light ring free to slide

without friction along a transverse rod, or (see later) to a long and very

much lighter string. When the pulse arrives at the free end, it exerts a

force on the element of string there. This element is accelerated and its

inertia carries it past the equilibrium point; it "overshoots" and exerts

a reaction force on the string. This generates a pulse which travels back

along the string in a direction opposite to that of the incident pulse.

Once again we get reflection, but now at a free end. The free end will

obviously suffer the maximum displacement of the particles on the

string; an incident and a reflected wavetrain must interfere con-

structively at that point if we are to have a maximum there. Hence, the

reflected wave is always in phase with the incident wave at that point

(see Fig. 19- 18b). We say that at a free end a wave is reflected without

change of phase.

Hence, when we have a standing wave in a string, there will be a

node at a fixed end (Fig. 19- 18a) and an antinode at a free end (Fig.

19- 18b). These ideas will be applied to sound waves and electromag-

netic waves in subsequent chapters.

In the treatment just given we have assumed that there is total reflection at the

boundary. In general, at a boundary there is partial reflection and partial trans-

mission. For example, suppose that instead of being attached to a rigid wall the

string is attached to another string. At the boundary joining the strings the

incident wave will be partly reflected and partly transmitted. The amplitude

figure 19-17
The envelope of a standing wave,

corresponding to a time exposure of

the motion, and showing the

patterns of nodes and antinodes.
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figure 19-18

(a) Reflection of a pulse at the fixed

end of a string. The drawings are

spaced uniformly in time. The
phase is changed by 180° on

reflection, (b) Reflection of a pulse

at an end free to move in a

transverse direction. (The string is

attached to a ring which slides

vertically without friction.) The
phase is unchanged on reflection.



of the reflected wave will be less than that of the incident wave because a trans-

mitted wave continues along the second string and carries away some of the

incident energy. If the second string has a greater linear density than the first,

the wave reflected back into the first will still suffer a phase shift of 180° on
reflection. But because its amplitude is less than the incident wave, the bound-

ary point will not be a node and will move. Thus a net energy transfer occurs

along the first string into the second. If the second string has a smaller linear

density than the first, partial reflection occurs without change of phase, but

once again energy is transmitted to the second string. In practice the best way
to realize a "free end" for a string is to attach it to a long and very much lighter

string. The energy transmitted is negligible, and the second string serves to

maintain the tension in the first one.

It is of interest to note that the transmitted wave travels with a different

speed than the incident and reflected waves. The wave speed is determined by

the relation v = \ F//a
;
the tension is the same in both strings, but their densi-

ties are different. Hence, the wave travels more slowly in the denser string. The
frequency of the transmitted wave is the same as that of the incident and re-

flected waves. Waves having the same frequency but traveling with different

speeds have different wavelengths. Hence, from the relation A = v/v we con-

clude that in the denser string, where v is less, the wavelength is shorter. This

phenomenon of change of wavelength as a wave passes from one medium to

another will be encountered frequently in our study of light waves.

In general, whenever a system capable of oscillating is acted on by a 19-10
periodic series of impulses having a frequency equal or nearly equal to RESONANCE
one of the natural frequencies of oscillation of the system, the system

is set into oscillation with a relatively large amplitude. This phenom-
enon is called resonance (see Section 15-10) and the system is said to

resonate with the applied impulses.

Consider a string fixed at both ends. Oscillations or standing waves
can be established in the string. The only requirement we have to satisfy

is that the endpoints be nodes. There may be any number of nodes in

between or none at all, so that the wavelength associated with the stand-

ing waves can take on many different values. The distance between

adjacent nodes is A/2, so that in a string of length / there must be exactly

an integral number n of half wavelengths, A/2. That is,

nk _ ,

2

11
or \ = —> n= 1, 2, 3, • •

.

n

But A = v/v and v = Vf//i, so that the natural frequencies of oscillation

of the system are

" = f/4 " =1
'
2

' 3 '
[19-19)

If the string is set vibrating and left to itself, the oscillations gradually

die out. The motion is damped by dissipation of energy through the

elastic supports at the ends and by the resistance of the air to the mo-
tion. We can pump energy into the system by applying a driving force.

If the driving frequency is near that of any natural frequency of the

string, the string will vibrate at that frequency with a Large amplitude,

Because the string has a large number of natural frequencies, resonance

can occur at many different frequencies. A mass-spring system, by con

n.ist has only one resonant frequency. The difference is associated witb



the fact that in the mass- spring system the inertia characteristic is con-

centrated ("lumped") in one part of the system— the mass -and the

elastic characteristic is concentrated in a separate part of the system—

the spring. We say that this system has lumped elements.

A stretched string, on the other hand, is said to have distributed ele-

ments because every element of the string has both inertia and elastic

characteristics. In the mass-spring system, there is only one way to ex-

change energy between kinetic and potential forms as the system os-

cillates; energy in kinetic form must be associated with the moving

mass and energy in potential form must be associated with the deformed

spring. In the stretched string, however, masslike (inertia) and spring-

like (elasticity) elements are uniformly distributed along the string.

There are many possible ways, rather than a single way, of exchanging

energy between kinetic and potential forms as the system oscillates,

corresponding to the sequence of allowed values for n inEq. 19-19.
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figure 19-19

Standing waves in a driven string

when the natural and driving

frequencies are very nearly equal.

Resonance in a string is often demonstrated by attaching a string to a

fixed end, by means of a weight attached to it over a pulley, and connect-

ing the other end to a vibrator, as shown in Fig. 19-19. The transverse

oscillations of the vibrator set up a traveling wave in the string which is

reflected back from the fixed end. The frequency of the waves is that of

the vibrator, and the wavelength is determined by k — v/v. The fixed

end P is a node, but the end Q vibrates and is not. If we now vary the ten-

sion in the string by changing the hanging weight, for example, we can

change the wavelength. Changing the tension changes the wave veloc-

ity, and the wavelength changes in proportion to the velocity, the fre-

quency being constant. Whenever the wavelength becomes nearly equal

to 2l/n, where 1 is the length of the string, we obtain standing waves of

great amplitude. The string now vibrates in one of its natural modes and

resonates with the vibrator. The vibrator does work on the string to

maintain these oscillations against the losses due to damping. The am-
plitude builds up only to the point at which the vibrator expends all

its energy input against damping losses. The point Q is almost a node
because the amplitude of the vibrator is small compared to that of the

string.

Hence, with damping, the resonant frequency is almost, but not quite, a

natural frequency of the string. One endpoint is a node, the other almost a node.

In between there are points that are almost nodes, points at which the amplitude

is very small. These points cannot be true nodes, for energy must flow along the

string past them from the vibrator. This situation is analogous to the resonance

condition for a damped harmonic oscillator with driving force, discussed in

Section 15-10. There, too, the resonant frequency was almost the same as the

natural frequency of the system, and the amplitude was large but not infinite.



If no damping were present, the resonant frequency would be exactly a natural

frequency. Then the amplitude would build up to infinity as the energy is

pumped in. In practice, the system would cease to obey Hooke's law, or the

small-oscillations condition, as the amplitude becomes large and the system

would break. This happens even with damping, when the damping is small or

the driving force is large (as in the Tacoma Bridge disaster, Fig. 15-21).

If the frequency of the vibrator is much different from a natural fre-

quency of the system, as given by Eq. 19-19, the wave reflected at P on
returning to Q may be much out of phase with the vibrator, and it can

do work on the vibrator. That is, the string can give up some energy to

the vibrator as well as receive energy from it. The "standing" wave
pattern is not fixed in form but wiggles about. On the average the ampli-

tude is small and not much different from that of the vibrator. This

situation is analogous to the erratic motion of a swing being pushed

periodically with a frequency other than its natural one. The displace-

ment of the swing is rather small.

Hence, the string absorbs peak energy from the vibrator at resonance.

Tuning a radio is an analogous process. By tuning a dial the natural fre-

quency of an alternating current in the receiving circuit is made equal

to the frequency of the waves broadcast by the station desired. The
circuit resonates with the transmitted signals and absorbs peak energy

from the signal. We shall encounter resonance conditions again in

sound, in electromagnetism, in optics, and in atomic and nuclear

physics. In these areas, as in mechanics, the system will absorb peak

energy from the source at resonance and relatively little energy off

resonance.

In a demonstration with the apparatus just described, the vibrator has a fre- EXAMPLE 4
quency v = 20 Hz and the string has a linear density fi = 1.56 x 10~ 4 slug/ft

(= 7.47 x 10 3 kg/m) and a length / = 24 ft (= 7.3 m). The tension F is varied by

pulling down on the end of the string over the pulley. If the demonstrator wants

to show resonance, starting with one loop and then with two, three, and four

loops, what force must he exert on the string?

At resonance,

= n_ If_

V
11 V M

'

Hence, the tension F is given by

f =
4/VM

/;-

For one loop, n = 1, so that

Fx = 4/V 2m = 4|24 ft)
2(20 s l

)

2(1.56 x 10 4 slug/ft) = 144 lb |= 640 N).

For two loops, n = 2, and

F2 =^ =^ = 361b(=160N).
4 4

Likewise, for three and four loops

F:,=
(fp

= 16lb|=71 N)
'

F4 =
j|^

= 9lb mini.



Hence, the demonstrator gradually relaxes the tension to obtain resonance £
with an increasing number of loops. Although the resonant frequency is always •*

the same under these circumstances, the speed of propagation and the wave-

length at resonance decrease proportionately. q
Taking damping into account, are the tensions given exactly correct? ^
If the tension were kept fixed, giving a definite wave speed, would we obtain ti

more than one resonance condition by varying the frequency of the vibrator? ^

1. How could you prove experimentally that energy is associated with a wave?

2. Energy can be transferred by particles as well as by waves. How can we ex-

perimentally distinguish between these methods of energy transfer?

3. Can a wave motion be generated in which the particles of the medium
vibrate with angular simple harmonic motion? If so, explain how and de-

scribe the wave.

4. Are torsional waves transverse or longitudinal? Can they be considered as a

superposition of two waves, which are either transverse or longitudinal?

5. How can one create plane waves? Spherical waves?

6. The following functions in which A is a constant are of the form f[x± vt):

y = A(x - vt), y = A[x+vt) 2
,

y = A Vx — vt, y = A In (x + vt).

Explain why these functions are not useful in wave motion.

7. Can one produce on a string a wave form which has a discontinuity in slope

at a point, that is, it has a sharp corner? Explain.

8. How do the amplitude and the intensity of surface water waves vary with

the distance from the source?

9. The inverse square law does not apply exactly to the decrease in intensity

of sounds with distance. Why not?

10. When two waves interfere, does one alter the progress of the other?

11. When waves interfere, is there a loss of energy? Explain your answer.

12. Why don't we observe interference effects between the light beams emitted

from two flashlights or between the sound waves emitted by two violins.

13. As Fig. 19-15 shows, twice during a cycle the configuration of standing

waves in a stretched string is a straight line, exactly what it would be if

the string were not vibrating at all. Discuss from the point of view of

energy conservation.

14. If two waves differ only in amplitude and are propagated in opposite direc-

tions through a medium, will they produce standing waves? Is energy trans-

ported? Are there any nodes? (See Problem 29.)

15. The partial reflection of wave energy by discontinuities in the path of trans-

mission is usually wasteful and can be minimized by insertion of "im-

pedance matching" devices between the sections of the path bordering on

the discontinuity. For example, a megaphone helps match the air column
of mouth and throat to the air outside the mouth. Give other examples

and explain qualitatively how such devices minimize reflection losses (see

Problem 29).

16. Consider the standing waves in a string to be a superposition of traveling

waves and explain, using superposition ideas, why there are no true nodes in

the resonating string of Fig. 19-19, even at the "fixed" end. [Hint: Consider

damping effects.)

17. Standing waves in a string are demonstrated by an arrangement such as that

of Fig. 19-19. The string is illuminated by a fluorescent light and the vi-

brator is driven by the same electric outlet that powers the light. The string

exhibits a curious color variation in the transverse direction. Explain.

questions
Jfc.

"3



18. In the discussion of transverse waves in a string we have dealt only with

displacements in a single plane, the x-y plane. If all displacements lie in one

plane, the wave is said to be plane polarized. Can there be displacements in

a plane other than the single plane dealt with-
1

If so, can two differently

plane-polarized waves be combined' What appearance would such a com-

bined wave have?

19. A wave transmits energy. Does it transfer momentum" Can it transfer

angular momentum? iSee Question 18.1 [See "Energy and Momentum
Transport in String Waves" by D. W. Juenker, American fournal of Phys-

ics, January 1976.)

SECTION 19-3

1. The speed of electromagnetic waves in vacuum is 3.0 x 10 s m/s. [a] Wave-
lengths in the visible part of the spectrum llightl range from about 4.0 x
10~ 7 m in the violet to about 7.0 x 10 7 m in the red. What is the range of

frequencies of light waves? [b] The range of frequencies for shortwave radio

(for example, FM radio and VHF television) is 1.5 MHz (megahertz; see

Table 2, Chapter 1) to 300 MHz. What is the corresponding wavelength

range? (c) X-rays are also electromagnetic. Their wavelength range extends

from about 5.0 nm (nanometer; see Table 2, Chapter 1) to about 1.0 x 10 -2

nm. What is the frequency range for X-rays?

Answer: [a] 400 THz |THz = terahertz; see Table 2, Chapter 1) to 800 THz.

(b) 1.0 m to 200 m. (c) 6.0 x 10 4 THzto3.0x 10 7 THz.

2. Show that y = y„, sin [kx — wt) may be written in the alternative forms

y = y„, sin k [x - vt), y = ym sin 2ir (- — vt),

y = ym sin w I t), y= y,„ sin 2tt I- — — j

•

3. The equation of a transverse wave traveling along a very long string is given

by y = 6.0 sin (0.0207rx + 4.077t), where x and y are expressed in cm and t in

seconds. Calculate [a) the amplitude, [b) the wavelength, (c) the frequency,

\d) the speed, \e) the direction of propagation of the wave, and (/) the maxi-

mum transverse speed of a particle in the string.

Answer: [a] 6.0 cm. [b] 100 cm. (c) 2.0 Hz. [d] 200 cm/s. (e) negative x-

direction. [f] 75 cm/s.

4. A sinusoidal wave travels along a string. If the time for a particular point to

move from maximum displacement to zero displacement is 0. 1 7 s, what are

[a] the period, and [b] frequency? (c) If the wavelength is 1.4 m what is the

speed of the wave?

5. A wave of frequency 500 Hz has a velocity of 350 m/s. [a) How far apart are

two points 60° out of phase? [b] What is the phase difference between two

displacements at a certain point at times 10 3
s apart?

Answer: {a) 12 cm. \b) 180°.

6. Write the equation for a wave traveling in the negative direction along the

x axis and having an amplitude 0.010 m, a frequency 550 Hz, and a speed

330 m/s.

7. [a] A continuous sinusoidal longitudinal wave is sent along a coiled spring

from a vibrating source attached to it. The frequency of the source is 25 Hz,

and the distance between successive rarefactions in the spring is 24 cm.

Find the wave speed. |/>) If the maximum longitudinal displacement of a

particle in the spring is 0.30 cm and the wave moves in the -x direction

write the equation for the wave. Let the source be at x = and the displace-

ment x when t - be zero.

Answer [a] 600 ( m v \b) y=0.30 sin ().26x 1600, with x and v in cm and

t in seconds,

problems



SECTION 19-5 §
8. What is the speed of a transverse wave in a rope of length 2.0 m [6.6 ft) and

mass 0.060 kg (0.0041 slug) under a tension of 500 N (1 10 lb)?

9. The linear density of a vibrating string is 1.3 x 10 4 kg/m. A transverse §
wave is propagating on the string and is described by the equation y = 0.021 *

sin (x + 30r), where x and y are measured in meters and t in seconds. What *>

is the tension in the string? Answer: 0.12 N.

10. A continuous sinusoidal wave is traveling on a string with velocity 80 cm/s. ^
The displacement of the particles of the string at x = 10 cm is found to vary ^
with time according to the equation y = 5.0 sin

(
1 .0 — 4. Or) in cm. The linear

density of the string is 4.0 g/cm. {a) What is the frequency of the wave?

\b) What is the wavelength of the wave? (c) Write the general equation giving

the transverse displacement of the particles of the string as a function of

position and time, [d] Calculate the tension in the string.

figure 19-20
Problem 11

1 1. A simple harmonic transverse wave is propagating along a string toward the

left (or —x) direction. Figure 19-20 shows a plot of the displacement as a

function of position at time t = 0. The string tension is 3.6 N and its linear

density is 25 g/m. Calculate [a] the amplitude, [b] the wavelength, (c) the

wave speed, [d] the period, and [e] the maximum speed of a particle in the

string. \f) Write an equation describing the traveling wave.

Answer: [a] 5.0 cm. [b] 40 cm. (c) 12 m/s. (d) 0.033 s. (e) 9.4 m/s. (/) 5.0 sin

(0.16x + 190r + 0.93), with x and y in cm and t in seconds.

12. Prove that the slope of a string at any point x is numerically equal to the

ratio of the particle speed to the wave speed at that point.

13. A uniform circular hoop of string is rotating clockwise in the absence of

gravity (see Fig. 19-21). The tangential speed is v () . Find the speed of waves

traveling on this string. [Remark: The answer is independent of the radius

of the circle and the mass per unit length of the string!) Answer: vu .

14. A uniform rope of mass m and length L hangs from a ceiling, [a) Show that

the speed of a transverse wave in the rope is a function of y. the distance

from the lower end, and is given by v = Vgy. [b] Show that the time it takes "gui*e 19-2 1

a transverse wave to travel the length of the rope is given by r = 2VL/g. Problem 13

(c) Does the actual mass of the rope affect the results of [a] and (£>)?

SECTION 19-6

15. Spherical waves are emitted from a 1.0-watt source in an isotropic non-

absorbing medium. What is the wave intensity 1.0 m from the source?

Answer: 0.080 W/m2
.

16. [a] Show that the intensity / (the energy crossing unit area per unit time) is

the product of the energy per unit volume u and the speed of propagation v

of a wave disturbance, [b) Radio waves travel at a speed of 3.0 x 10 K m/s
(9.8 x 10" ft/s). Find the energy density in a radio wave 480 km (300 mi)

from a 50,000-W (67-hp) source, assuming the waves to be spherical and the

propagation to be isotropic.



17. A line source emits a cylindrical expanding wave. Assuming the medium
absorbs no energy, find how [a] the intensity and \b) the amplitude of the

wave depend on the distance from the source.

Answer: [a] Proportional to r
_1

. \b) Proportional to r"2
.

18. \a) From Example 2 show that the maximum speed of a particle in a string

through which a sinusoidal wave is passing is u = y,„o>. [b] In Example 2 we
saw that the particles in the string oscillate with simple harmonic motion.

The mechanical energy of each particle is the sum of its potential and

kinetic energies and is always equal to the maximum value of its kinetic

energy. Consider an element of string of mass piAx and show that the energy

per unit length of the string is given by

Ei = 27r2/^2
y„,

2
.

(c) Show finally that the average power or average rate of transfer of energy

is the product of the energy per unit length and the wave speed, [d] Do these

results hold only for a sinusoidal wave'

19. A wave travels out uniformly in all directions from a point source, [a] Justify

the following expression for the displacement y of the medium at any dis-

tance r from the source:

y = — sin k[r — vt).

Consider the speed, direction of propagation, periodicity, and intensity of

the wave, [b] What are the dimensions of the constant Y?

Answer: \b) Lr.

SECTION 19-7

20. Determine the amplitude of the resultant motion when two sinusoidal mo-
tions having the same frequency and traveling in the same direction are

combined, if their amplitudes are 3.0 cm and 4.0 cm and they differ in phase

by tt/2 rad.

21. A source S and a detector D of high-frequency waves are a distance d apart

on the ground. The direct wave from S is found to be in phase at D with the

wave from S that is reflected from a horizontal layer at an altitude H (Fig.

19-22). The incident and reflected rays make the same angle with the re-

flecting layer. When the layer rises a distance h. no signal is detected at D.

Neglect absorption in the atmosphere and find the relation between d. h,

H, and the wavelength A of the waves.

Answer: k = 2V4(H + h)2 + d2 - 2V4H2 + d2
.

22. Four component sine waves have frequencies in the ratio 1, 2, 3, and 4 and

amplitudes in the ratio 1, \, \, and \, respectively. When t = 0, at x = 0, the

first and third components are 180° out of phase with the second and fourth

components. Plot the resultant waveform and discuss its nature.

figure 19-22
Problem 21

6.0 cm-

• h I\!A

Figure 19-23
Problem 23

23. Two pulses are traveling along a string in opposite directions, as shown in

Fig. 19-23. [a) If the wave velocity is 2.0 m/s and the pulses are 6.0 cm apart,

sketch the patterns after 5.0, 10, 15, 20, 25 ms. \b) What has happened to the

energy at t = 15 ms'
Answer: [h) Even though the displacement is zero .it this instant, the

transverse velocities are not. The energy is .ill kinetic.

24. Three component sinusoidal waves have the same period, but their ampli

tudcs are 111 the ratio I
' and ,' and then phase angles are rr/2 and n re-

spectively. Plot the resultant wavetniin and discuss its nature



figure 19-24
Problem 25

25. Consider two point sources Si and S? in Fig. 19-24 which emit waves of the

same frequency and amplitude. The waves start in the same phase, and this

phase relation at the sources is maintained throughout time. Consider

points P at which r^ is nearly equal to r>. [a] Show that the superposition of

these two waves gives a wave whose amplitude varies with the position P

approximately according to

1Y k .— cos - [r, - r,),

in which r = [i\ + r2 )/2. [b] Then show that total annulment occurs when
i\ — t-z= [n + i)\, n being any integer, and that total re-enforcement occurs

when r, — T-2 = nk.

The locus of points whose difference in distance from two fixed points

is a constant is a hyperbola, the fixed points being the foci. Hence each value

of n gives a hyperbolic line of constructive interference and a hyperbolic

line of destructive interference. At points at which n and r2 are not approxi-

mately equal (as near the sources), the amplitudes of the waves from Si and

S-2 differ and the annulments are only partial.

SECTION 19-9

26. The equation of a transverse wave traveling in a string is given by

y = 10 cos (0.0079x - 13t - 0.89),

in which x and y are expressed in centimeters and t in seconds. Write down
the equation of a wave which, when added to the given one, would produce

standing waves on the rope.

27. A string vibrates according to the equation

y 0.5 sin— cos 4077t,

where x and y are in centimeters and t is in seconds, [a) What are the ampli-

tude and velocity of the component waves whose superposition can give

rise to this vibration- [b] What is the distance between nodes' (c) What is the

velocity of a particle of the string at the position x = 1.5 cm when t = 1 s?

Answer: {a) 0.25 cm, 120 cm/s. [b) 3.0 cm. (c) Zero.

28. Two transverse sinusoidal waves travel in opposite directions along a string.

Each has an amplitude of 0.30 cm and a wavelength of 6.0 cm. The speed of

a transverse wave in the string is 1.5 m/s. Plot the shape of the string at

each of the following times: t = (arbitrary), t = 5.0, t = 10.0, t = 15.0, t
=

20.0 ms.

29. If an incident traveling wave is only partially reflected from a boundary, the

resulting superposition of two waves having different amplitudes and

traveling in opposite directions gives a standing wave pattern of waves
whose envelope is shown in Fig. 19-25. The standing wave ratio (SWR) is

defined as (A + A r)l[A, — A r )
= AmaJAmini and the percent reflection is de-

fined as the ratio of the average power in the reflected wave to the average

power in the incident wave, times 100. [a] Show that for 100% reflection

SWR = oo and that for no reflection SWR= 1. (b) Show that a measurement
figure 19-25
Problem 29



30.

of the SWR just before the boundary reveals the percent reflection occurring

at the boundary according to the formula

7c reflection = [(SWR- 1)
2/(SWR+ l)

2
] x 100.

Two strings of linear density /ii and /x> are knotted together at x = and

stretched to a tension F. A wave y = A sin ki[x — vit) in the string of density

/ii reaches the junction between the two strings, at which it is partly trans-

mitted into the string of density /u2 and partly reflected. Call these waves

B sin k>[x — v>t) and C sin ki{x + v t t), respectively. \a) Assuming that A 2v2 =
k\Vi = cj and that the displacement of the knot arising from the incident and

reflected waves is the same as that arising from the transmitted wave, show
that A = B + C. [b] If it is assumed that both strings near the knot have the

same slope (why?), i.e., that dy/dx in string 1 = dy/dx in string 2, show that

C = A

= A

\kt + ki)

Vi — V2

Vi + v2

31.

Under what conditions is C negative?

Consider a standing wave that is the sum of two waves traveling in opposite

directions but otherwise identical. Show that the energy in each loop of the

standing wave is 2TT2
y„,

2vv.

SECTION 19-10

32. In a laboratory experiment on standing waves a string 3.0 ft (0.9 m) long is

attached to the prong of an electrically driven tuning fork which vibrates

perpendicular to the length of the string at a frequency of 60 vib/s (60 Hz|.

The weight of the string is 0.096 lb (mass = 0.044 kg), [a) What tension must
the string be under (weights are attached to the other end) if it is to vibrate

in four loops? [b] What would happen if the tuning fork is turned so as to

vibrate parallel to the length of the 6tring?

33. Vibrations from a 600-cycle/s tuning fork set up standing waves in a string

clamped at both ends. The wave speed for the string is 400 m/s. The standing

wave has four loops and an amplitude of 2.0 mm. [a) What is the length of

the string? [b] Write an equation for the displacement of the string as a

function of position and time.

Answer: [a] 1.3 m. [b) 2.0 x 10 :! sin 9.4x cos 3800(, where x and y are in

meters and t in seconds.

34. An aluminum wire of length I, = 60.0 cm and of cross-sectional area 1.00 x

10 - cm2 is connected to a steel wire of the same cross-sectional area. The
compound wire, loaded with a block m of mass 10.0 kg, is arranged as

shown in Fig. 19-26 so that the distance l> from the joint to the supporting

pulley is 86.6 cm. Transverse waves are set up in the wire by using an ex-

ternal source of variable frequency, [a] Find the lowest frequency of excita-

tion for which standing waves are observed such that the joint in the wire

is a node, [b] What is the total number of nodes observed at this frequency,

excluding the two at the ends of the wire? The density of aluminum is 2.60

g/cm'', and that of steel is 7.80 g/cm' 1

.

I'imin- l!)-2<>

Problem 34



20
sound
waves

Sound waves are longitudinal mechanical waves. They can be propa- 20-1
gated in solids, liquids, and gases. The material particles transmitting AUDIBLE, ULTRASONIC,
such a wave oscillate in the direction of propagation of the wave itself. AND INFRASONIC
There is a large range of frequencies within which longitudinal me- WAVES
chanical waves can be generated, sound waves being confined to the

frequency range which can stimulate the human ear and brain to the

sensation of hearing. This range is from about 20 cycles/sec (or 20 Hz)

to about 20,000 Hz and is called the audible range. A longitudinal me-
chanical wave whose frequency is below the audible range is called an

infrasonic wave, and one whose frequency is above the audible range

is called an ultrasonic wave.

Infrasonic waves of interest are usually generated by large sources,

earthquake waves being an example.* The high frequencies associated

with ultrasonic wavest may be produced by elastic vibrations of a quartz

crystal induced by resonance with an applied alternating electric field

(piezoelectric effect). It is possible to produce ultrasonic frequencies as

high as 6 x 10 8 Hz in this way
;
the corresponding wavelength in air is

about 5 x 10 s cm, the same as the length of visible light waves.

Audible waves originate in vibrating strings (violin, human vocal

cords), vibrating air columns (organ, clarinet), and vibrating plates and

membranes (xylophone, loudspeaker, drum). All of these vibrating ele-

ments alternately compress the surrounding air on a forward movement
and rarefy it on a backward movement. The air transmits these dis-

*See "Long Earthquake Waves," by Jack Oliver, Scientific American, March 1959.

t See "Applications of Ultrasonics" by Margaret F. Cracknell and Arthur P. Cracknel!

Contemporary Physics, January 1976.
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turbances outward from the source as a wave. Upon entering the ear,

these waves produce the sensation of sound. Waveforms which are ap-

proximately periodic or consist of a small number of approximately

periodic components give rise to a pleasant sensation (if the intensity

is not too high), as, for example, musical sounds.* Sound whose wave-

form is nonperiodic is heard as noise. Noise can be represented as a

superposition of periodic waves, but the number of components is very

large.

In this chapter we deal with the properties of longitudinal mechanical

waves, using sound waves as the prototype.

Sound waves, if unimpeded, will spread out in all directions from a

source. It is simpler to deal with one-dimensional propagation, how-
ever, than with three-dimensional propagation, so that we consider

first the transmission of longitudinal waves in a tube.

Figure 20-1 shows a piston at one end of a long tube filled with a

compressible medium. The vertical lines divide the compressional

(fluid) medium into thin "slices," each of which contains the same
mass of fluid. Where the lines are relatively close together the fluid pres-

sure and density are greater than they are in the normal undisturbed

fluid, and conversely. We shall treat the fluid as a continuous medium
and ignore for the time being the fact that it is made up of molecules

that are in continual random motion.

If we push the piston of Fig. 20-1 forward, the fluid in front of it is

compressed, the fluid pressure and density rising above their normal

undisturbed values. The compressed fluid moves forward, compressing

the fluid layers next to it, and a compressional pulse travels down the

tube. If we then withdraw the piston, the fluid in front of it expands,

its pressure and density falling below their normal undisturbed values;

a pulse of rarefaction travels down the tube. These pulses are similar

to transverse pulses traveling along a string, except that the oscillating

fluid elements are displaced along the direction of propagation (longi-

tudinal) instead of at right angles to this direction (transverse). If the

piston oscillates back and forth, a continuous train of compressions

and rarefactions will travel along the tube (Fig. 20-1). As for transverse

waves in a string (see Section 19-5) we should be able, using Newton's

laws of motion, to express the speed of propagation of this longitudinal

wave in terms of an elastic and an inertial property of the medium. We
now do so.

For the moment, let us assume that the tube is very long so that we can ignore

reflections from the far end. As for the string of Fig. 19-6, we will consider not

an extended wave but a single (compressional) pulse that we might generate by

giving the piston in Fig. 20-1 a short, rapid, inward stroke.

Figure 20-2 shows such a pulse (labeled "compressional zone") traveling at

speed v along the tube from left to right. For simplicity we have assumed this

pulse to have sharply defined leading and trailing edges and to have a uniform

fluid pressure and density in its interior. When we analyzed the motion of a

transverse pulse in a string, we found it convenient to choose a reference frame

in which the pulse remained stationary; we will do this here also. In Fig. 20-2,

then, the compressional zone remains stationary in our reference frame while

the fluid moves through it from right to left with speed v, as shown.

Let us follow the motion of the element of fluid contained between the ver-

20-2
PROPAGATION AND
SPEED OF
LONGITUDINAL WAVES
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figure 20-1

Sound waves generated in a tube

by an oscillating piston. The
vertical lines divide the

compressible medium in the tube

into layers of equal mass.

A K'»>d general referenci on the scientific properties ot m usu.il sound is I he Acoustical

Foundations of Musi* b) fohn Backus vv w Norton & Co., Inc., New York 1969
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figure 20-2
A compressional pulse travels along a gas-filled tube. In a reference frame

in which the undisturbed gas is at rest the pulse moves from left to right

with speed v. We view the pulse, however, from a reference frame in

which the pulse is stationary; in such a frame the gas outside the pulse

streams through the tube from right to left with speed v, as shown. Note

that Av is negative.

tical lines at P in Fig. 20-2. This element moves forward at speed v until it

strikes the compressional zone. While it is entering this zone it encounters a

difference of pressure Ap between its leading and its trailing edges. The element

is compressed and decelerated, moving with a lower speed v + Av within the

zone, the quantity Av being negative. The element eventually emerges from the

left face of the zone where it expands to its original volume and the pressure

differential Ap acts to accelerate it to its original speed v. The figure shows the

element at point R, having passed through the compressional zone and moving
again with speed v, as at P.

Let us apply Newton's laws to the fluid element while it is entering the com-
pressional zone. The resultant force acting during entry points to the right in

Fig. 20-2 and has magnitude

F= (p + Ap)A - pA = ApA

in which A is the cross-sectional area of the tube.

The length of the element outside the compressional zone (at P, say) is v At,

where At is the time required for the element to move past any given point.

The volume of the element is thus vA At and its mass is p»vA At, where p ( > is

the density of the fluid outside the compressional zone. The deceleration a

experienced by the element as it enters the zone is —Av/At; because Av is

inherently negative, a is positive, which means that, like the force ApA in Fig.

20-2, it points to the right. Thus Newton's second law

ma
yields

which we may write as

ApA
-Av

[p vA At) -—

PnV=
-Ap
Aviv

Now the fluid that would occupy a volume V = Av At at P is compressed by

an amount A[Av) At = AV on entering the compressional zone. Hence,

AV _ A Av At

V ~" Av At

Av

v

and we obtain PoV
-Ap

AVIV

The ratio of the change in pressure on a body, Ap, to the fractional

change in volume resulting, —AVIV, is called the bulk modulus of

elasticity B of the body. That is, B = —V Ap/AV. B is positive because
an increase in pressure causes a decrease in volume. In terms of B, the

speed of the longitudinal pulse in the medium of Fig. 20-2 is

v=VbJp~». (20-1)



A more extended analysis than given above shows that Eq. 20-1 applies

not only to rectangular pulses of the type displayed in Fig. 20-2 but

also to pulses of any shape and to extended wave trains. Notice that

the speed of the wave is determined by the properties of the medium
through which it propagates, and that an elastic property B and an

inertial property p are involved. Table 20-1 gives the speed of longi-

tudinal (sound) waves in various media.

Table 20-1

Speed of sound

Tempera-
Speed

Medium ture, °C m/s ft/s

Air 331.3 1,087

Hydrogen 1,286 4,220

Oxygen 317.2 1,041

Water 15 1,450 4,760

Lead 20 1,230 4,030

Aluminum 20 5,100 16,700

Copper 20 3,560 11,700

Iron 20 5,130 16,800

Extreme values

Granite 6,000 19,700

Vulcanized rubber 54 177

If the medium is a gas, such as air, it is possible to express B in terms

of the undisturbed gas pressure p {) . For a sound wave in a gas we obtain

v= Vypjpo,

where y is a constant called the ratio of specific heats for the gas (Chap-

ter 23).

If the medium is a solid, for a thin rod the bulk modulus is replaced

by a stretch modulus (called Young's modulus). If the solid is extended,

we must allow for the fact that, unlike a fluid, a solid offers elastic

resistance to tangential or shearing forces and the speed of longitudinal

waves will depend on the shear modulus as well as the bulk modulus.

Consider again the continuous train of compressions and rarefactions 20-3
traveling down the tube of Fig. 20-1. As the wave advances along the TRAVELING
tube, each small volume element of fluid oscillates about its equilib- LONGITUDINAL WAVES
rium position. The displacement is to the right or left along the x-

direction of propagation of the wave. For convenience let us represent

the displacement of any such volume element (or layers of elements

that move in the same way) from its equilibrium position at x by the

letter y. It is to be understood that the displacement y is along the direc-

tion of propagation for a longitudinal wave, whereas for a transverse

wave the displacement y is at right angles to the direction of propaga-

tion Then the equation of a longitudinal wave traveling to the right

may be written as

y = f{x-vt).

For the particular case of a simple harmonic oscillation we may have

27r
i ,\y = y,„ cos — (x - vt).



In this equation v is the speed of the longitudinal wave, ym is its am-

plitude, and A is its wavelength; y gives the displacement of a particle

at time t from its equilibrium position at x. As before, we may write

this more compactly as

y = y„, cos (Ax - wt). (20-2)

It is usually more convenient to deal with pressure variations in a

sound wave than with the actual displacements of the particles con-

veying the wave. Let us therefore write the equation of the wave in

terms of the pressure variation rather than in terms of the displacement.

From the relation

AV7V

AV
we have Ap = — B

Just as we let y represent the displacement from the equilibrium posi-

tion x, so we now let p represent the change from the undisturbed pres-

sure p . Then p replaces Ap, and

p = -B—
If a layer of fluid at pressure p has a thickness Ax and cross-sectional

area A, its volume is V = A Ax. When the pressure changes, its volume
will change by A Ay, where Ay is the amount by which the thickness

of the layer changes during compression or rarefaction. Hence,

y V A Ax

As we let Ax —» so as to shrink the fluid layer to infinitesimal thick-

ness, we obtain

p~i(f§. 120-31

We have used partial derivative notation because (see Eq. 20-2) y is a

function of both x and t and we take the latter quantity as constant in

this discussion. If the particle displacement is simple harmonic, then,

from Eq. 20-2, we obtain

~T = —kym sin {kx - cot),
dX

and from Eq. 20-3 p = Bkym sin (Ax — at). (20-4)

Hence, the pressure variation at each position x is also simple harmonic.

Because v = VB/p , we can write Eq. 20-4 more conveniently as

p = [Ap v2
ym ] sin (Ax - wt).

Recall that p represents the change from standard pressure p<>. The term
in brackets represents the maximum change in pressure and is called

the pressure amplitude. If we denote this by P, then

p = P sin (Ax - wt), (20-5)

where P = kp v2ym . (20-6)

Hence, a sound wave may be considered either as a displacement

wave or as a pressure wave. If the former is written as a cosine function,



the latter will be a sine function and vice versa. The displacement wave
is thus 90° out of phase with the pressure wave. That is, when the dis-

placement from equilibrium at a point is a maximum or a minimum,
the excess pressure there is zero

;
when the displacement at a point is

zero, the excess or deficiency of pressure there is a maximum. Equa-

tion 20-6 gives the relation between the pressure amplitude [maximum
variation of pressure from equilibrium) and the displacement amplitude

(maximum variation of position from equilibrium). You should check

the dimensions of each side of Eq. 20-6 for consistency. What units may
the pressure amplitude have?

The intensity of a wave is proportional to the square of the displacement am-

plitude of the wave
;
see Section 19-6. We have just shown that for sound waves

the pressure amplitude is proportional to the displacement amplitude. Hence,

the intensity of a sound wave is proportional to the square of the pressure am-
plitude. In fact, when the intensity is expressed in terms of the pressure ampli-

tude, the frequency does not appear explicitly in the expression (see Problem 14).

Hence, by measuring pressure changes, the intensities of sounds having dif-

ferent frequencies can be compared directly. For this reason instruments that

measure pressure changes are preferred to those that measure displacement

amplitude. As we shall see in Example 1, the displacement amplitudes would
be difficult to measure in any case.

[a] The maximum pressure variation P that the ear can tolerate in loud sounds EXAMPLE ]

is about 28 N/m2 |= 28 Pa). Normal atmospheric pressure is about 100,000 Pa.

Find the corresponding maximum displacement for a sound wave in air having

a frequency of 1000 Hz.

From Eq. 20-6 we have

'" kpov*

From Table 20-1, v = 331 m/s so that

2tt Ittv 2tt X 103
, , n

k =— = = ——— m- ] = 19 m '.

k v 331

The density of air p is 1.22 kg/m3
. Hence, for P = 28 Pa we obtain

28
ym =

(19)(1.22)(331)->
m=11Xl0:' m '

The displacement amplitudes for the loudest sounds are about 10 5 m, a very

small value indeed.

(£>) In the faintest sound that can be heard at 1000 Hz the pressure amplitude

is about 2.0 x 10 5 Pa. Find the corresponding displacement amplitude.

From ym = P/kp»v2
, using these values for k, v, and p„, we obtain, with

P = 2.0 x 10 •• N/m 2
,

ym = 8 x 10 12 m a 1() » m .

This is smaller than the radius of an atom, which is about 10 '" m! How can

it be that the ear responds to such a small displacement?

In our analysis we have ignored the molecular structure of matter and treated

the tlmd as a continuous medium. In gases, however, the spaces between mole
i tiles are large compared to the diameters of the molecules. The molecules move
about at random. The oscillations produced by .1 sound wave passing through

arc superimposed on tins random thermal motion An impulse given to one

molecule is passed on to another molecule only after the lust one has moved



through the empty space between them and collided with the second. From this

brief discussion, would you ever expect the speed of sound to exceed the aver-

age molecular speed in a fluid"

Longitudinal waves traveling along a gas-filled tube are reflected at 20-4
the ends of the tube, just as transverse waves in a stretched string are STANDING
reflected at its ends. Interference between the waves traveling in op- LONGITUDINAL WAVES
posite directions gives rise to standing longitudinal waves.

If the end of the tube is closed, the reflected wave is 180° out of phase

with the incident wave. This result is a necessary consequence of the

fact that the displacement of the small volume elements at a closed

end must always be zero. Hence, a closed end is a displacement node.

If the end of the tube is open, the fluid elements there are free to move.

However, the nature of the reflection there depends on whether the

tube is wide or narrow compared to the wavelength. If the tube is narrow

compared to the wavelength, as in most musical instruments, the re-

flected wave has nearly the same phase as the incident wave. Then the

open end is almost a displacement antinode. The exact antinode is

usually somewhere near the opening, but the effective length of the

air columns of a wind instrument, for example, is not as definite as

the length of a string fixed at both ends.

Standing longitudinal waves in a gas column can be dramatically

demonstrated by means of the apparatus shown in Fig. 20-3. A source

of longitudinal waves, such as the speaker of an audio oscillator at S,

sets up vibrations in a flexible diaphragm at one end of the tube. Gas
fills the tube from the inlet and passes slowly out through regularly

spaced small openings along the top. The escaping gas is lit, giving a

series of flames. The frequency of the audio oscillator is varied and

when a frequency is found at which the gas column is in resonance, the

amplitude of the standing longitudinal waves becomes rather large;

then we can see a wavelike variation in the height and width of the gas

flames along the tube. The interval between nodes or antinodes is

clearly visible. By continuing to vary the frequency we can pass from

one resonance condition to another. The natural modes of oscillation

of the gas column are determined by the effective length of the column
and the wave speed. The wavelength k at resonance can be taken to

be twice the distance between adjacent nodes (or antinodes), and know-
ing the frequency v of the source at resonance, we can determine the

wave speed in the gas under these conditions from v = vk. In practice

there are more flexible and accurate ways to measure the speed of sound

in gases. (See Problem 21 and Example 2.)

In Fig. 20-3 the nodes and antinodes, N and A, refer to the particle

displacements in the standing wave. At a displacement node, the pres-

sure variations (above and below the average) are a maximum. Hence,

figure 20-3
Flames show the presence of standing waves in a

tube filled with illuminating gas. A and N refer to

displacement antinodes and nodes, respectively.



a displacement node corresponds to a pressure antinode. At a displace-

ment antinode the pressure remains constant with time. Hence, a dis-

placement antinode corresponds to a pressure node.

This can be understood physically by realizing that two small vol-

ume elements of gas on opposite sides of a displacement node are vibrat-

ing in opposite phase. Hence, when they approach each other, the pres-

sure at this node is increasing, and when they recede from each other,

the pressure at this node is decreasing. Two small elements of gas which
are on opposite sides of a displacement antinode vibrate in phase and
therefore give rise to no pressure variations at the antinode.

If a string fixed at both ends is bowed, transverse vibrations travel along

the string; these disturbances are reflected at the fixed ends, and a stand-

ing wave pattern is formed. The natural modes of vibration of the string

are excited and these vibrations give rise to longitudinal waves in the

surrounding air which transmits them to our ears as a musical sound.

We have seen (Section 19-10) that a string of length 1, fixed at both

ends, can resonate at frequencies given by

n n

21
V =21 n= 1, 2,3, (20-7)

Here v is the speed of the transverse waves in the string whose super-

position can be thought of as giving rise to the vibrations; the speed

v [= VF/fi) is the same for all frequencies. At any one of these fre-

quencies the string will contain a whole number n of loops between

its ends, and the condition that the ends be nodes is met (Fig. 20-4).

20-5
VIBRATING SYSTEMS
AND SOURCES OF
SOUND

figure 20-4
The first four modes of vibration of

a string fixed at both ends. Note

X„ _ / that v„\„ = v= VF/fx.

The lowest frequency, VF//x/2/, is called the fundamental frequency

v\ and the others are called overtones. Overtones whose frequencies are

integral multiples of the fundamental are said to form a harmonic series.

The fundamental is the first harmonic. The frequency 2^i is the first

overtone or the second harmonic, the frequency 3v\ is the second over-

tone or the third harmonic, and so on.

If the string is initially distorted so that its shape is the same as any
one of the possible harmonics, it will vibrate at the frequency of that

particular harmonic, when released. The initial conditions usually arise

from striking or bowing the string, however, and in such cases not only

the fundamental but many of the overtones are present in the resulting

vibration. We have a superposition of several natural modes of oscil-

lation. The actual displacement is the sum of the several harmonics

with various amplitudes; see f
:

ig. 19-12. The impulses that are sent

through the air to the car and brain give rise to one net effeel winch is

i li.ir.it uiistic of the particular stringed instrument. The quality of the



sound of a particular note (fundamental frequency) played by an instru-

ment is determined by the number of overtones present and their re-

spective intensities. Figure 20-5 shows the sound spectra and corre-

sponding waveforms for the violin and piano.*

An organ pipe is a simple example of sound originating in a vibrating

air column. If both ends of a pipe are open and a stream of air is directed

against an edge, standing longitudinal waves can be set up in the tube.

The air column will then resonate at its natural frequencies of vibra-

tion, given by

Pn =
Yl

V, n= 1, 2, 3,

Here v is the speed of the longitudinal waves in the column whose
superposition can be thought of as giving rise to the vibrations, and n

is the number of half wavelengths in the length 1 of the column. As
with the bowed string, the fundamental and overtones are excited at

the same time.

In an open pipe the fundamental frequency corresponds (approxi-

mately) to a displacement antinode at each end and a displacement node
in the middle, as shown in Fig. 20-6(3. The succeeding drawings of Fig.

20-6fl show three of the overtones, the second, third, and fourth har-

monics. Hence, in an open pipe the fundamental frequency is v/2l and
all harmonics are present.

In a closed pipe the closed end is a displacement node. Figure 20-6£>

shows the modes of vibration of a closed pipe. The fundamental fre-

quency is v/47 (approximately), which is one-half that of an open pipe

of the same length. The only overtones present are those that give a

Violin
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figure 20-5
Waveform and sound spectrum for

two stringed instruments, the violin

and the piano. The fundamental

frequency in both cases is 440

cycles/sec (concert A). In each

diagram we show only four cycles

of the wave. The sound spectrum

shows the relative amplitude of the

various harmonic components of

the wave. Notice the presence of

loud higher harmonics (especially

the fifth) in the violin spectrum.
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figure 20-6
(a) The first four modes of an open

organ pipe. The distance from the

center line of the pipe to the light

lines drawn inside the pipe shows
the displacement amplitude at each

place. Nand A mark the locations

of the displacement nodes and

antinodes. Note that both ends of

the pipe are open, (b) The first four

modes of vibration of a closed

organ pipe. Notice that the even-

numbered harmonics are absent

and the upper end of the pipe is

closed.

* See "The Physics of the Piano" by E. Donnell Blackham in Scientific American, Decem-
ber 1965 and "The Physics of the Violin" by Carleen M. Hutchins in Scientific American,
November 1962.



displacement node at the closed end and an antinode (approximately)

at the open end. Hence, as is shown in Fig. 20-6b, the second, fourth,

etc., harmonics are missing. In a closed pipe the fundamental fre-

quency is vlAl, and only the odd harmonics are present. The quality

of the sounds from an open pipe is therefore different from that from

a closed pipe.

Vibrating rods, plates, and stretched membranes also give rise to

sound waves. Consider a stretched flexible membrane, such as a drum-

head. If it is struck a blow, a two-dimensional pulse travels outward

from the struck point and is reflected again and again at the boundary

of the membrane. If some point of the membrane is forced to vibrate

periodically, continuous trains of waves travel out along the membrane.

Just as in the one-dimensional case of the string, so here too standing

waves can be set up in the two-dimensional membrane. Each of these

standing waves has a certain frequency natural to (or characteristic of)

the membrane. Again the lowest frequency is called the fundamental

and the others are overtones. Generally, a number of overtones are

present along with the fundamental when the membrane is vibrating.

These vibrations may excite sound waves of the same frequency.

figure 20-7
(a) The first six modes of vibration

of a circular drumhead clamped

around its periphery. The lines

represent nodes, the circumference

being a node in every case. The +
and — signs represent opposite

displacements,- at an instant when
the + areas are raised, the - areas

will be depressed. Note that the

frequency of each mode is not an

integral multiple of the

fundamental v, as is the case tor

strings and tubes, (b) A sketch of a

drum-head vibrating in mode v«.

The displacement shown here is

exaggerated for clarity.

The nodes of a vibrating membrane are lines rather than points (as

in a vibrating string) or planes (as in a pipe). Since the boundary of the

membrane is fixed, it must be a nodal line. For a circular membrane
fixed at its edge, possible modes of vibration together with their nodal

lines are shown in Fig. 20-7. The natural frequency of each mode is

given in terms of the fundamental r,. Notice that the frequencies of

the overtones are not harmonics, that is, they are not integral multiples

of v\. Vibrating rods also have a nonharmonic set of natural frequencies.

Rods and plates have limited use as musical instruments tor this reason

In general, we find that all elastic bodies will vibrate freel) with .i definite set

of frequencies foi a given set oi botindar) oi end conditions rhese frequencies

are called propei frequencies, characteristic frequencies o: eigenfrequent

i (rum the German— meaning own, individual, characteristic



of the system. In general, the eigenfrequencies do not form a harmonic series,

although some of them may be related as the ratio of whole numbers. In all these

cases we have standing waves, and certain regions of the bodies stay at rest all

the time. These nodes are curves in two-dimensional bodies and surfaces in

three-dimensional bodies.

Recall that for a vibrating string the equation describing a standing wave

(see Eq. 19-18fc») is of the type

• 2.7TX

y = 2y,» cos lirvt sin —— •

A

This holds for a string fixed at both ends (y = at x = and x = nk/2). The pic-

ture of the string at any time is determined by the equation

y = C sin—— = C sin—r- [t = constant),
A 1

where C is a constant "scale factor," whose value varies with time
;

1 is the

length of the string, and n is an integer specifying the mode of vibration (the

harmonic). This function sin 2ttx/\ fixes the position of the nodes and is called

the proper function, characteristic function, or eigenfunction of the string.

Likewise, the nodes of any vibrating elastic body are fixed by certain func-

tions of position which are called the eigenfunctions of the problem. In general,

these functions are not sinusoidal functions but are functions that become zero

for certain values of the coordinates. The determination of these functions and

the corresponding values of the eigenfrequencies is an important problem in

atomic, nuclear, and solid-state physics. They characterize the behavior of such

systems. It is in quantum mechanics that the procedure has been successfully

worked out for microscopic systems. The results, however, bear a striking anal-

ogy to the results of classical vibration and wave theory, as applied to macro-

scopic systems.

Figure 20-8 shows a simple apparatus that can be used to measure the speed of

sound in air by resonance methods. A vibrating tuning fork of frequency v is

held near the open end of a tube. The tube is partly filled with water. The length

of the air column can be varied by changing the water level. It is found that the

sound intensity is a maximum when the water level is gradually lowered from
the top of the tube a distance a. Thereafter, the intensity reaches a maximum
again at distances d, 2d, 3d, etc., below the level at a. Find the speed of sound

in air.

The sound instensity reaches a maximum when the air column resonates

with the tuning fork. The air column acts like a tube closed at one end. The
standing wave pattern consists of a node at the water surface and an antinode

near the open end. Since the frequency of the source is fixed and the speed of

sound in the air column has a definite value, resonance occurs at one specific

wavelength,

The distance d between successive resonance positions is therefore the distance

between adjacent nodes. (See Fig. 20-8.) Hence,

EXAMPLE 2

Combining equations we find

2d =
V-
v

or

or

\=2d.

2dv.

In an experiment with a fork of frequency v = 1080 cycles/s, d is found to be

15.3 cm. Hence,

n

(

figure 20-8
Example 2. Measuring the speed of

sound in air. The water level in the

tube can be adjusted by raising or

lowering the reservoir on the left

which is connected to the tube

by a rubber hose.



and

X = 2d = 30.6 cm

v = i>\ =
1 1080)(0.306) m/s = 330 m/s.

What significance does the distance a have- Could gases other than air be

used conveniently in this apparatus"

When two wavetrains of the same frequency travel along the same line

in opposite directions, standing waves are formed in accord with the

principle of superposition. We may characterize these waves by drawing

a plot of the amplitude of oscillation as a function of distance, as in Fig.

20-4. This illustrates a type of interference that we can call interference

in space.

The same principle of superposition leads us to another type of inter-

ference, which we can call interference in time. It occurs when two
wavetrains of slightly different frequency travel in the same direction.

With sound such a condition exists when, for example, two adjacent

piano keys are struck simultaneously.

Consider some one point in space through which the waves are pass-

ing. In Fig. 20-9a we plot the displacements produced at such a point by

the two waves separately as a function of time. For simplicity we have

assumed that the two waves have equal amplitude, although this is not

necessary. The resultant vibration at that point as a function of time is

the sum of the individual vibrations and is plotted in Fig. 20-9b. We see

that the amplitude of the resultant wave at the given point is not con-

stant but varies with time. In the case of sound the varying amplitude

gives rise to variations in loudness which are called beats. Two strings

may be tuned to the same frequency by tightening one of them while

sounding both until the beats disappear.

20-6
BEATS

(a)

(b)

figure 20-9
The beat phenomenon. Two waves

of slightly different frequencies,

shown in (a), combine in (b) to give

a wave whose amplitude (dashed

line) varies periodically with time.

Compare with Fig. 19-14, which

shows the same phenomenon
displayed as a function of distance.

Let us represent the displacement at the point produced by one
wave as

y, = y,„ cos lirvit,

and the displacement at the point produced by the other wave of equal

amplitude as

y-l = Vm COS iTTVA-

By the superposition principle the resultant displacement is

y = y t
+ y> = y„,[cos iTTi'tt I cos 2-r /'



a-b a+b £and since cos a + cos b = 2 cos—^— cos—-—

'

*

this can be written as ^

y 2ym cos 27r(^y^)rj cos 27r(^±^)t. (20-8) §

The resulting vibration may then be considered to have a frequency g

Vx + V2 "n

m
n
H

which is the average frequency of the two waves, and an amplitude

given by the expression in brackets. Hence, the amplitude itself varies S
with time with a frequency

o

Vx

If v x and v-i are nearly equal, this term is small and the amplitude fluc-

tuates slowly. This phenomenon is a form of amplitude modulation

which has a counterpart (side bands) in AM radio receivers.

A beat, that is, a maximum of amplitude, will occur whenever

cos 277-1

equals 1 or —1. Since each of these values occurs once in each cycle (see

Fig. 19-14), the number of beats per second is twice the frequency i>amp

or vx — vo. Hence, the number of beats per second equals the difference

of the frequencies of the component waves. Beats between two tones

can be detected by the ear up to a frequency of about seven per second.

At higher frequencies individual beats cannot be distinguished in the

sound produced.

When a listener is in motion toward a stationary source of sound, the 20-

T

pitch (frequency) of the sound heard is higher than when he is at rest. THE DOPPLER EFFECT
If the listener is in motion away from the stationary source, he hears a

lower pitch than when he is at rest. We obtain similar results when the

source is in motion toward or away from a stationary listener. The pitch

of the whistle of the locomotive is higher when the source is approach-

ing the hearer than when it has passed and is receding.

Christian Johann Doppler (1803-1853), an Austrian, in a paper of

1842, called attention to the fact that the color of a luminous body must
be changed by relative motion of the body and the observer. This Dop-
pler effect, as it is called, applies to waves in general. Doppler himself

mentions the application of his principle to sound waves. An experi-

mental test was carried out in Holland in 1845 by Buys Ballot, ".
. . using

a locomotive drawing an open car with several trumpeters."

We now consider the application of the Doppler effect to sound
waves, treating only the special case in which the source and observer

move along the line joining them. Let us adopt a reference frame at rest

in the medium through which the sound travels. Figure 20-10 shows a

source of sound S at rest in this frame and an observer O (note the ear)

moving toward the source at a speed v„. The circles represent wave-
fronts, spaced one wavelength apart, traveling through the medium. If

the observer were at rest in the medium, he would receive vt/X waves in

time t, where v is the speed of sound in the medium and A. is the wave-



figure 20-10
The Doppler effect due to motion of

the observer (ear). The source is at

rest.

length. Because of his motion toward the source, however, he receives

Vot/\ additional waves in this same time t. The frequency v' that he

hears is the number of waves received per unit time or

vt/k + vnt/\ v + v v + v

t v/v

That is,

V + v
rfl+* (20-9fl)

The frequency v' heard by the observer is the ordinary frequency v heard

at rest plus the increase v[v /v) arising from the motion of the observer.

When the observer is in motion away from the stationary source, there

is a decrease in frequency v[v„lv) corresponding to the waves that do

not reach the observer each unit of time because of his receding motion.

Then

v = v
v - v„ = 1/1- V

(20-9/7)

Hence, the general relation holding when the source is at rest with

respect to the medium but the observer is moving through it is

v = v
V

(20-9)

where the plus sign holds for motion toward the source and the minus
sign holds for motion away from the source. Notice that the cause of

the change here is the fact that the observer intercepts more or fewer

waves each second because of his motion through the medium.
When the source is in motion toward a stationary observer, the effect

is a shortening of the wavelength (see Fig. 20-1 1), for the source is fol-

lowing after the approaching waves and the crests theretoic come closer

together It the frequency of the source is v and its speed is vtl then dur-

ing each vibration n travels a distance vjv and each wavelength is

shortened by this amount Hence, the wavelength of the sound arriving



figure 20-11
The Doppler effect due to motion of

the source. The observer is at rest.

Wavefront 1 was emitted by the

source when it was at Si, wavefront

2 was emitted when it was at S->,

etc. At the instant the "snapshot"

was taken, the source was at S.

at the observer is not A. = v/v but A.' = v/v — vjv. Therefore, the frequency

of the sound heard by the observer is increased, being

v — TT =
A' vs )lv

(20-10fl)

If the source moves away from the observer, the wavelength emitted

is vs/v greater than A, so that the observer hears a decreased frequency,

namely

= v
[v+vs )/v \V + V.

(20-10b)

Hence, the general relation holding when the observer is at rest with

respect to the medium but the source is moving through it is

(20-10)

where the minus sign holds for motion toward the observer and the plus

sign holds for motion away from the observer. Notice that the cause of

the change here is the fact that the motion of the source through the

medium shortens or increases the wavelength transmitted through the

medium.
If both source and observer move through the transmitting medium,

the student should be able to show that the observer hears a frequency

,v -+- vs

(20-111

where the upper signs (+ numerator, — denominator) correspond to the

source and observer moving along the line joining the two in the direc-

tion toward the other, and the lower signs in the direction away from
the other. Notice that Eq. 20-1 1 reduces to Eq. 20-9 when v8

= and to

Eq. 20-10 when v = 0, as it must.

If a vibrating tuning fork on its resonating box is moved rapidly to-

ward a wall, the observer will hear two notes of different frequency. One



is the note heard directly from the receding fork and is lowered in pitch

by the motion. The other note is due to the waves reflected from the

wall, and this is raised in pitch. The superposition of these two wave

trains produces beats.

The Doppler effect is important in light. The speed of light is so great that

only astronomical or atomic sources, which have high velocities compared to

terrestrial macroscopic sources, show pronounced Doppler effects. The astro-

nomical effect consists of a shift in the wavelength observed from light emitted

by elements on moving astronomical bodies compared to the wavelength ob-

served from these same elements on earth. (See Chapter 42). An easily ob-

served consequence of the Doppler effect is the broadening (or spread in fre-

quency) of the radiation emitted from hot gases. This broadening results from

the fact that the emitting atoms or molecules move in all directions and with

varying speeds relative to the observing instruments, so that a spread of frequen-

cies is detected.

There are differences, however, in the Doppler effect formula for light and

for sound. In sound it is not just the relative motion of source and observer that

determines the frequency change. In fact, as we have seen, even when the rela-

tive motion is the same (v„ in Eq. 20-9a equals vs in Eq. 20- 10a), we obtain dif-

ferent quantitative results, depending on whether the source or the observer is

moving. This difference occurs because v and vs are relative to the medium in

which the sound wave is propagated and because this medium determines the

wave speed. Light, however, does not require a material medium for its trans-

mission, and the speed of light relative to the source or the observer is always

the same value c, regardless of the motion of these bodies relative to each other.

This is a basic postulate of the special theory of relativity (See Supplementary

Topic V). Hence, for light only the relative motion of source and observer can

lead to physical changes, there being no material medium to use as a reference

frame. Although the Doppler formula for light (Chapter 42) differs from that for

sound, the effects are qualitatively the same. We can apply Eq. 20-10 to light as

a good approximation if v., is taken to mean the relative velocity of source and

observer and if vs is very small compared to the velocity of light.

Show that Eqs. 20-9 and 20-10 become practically identical when the speed of EXAMPLE 3
the sources and the observer are small compared to the speed of sound in the

medium.
Let v = vs

= u. That is, let u represent the speed of observer or source. Then

Eq. 20-9 becomes

We must show then that Eq. 20-10,

\v +- ul

reduces to the previous form when u/v « 1

We can rewrite Eq. 20-10 as

v
' =v

{iihv)-

Now by the binomial expansion

( «.).(„2)-. 1± s + (S)
,

± ...-.

\1 -+- u/v/ \ VI V \vj

But if u/v is sufficiently small i ompared to unity that we may negleci uh v and

higher powers then



\1 +u/v)
1 ±

and Eq. 20-10 becomes v[l±-

the same as Eq. 20-9.

As a numerical example take u = 73.0 mi/h (= 117.5 km/h). The speed of

sound in air is about 730 mi/h (= 1175 km/h). Then if the source has a speed

vs = u = 73.0 mi/h toward the stationary observer, the frequency heard by the

observer is Eq. 20-10,

730

or

730 - 73.0

1.11.

If the observer has a speed v = u = 73.0 mi/h toward the stationary source, the

frequency heard by the observer is Eq. 20-9,

'v+v„\ /730 + 73.0=
H 730

-

or = 1.10.

Hence, when u/v = 73.0/730 = 1/10, the percentage difference in the frequency

heard between that for the moving observer and that for the moving source, the

relative motion being the same, is only 1%.

When v or vs becomes comparable in magnitude to v, the formulas just given

for the Doppler effect usually must be modified. One modification is required

because the linear relation between restoring force and displacement assumed

figure 20-12
Top, a group of wavefronts

associated with a projectile moving
with supersonic speed. The
wavefronts are spherical and their

envelope is a cone. The student

should see the relation between this

figure and the previous one. Bottom,

a spark photograph of a projectile

undergoing this motion. (U.S. Navy
Photograph.)



up until now may no longer hold in the medium. The speed of wave propagation

is then no longer the normal phase velocity, and the wave shapes change in

time. Components of the motion at right angles to the line joining source and

observer also contribute to the Doppler effect at these high speeds. When v or vs

exceeds v, the Doppler formula does not apply; for example, if vs > v, the source

will get ahead of the wave in one direction,- if v„ > v and the observer moves

away from the source, the wave will never catch up with the observer.

There are many instances in which the source moves through a medium at a

speed greater than the phase velocity of the wave in that medium. In such cases

the wavefront takes the shape of a cone with the moving body at its apex. Some
examples are the bow wave from a speedboat on the water and the "shock wave"

from an airplane or projectile moving through the air at a speed greater than the

velocity of sound in that medium (supersonic speeds). The Cerenkov radiation

consists of light waves emitted by charged particles which move through a

medium with a speed greater than the phase velocity of light in that medium.*

In Fig. 20-12 we show the present positions of the spherical waves which

originated at various positions of the source during its motion. The radius of

each sphere at this time is the product of the wave speed v and the time t which

has elapsed since the source was at its center. The envelope of these waves is a

cone whose surface makes an angle 6 with the direction of motion of the source.

From the figure we obtain the result

• n v
sin = — •

Vs

For water waves the cone reduces to a pair of intersecting lines. In aerodynamics

the ratio vjv is called the Mach number.

1. List some sources of infrasonic waves. Of ultrasonic waves.

2. Ultrasound can be used to reveal internal structures of the body. It can, for

example, distinguish between liquid and soft human tissues far better than

can X-rays. Discuss. (See Problem 4.)

3. What experimental evidence is there for assuming that the speed of sound

is the same for all wavelengths?

4. Give a qualitative explanation why the speed of sound in lead is less than

that in copper.

5. What quantity, if any, for transverse waves in a string corresponds to the

pressure amplitude for longitudinal waves in a tube?

6. A bell is rung for a short time in a school. After a while its sound is in-

audible. Trace the sound waves and the energy they transfer from the time

of emission until they become inaudible.

7. How can we experimentally locate the positions of nodes and antinodes in

a string ? In an air column? On a vibrating surface?

8. What physical properties of a sound wave corresponds to the human sensa-

tion of pitch, of loudness, and of tone quality?

9. What is the difference between a violin note and the same note sung by a

human voice that enables us to distinguish between them?

10. Bells frequently sound much less pleasant than pianos or violins. Why?

1 1. Does your singing really sound better in a shower? If so, are there physical

reasons for this?

12. Discuss the factors that determine the range of frequencies in your voice

and the quality of your voice.

13. Explain the origin of the sound in ordinary whistling.

See "Cerenkov Radiation its Origin Properties and Applications In l V. felle) in

temporary Physi Octobei 1961.

questions



14. What is the common purpose of the valves of a cornet and the slide of a

trombone!'*

15. The bugle has no valves. How then can we sound different notes on it? To
what notes is the bugler limited" Why"*

16. The pitch of the wind instruments rises and that of the string instruments

falls as an orchestra "warms up." Explain.*

17. Would a plucked violin string oscillate for a longer or shorter time if the

violin had no sounding board ? Explain.*

18. Explain how bowing a violin string gets it to vibrate.*

19. Explain the audible tone produced by drawing a wet finger around the rim

of a wine glass.

20. Explain how a stringed instrument is "tuned."*

21. A tube can act like an acoustic filter, discriminating against the passage

through it of sound of frequencies different from the natural frequencies of

the tube. The muffler of an automobile is an example, [a) Explain how such

a filter works, [b] How can we determine the cut-off frequency, below which

frequency sound is not transmitted?

22. Two ships with steam whistles of the same pitch sound off in the harbor.

Would you expect this to produce an interference pattern with regions of

high and low intensity-'

23. Can sound waves from a single tuning fork interfere? How can you explain

that the fork is much less audible in certain directions than in others?

24. Two identical tuning forks emit notes of the same frequency. Explain how
you might hear beats between them.

25. Suppose that, in the Doppler effect for sound, the source and receiver are at

rest in some reference frame but the transmitting medium is moving with

respect to this frame. Will there be a change in wavelength, or in frequency,

received?

26. Is there a Doppler effect for sound when the observer or the source moves at

right angles to the line joining them? How then can we determine the Dop-

pler effect when the motion has a component at right angles to this line?

27. A satellite emits radio waves of constant frequency. These waves are picked

up on the ground and made to beat against some standard frequency. The
beat frequency is then sent through a loudspeaker and one "hears" the satel-

lite signals. Describe how the sound changes as the satellite approaches,

passes overhead, and recedes from the detector on the ground.

28. Discuss factors that improve the acoustics in music halls.

t

29. A lightning flash dissipates an enormous amount of energy and is essen-

tially instantaneous. How is that energy transformed into the sound waves
of thunder and why is that sound often a spread-out sequence of noises?!

30. Transverse waves in a string can be polarized (see, for example, Question 18

of Chapter 19). Can sound waves be polarized?

31. Bats can examine the characteristics of objects— such as size, shape, dis-

tance, direction, motion — by sensing the way the high-frequency sounds

* See the following articles for discussions of the physics of musical instruments: "Acous-

tics of the Flute" by John W. Coltman, in Physics Today, November 1968. "The Physics

of Wood Winds" by Arthur H. Benade, in Scientific American, October 1960. "The Physics

of Brasses" by Arthur H. Benade, in Scientific American, July 1973. "The Physics of the

Piano" by E. Dornell Blackham, in Scientific American, December 1965. "The Physics

of Violins" by Carleen M. Hutchins, in Scientific American, November 1962. "The Elec-

tronic Music Synthesizer and the Physics of Music" by W. M. Hartman, in American
Journal of Physics, September 1975.

t See "The Development of Architectural Acoustics" by Robert S. Shankland in American
Scientist, March-April 1972.

tSee "Thunder" by Arthur A. Few, in Scientific American, July 1975.



they emit are reflected off the objects back to the bat. Discuss qualitatively

each of these features. (See "Information Content of Bat Sonar Echoes" by

f. A. Simmons, D. J.
Howell, and N. Suga in American Scientist. March-

April 1975.

SECTION 20-2

1. The lowest pitch detectable as sound by the average human ear is about

20 Hz and the highest is about 20,000 Hz. What is the wavelength of each

in air' Answer: 17 m
;
1.7 cm.

2. Bats emit ultrasonic waves. The shortest wavelength emitted in air by a bat

is about 0.13 in. (3.3 mm). What is the highest frequency a bat can emit"

3. A sound wave has a 'frequency of 440 Hz. What is the wavelength of this

sound [a) in air and [b] in water" Answer: [a) 75 cm. [b] 3.3 m.

4. Intense ultrasound of frequency 10 MHz is used to modify or destroy tumors
in soft tissue, [a) What is the wavelength in air of such a sound wave- \b)

If the speed of sound in tissue is 1500 m/s, what is the wavelength of this

wave in tissue"

5. [a] A conical loudspeaker has a diameter of 6.0 in. At what frequency will

the wavelength of the sound it emits in air be equal to its diameter- Be

ten times its diameter" Be one-tenth its diameter" [b] Make the same cal-

culations for a speaker of diameter 12 in. [Note: If the wavelength is large

compared to the diameter of the speaker, the sound waves spread out almost

uniformly in all directions from the speaker, but when the wavelength is

small compared to the diameter of the speaker, the wave energy is propa-

gated mostly in the forward direction.)

Answer: {a) 2.2; 0.22
;
22 kHz. [b] 1.1; 0.11; 11 kHz.

6. \a) A rule for finding your distance from a lightning flash is to count seconds

from the time you see the flash until you hear the thunder and then divide

the count by five. The result is supposed to give the distance in miles. Ex-

plain this rule and determine the percent error in it at standard conditions.

[b) Can you devise a similar rule for the distance in kilometers"

7. The speed of sound in a certain metal is V. One end of a long pipe of that

metal of length 1 is struck a hard blow. A listener at the other end hears

two sounds, one from the wave that has traveled along the pipe and the other

from the wave that has traveled through the air. [a] If v is the speed of sound

in air, what time interval t elapses between the two sounds" |M Suppose

t= 1.0 s and the metal is iron. Find the length /.

Answer: [a) l[V - v)/Vv. [b] 350 m.

8. Two spectators at a soccer game in a large stadium see, and a moment later

hear, the ball being kicked on the playing field. If the time delay for one

spectator is 0.90 s and for the other 0.60 s, and lines through each spectator

and the player kicking the ball meet at an angle of 90°, [a] how far is each

spectator from the player" \b) How far are the spectators from each other-"

9. A stone is dropped into a well. The sound of the splash is heard 3.0 s later.

What is the depth of the well" Answer: 41 m.

SECTION 20-3

10. The pressure in a traveling sound wave is given by the equation

p= 1.5 sin it[x - 330/1

where \ is m meters I in seconds, and p in pascals. Find \a) the pressure

amplitude, [b\ the frequency, [c) the wavelength, and [d] the speed oi the

wave.

problems



11. Two waves give rise to pressure variations at a certain point in space given

by

P\ = P sin liTvt,

p> = P sin 27r[vt — $).

What is the pressure amplitude of the resultant wave at this point when
(j) = 0, <£ = I, <t>

= e, </>
= i? All <j>'s are measured in radians.

Answer: 2.00 P
;
1.41 P

;
1.73 P

;
1.85 P.

12. In Fig. 20-13 we show an acoustic interferometer, used to demonstrate the

interference of sound waves. S is a diaphragm that vibrates under the in-

fluence of an electromagnet. D is a sound detector, such as the ear or a

microphone. Path SBD can be varied in length, but path SAD is fixed.

The interferometer contains air, and it is found that the sound intensity

has a minimum value of 100 units at one position of B and continuously

climbs to a maximum value of 900 units at a second position 1.65 cm from

the first. Find [a] the frequency of the sound emitted from the source, and

[b] the relative amplitudes of the waves arriving at the detector for either

of the two positions of B. (c) How can it happen that these waves have dif-

ferent amplitudes, considering that they originate at the same source ?

13. A spherical sound source is placed at Pi near a reflecting wall AB and a

microphone is located at point P>, as shown in Fig. 20-14. The frequency of

the sound source Pi is variable. Find two different frequencies for which the

sound intensity, as observed at P2, will be a maximum. The speed of sound

in air is 1 100 ft/s. Assume the paths of the interfering waves to be parallel.

Answer: 31 Hz
;
94 Hz.

14. Show that the intensity of a sound wave (a) when expressed in terms of the

pressure amplitude P, is given by

figure 20-13
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2p v

where v is the speed of the wave and p„ is the standard density of air, and,

[b] when expressed in terms of the displacement amplitude y,„, is given by

I = 2TT2povym 2 v2 ,

where v is the frequency of the wave, (c) If two sound waves, one in air and

one in water, are equal in intensity, what is the ratio of the pressure am-
plitude of the wave in water to that of the wave in air' (d) If the pressure

amplitudes are equal instead, what is the ratio of the intensities of the

waves?

15. A sound wave of frequency 1000 Hz propagating through air has a pressure

amplitude of 10 Pa. What are the [a] wavelength, [b] particle displacement

amplitude, and (c) maximum particle speed?

Answer: (a) 33 cm. [b] 40 pm. (c) 2.5 cm/s.

16. A note of frequency 300 Hz has an intensity of 1.0 /xW/m2
. What is the

amplitude of the air vibrations caused by this sound?

17. A certain loudspeaker produces a sound with a frequency of 2000 Hz and
an intensity of 1.2 x 10 7 hp/ft2 (9.6 x 10" 4 W/m2

) at a distance of 20 ft

(6. 1 m). Presume that there are no reflections and that the loudspeaker emits

the same in all directions, [a) What would be the intensity at 100 ft |30 m)?

[b] What is the displacement amplitude at 20 ft (6.1 m)? (c) What is the pres-

sure amplitude at 20 ft (6.1 m)?

Answer: [a) 4.8 x 10

"

9 hp/ft2 (4.0 x 10" 5 W/m2
). (b) 5.7 x 10- 7 ft(1.7x 10 7 m).

(c) 1.3 x lO 4 lb/in. 2 (0.88 Pa).

18. Two sources of sound are separated by a distance of 10 m. They both emit
sound at the same amplitude and frequency, 300 Hz, but they are 180° out

of phase. At what points along the line between them will the sound in-

tensity be at a relative minimum due to destructive interference?

19. The violin section in some symphony orchestras is divided into two parts,



one placed on each side of the conductor. Consider two violinists 8.0 m
apart, symmetrically placed with respect to the conductor and each 5.0 m
from him. If the power output from each is 1.0 x 10 -4 W, what are [a) the

intensity of each playing alone as heard by the conductor, and [b) the com-

bined intensity of both playing together |the same note) as heard by the

conductor? Answer: [a] 3.2 x 10" 7 W/m2
. [b) 4.6 x 10~7 W/m 2

.

20. Two loudspeakers, Si and S L>. each emit sound of frequency 200 Hz uni-

formly in all directions (three-dimensional waves). Si has an acoustic out-

put of 1.2 x 10~ 3 W and S 2 one of 1.8 x 10 3 W. The loudspeakers are 7.0 m
apart. Consider a point P which is 4.0 m from Si and 3.0 m from S 2 . [a] How
are the phases of the two waves arriving at P related-

1 What is the intensity

of sound at P \b) if S-2 is turned off (Si on), (c) if Si is turned off [S 2 on), and

[d] with both Si and S> on"

SECTION 20-5

21. In Fig. 20-15 a rod R is clamped at its center and a disk D at its end projects

into a glass tube, which has cork filings spread over its interior. A plunger

P is provided at the other end of the tube. The rod is set into longitudinal

vibration and the plunger is moved until the filings form a pattern of nodes

and antinodes (the filings form well-defined ridges at the pressure anti-

nodes). If we know the frequency v of the longitudinal vibrations in the rod,

a measurement of the average distance d between successive antinodes

determines the speed of sound v in the gas in the tube. Show that

v = Ivd.

22.

23

This is Kundt's method for determining the speed of sound in various gases.

If a violin string is tuned to a certain note, by how much must the tension

in the string be increased if it is to emit a note of double the original fre-

quency (that is, a note one octave higher in pitch)"

An open organ pipe has a fundamental frequency of 300 Hz. The first over-

tone of a closed organ pipe has the same frequency as the first overtone of

the open pipe. How long is each pipe? Answer: 55 cm
;
41 cm.

24. A 3.0-m skip rope is used essentially in its fundamental mode of oscillation.

If the rope has a mass of 1 .0 kg and the children are pulling back with a

force of 10 N, what is the frequency of oscillation?

A certain violin string is 50 cm long between its fixed ends and has a mass

of 2.0 g. The string sounds an A note (440 Hz) when played without finger-

ing. Where must one put one's finger to play a C (528 Hz)?

Answer: 8.3 cm from one end.

The strings of a cello have a length L. \a) By what length / must they be

shortened by fingering to change the pitch by a frequency ratio r? [b] Find

I, if L = 0.80 m and r = 6/5, 5/4, 4/3, and 3/2.

The water level in a vertical glass tube 1.0 m long can be adjusted to any

position in the tube. A tuning fork vibrating at 660 Hz is held just over

the open top end of the tube. At what positions of the water level will there

be resonance? Answer: Water filled to a height of 7/8, 5/8, 3/8, or 1/8 m.

28 s in Fig. 20-16 is a small loudspeaker driven by an audio oscillator and

amplifier, adiustable in frequency from 1000 to 2000 Hz only. D is a piece

of cylindrical sheetmetal pipe 18.0 in. long, [a] It the speed of sound in air

is 1 130 ft/s at the existing temperature, at what frequencies will resonance

occur when the frequency emitted by the speaker is varied from 1000 to

2000 Hz ?
(/>) Sketch the displacement nodes for each. Neglect end effects.

A well with vertical sides and water at the bottom resonates at 7.0 Hz and

.it in. lower frequency. The air in the well has a density ot 11 kg ma

(2.1 x io :| slug/ft' 1

), a pressure of 9.5 x 10' Pa [13.8 lb/in i and a ratio oi

specific heats of 7/5. How deep is the well- Answer: 12 m (41 ft).

Ihi- period oi a pulsating variable star may be estimated by considering

the st, it to be executing radial longitudinal pulsations m the fundamental

25

26

27
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standing wave mode
;
that is, the radius varies periodically with the time,

with a displacement antinode at the surface, {a) Would you expect the center

of the star to be a displacement node or antinode? [b] By analogy with the

open organ pipe, show that the period of pulsation T is given by

T=4R/vs ,

where R is the equilibrium radius of the star and vs is the average sound

speed, (c) Typical white dwarf stars have pressures of 1022 Pa, densities of

10 10 kg/m3
, ratio of specific heats of 4/3, and radius 0.009 solar radii. What

is the approximate pulsation period of a white dwarf ? (See "Pulsating Stars"

by John R. Percy, in Scientific American, June 1975.)

31. A tube 1.0 m (3.3 ft) long is closed at one end. A stretched wire is placed

near the open end. The wire is 0.30 m (0.98 ft) long and has a mass of

0.010 kg (6.9 x 10~ 4 slug). It is fixed at both ends and vibrates in its funda-

mental mode. It sets the air column in the tube into vibration at its funda-

mental frequency by resonance. Find [a] the frequency of oscillation of the

air column and [b] the tension in the wire.

Answer: [a] 83 Hz (82 Hz), [b] 82 N (18 lb).

32. A 31.6-cm violin string with linear density 0.65 g/m is placed near a loud-

speaker that is fed by an audio-oscillator of variable frequency. It is found

that the string is set in oscillation only at the frequencies 880 and 1320 Hz
as the frequency of the oscillator is varied continuously over the range

500 to 1500 Hz. What is the tension in the string?

SECTION 20-6

33. Two identical piano wires have a fundamental frequency of 600 Hz when
kept under the same tension. What fractional increase in the tension of

one wire will lead to the occurrence of six beats per second when both wires

vibrate simultaneously? Answer: 2.0%.

34. A tuning fork of unknown frequency makes three beats per second with a

standard fork of frequency 384 Hz. The beat frequency decreases when a

small piece of wax is put on a prong of the first fork. What is the frequency

of this fork?

SECTION 20-7

35. A bullet is fired with a speed of 2200 ft/s. Find the angle made by the shock

wave with the line of motion of the bullet. Answer: 30°.

36. Calculate the speed of the projectile illustrated in the photograph in Fig.

20-12. Assume the speed of sound in the medium through which the pro-

jectile is traveling to be 380 m/s.

37. The speed of light in water is about three-fourths the speed of light in

vacuum. A beam of high-speed electrons from a betatron emits Cerenkov
radiation in water, the wavefront being a cone of angle 120°. Find the speed

of the electrons in the water? Answer: 2.6 x 10 8 m/s.

38. A jet plane passes overhead at a height of 5000 m and a speed of Mach 1.5

(that is, 1.5 times the speed of sound), (a) Find the angle made by the shock
wave with the line of motion of the jet. (b) How long after the jet has passed

directly overhead will the shock wave reach the ground?

39. A whistle of frequency 540 Hz rotates in a circle of radius 2.00 ft an an
angular speed of 15.0 rad/s. What is [a) the lowest and [b] the highest fre-

quency heard by a listener a long distance away at rest with respect to the

center of the circle? Answer: (a) 525 Hz. [b] 555 Hz.

40. [a) Could you go through a red light fast enough to have it appear green?

[b] If so, would you get a ticket for speeding? Take X = 620 nm (= 620
nanometer = 620 x 10 9 m

;
see Table 1-2) for red light, A = 540 nm for

green light, and c = 3.0 x 108 m/s as the speed of light.

41. A bat is flittering about in a cave, navigating very effectively by the use of

ultrasonic bleeps (short emissions lasting a millisecond or less and repeated

several times a second). Assume that the sound emission frequency of the



bat is 39,000 Hz. During one fast swoop directly toward a flat wall surface,

the bat is moving at 1/40 of the speed of sound in air. What frequency does

he hear reflected off the wall? Answer: 41,000 Hz.

42. A source of sound waves of frequency 1080 Hz moves to the right with a

speed of 108 ft/s relative to the ground. To its right is a reflecting surface

moving to the left with a speed of 216 ft/s relative to the ground. Take the

speed of sound in air to be 1080 ft/s and find [a] the wavelength of the sound

emitted in air by the source, [b] the number of waves per second arriving

at the reflecting surface, \c) the speed of the reflected waves, id) the wave-

length of the reflected waves.

43. A siren emitting a sound of frequency 1000 Hz moves away from you toward

a cliff at a speed of 10 m/s. \a) What is the frequency of the sound you hear

coming directly from the siren" [b] What is the frequency of the sound you

hear reflected off the cliff T (c) Could you hear the beat frequency" Take
the speed of sound in air as 330 m/s.

Answer: [a) 970 Hz. [b] 1030 Hz. (c) No. It is too high.

44. Microwaves, which travel with the speed of light, are reflected from a dis-

tant airplane approaching the wave source. It is found that when the re-

flected waves are beat against the waves radiating from the source the beat

frequency is 990 Hz. If the microwaves are 0.10 m in wavelength, what is

the approach speed of the airplane'

45. Radar measurements in pursuing situations are relatively inaccurate com-

pared to rest situations, (a) Consider a radar unit at rest and show that the

difference dv between the frequency reflected off a car moving at a speed V
and the transmitted frequency v is given approximately by dv/v = 2V/c.

\b) Now consider the radar unit to be in a pursuing vehicle moving at a speed

v and show that dv/v = 2(v — V)/c. Discuss various cases and justify the

first sentence: in particular, consider (c) the case in which the pursuer

(police) is moving at the same speed as the speeder. What Doppler shift is

observed in this case-? Answer: None.

46. Equation 20-11 for the Doppler effect assumes a reference frame at rest in

the medium through which the sound travels. Suppose instead that the

reference frame is fixed to the earth and that the medium moves with speed

v,„ from source to observer. How must you modify Eq. 20-11 in this (more

general) case"

47. A girl is sitting near the open window of a train that is moving at a velocity

of 10.0 m/s to the east. The girl's uncle stands near the tracks and watches

the train move away. The locomotive whistle vibrates at 500 Hz. The air

is still, [a] What frequency does the uncle hear" [b] What frequency does

the girl hear" A wind begins to blow from the east at 10 m/s. [c] What fre-

quency does the uncle now hear" [d) What frequency does the girl now hear"

Answer: [a] 485 Hz. [b] 500 Hz. (c) 486 Hz. (d) 500 Hz.

48. A woman standing on the ground beside a highway blows her whistle (pitch

800 Hz) to alert three colleagues waiting 200 m away, one each to the north,

east, and south. A fourth confederate is driving west at 40 m/s. A steady

wind at 4.0 m/s is blowing from south to north. What is the frequency of

the sound heard by each of the waiting women and the driving woman-'



21
temperature

In analyzing physical situations we usually focus our attention on some
portion of matter which we separate, in our minds, from the environ-

ment external to it. We call such a portion the system. Everything out-

side the system which has a direct bearing on its behavior we call the

environment. We then seek to determine the behavior of the system by

finding how it interacts with its environment. For example, a ball can be

the system and the environment can be the air and the earth. In free fall

we seek to find how the air and the earth affect the motion of the ball.

Or the gas in a container can be the system, and a movable piston and a

Bunsen burner can be the environment. We seek to find how the be-

havior of the gas is affected by the action of the piston and burner. In all

such cases we must choose suitable observable quantities to describe

the behavior of the system. We classify these quantities, which are gross

properties of the system measured by laboratory operations, as macro-

scopic. For processes in which heat is involved the laws relating the

appropriate macroscopic quantities (which include pressure, volume,

temperature, internal energy, and entropy, among others) form the basis

for the science of thermodynamics. Many of the macroscopic quantities

(pressure, volume, and temperature, for example) are directly associated

with our sense perceptions. We can also adopt a microscopic point of

view. Here we consider quantities that describe the atoms and mole-

cules that make up the system, their speeds, energies, masses, angular

momenta, behavior during collisions, etc. These quantities, or mathe-

matical formulations based on them, form the basis for the science of

statistical mechanics. The microscopic properties are not directly

associated with our sense perceptions.

For any system the macroscopic and the microscopic quantities must

21-1
MACROSCOPIC
AND MICROSCOPIC
DESCRIPTIONS
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be related because they are simply different ways of describing the same
situation. In particular, we should be able to express the former in terms

of the latter. The pressure of a gas, viewed macroscopically, is measured

operationally using a manometer (Fig. 17-10). Viewed microscopically

it is related to the average rate per unit area at which the molecules of

the gas deliver momentum to the manometer fluid as they strike its

surface. In Section 23-4 we will make this microscopic definition of

pressure quantitative. Similarly [see Section 23-5), the temperature of a

gas may be related to the average kinetic energy of translation of the

molecules.

If the macroscopic quantities can be expressed in terms of the micro-

scopic quantities, we should be able to express the laws of thermo-

dynamics quantitatively in the language of statistical mechanics. We
can indeed do this. In the words of R. C. Tolman:

The explanation of the complete science of thermodynamics in terms of the

more abstract science of statistical mechanics is one of the greatest achieve-

ments of physics. In addition, the more fundamental character of statistical

mechanical considerations makes it possible to supplement the ordinary prin-

ciples of thermodynamics to an important extent.

We begin our examination of heat phenomena in this chapter with a

study of temperature. As we progress we shall try to gain a deeper under-

standing of these phenomena by interweaving the microscopic and the

macroscopic description— statistical mechanics and thermodynamics.

The interweaving of the microscopic and the macroscopic points of

view is characteristic of present-day physics.
'

The sense of touch is the simplest way to distinguish hot bodies from

cold bodies. By touch we can arrange bodies in the order of their hotness,

deciding that A is hotter than B, B than C, etc. We speak of this as our

temperature sense. This is a very subjective procedure for determining

the temperature of a body and certainly not very useful for purposes of

science. A simple experiment, suggested in 1690 by John Locke, shows

the unreliability of this method. Let a person immerse his hands, one in

hot water, the other in cold. Then let him put both hands in water of

intermediate hotness. This will seem cooler to the first hand and

warmer to the second hand. Our judgment of temperature can be rather

misleading. Further, the range of our temperature sense is limited. What
we need is an objective, numerical, measure of temperature.

To begin with, we should try to understand the meaning of tempera-

ture. Let an object A which feels cold to the hand and an identical ob-

ject B which feels hot be placed in contact with each other. After a

sufficient length of time, A and B give rise to the same temperature

sensation. Then A and B are said to be in thermal equilibrium with each

other. We can generalize the expression "two bodies are in thermal

equilibrium" to mean that the two bodies are in states such that, if the

two were connected, the combined systems would be in thermal equi-

librium. The logical and operational test for thermal equilibrium is to

use a third or test body, such as a thermometer. This is summarized in

a postulate often called the zeroth law o) thermodynamics It A and B
arc each in thermal equilibrium with a third body C [the "thermom-

eter"), then A and li are in thermal equilibrium with eai h othei

This discussion expresses the idea that the temperature of a system is

.i property \\ hich eventually attains the same value as that ol other sys-

when all these systems are put m contacl I Ins concepl agrees

21-2
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with the everyday idea of temperature as the measure of the hotness or

coldness of a system, because as far as our temperature sense can be

trusted, the hotness of all objects becomes the same after they have been

in contact long enough. The idea contained in the zeroth law, although

simple, is not obvious. For example, Jones and Smith each know Green,

but they may or may not know each other. Two pieces of iron attract

a magnet but they may or may not attract each other.

A more formal, but perhaps more fundamental phrasing of the zeroth law is:

There exists a scalar quantity called temperature, which is a property of all

thermodynamic systems [in equilibrium states), such that temperature

equality is a necessary and sufficient condition for thermal equilibrium. This

statement* justifies our use of temperature as a thermodynamic variable; the

formulation given above is the corollary of this new statement. Speaking

loosely, the essence of the zeroth law is: there exists a useful quantity called

"temperature.

"

There are many measurable physical properties that vary as our physio- SI-3
logical perception of temperature varies. Among these are the volume of MEASURING
a liquid, the length of a rod, the electrical resistance of a wire, the pres- TEMPERATURE
sure of a gas kept at constant volume, the volume of a gas kept at con-

stant pressure, and the color of a lamp filament. Any of these properties

can be used in the construction of a thermometer— that is, in the setting

up of a particular "private" temperature scale. Such a temperature scale

is established by choosing a particular thermometric substance and a

particular thermometric property of this substance. We then define the

temperature scale by an assumed continuous monotonic relation be-

tween the chosen thermometric property of our substance and the tem-

perature as measured on our (private) scale. For example, the thermo-

metric substance may be a liquid in a glass capillary tube and the

thermometric property can be the length of the liquid column; or the

thermometric substance may be a gas kept in a container at constant

volume and the thermometric property can be the pressure of the gas
;

and so forth. We must realize that each choice of thermometric sub-

stance and property— along with the assumed relation between prop-

erty and temperature— leads to an individual temperature scale whose
measurements need not necessarily agree with measurements made on
any other independently defined temperature scale.

This apparent chaos in the definition of temperature is removed by

universal agreement, within the scientific community, on the use of a

particular thermometric substance, a particular thermometric property,

and a particular functional relation between measurements of that prop-

erty and a universally accepted temperature scale. A private tempera-

ture scale defined in any other way can then always be calibrated against

the universal scale. We describe such a universal scale in Section 21-5

and an equivalent one in Section 25-6.

Suppose that we have chosen a thermometric substance. Let us repre-

sent by X the thermometric property that we wish to use in setting up a

temperature scale. We arbitrarily choose the following linear function

of the property X as the temperature T which the appropriate thermom-
eter, and any system in thermal equilibrium with it, has:

T[X) = aX. (21-1)

* See
f. S. Thomsen, "A Restatement of the Zeroth Law of Thermodynamics, "American

lournal of Physics, 30, 294, 1962.
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triple-point cell. It contains pure

water and is sealed after all air has

been removed. It is then immersed
in a water-ice bath. The system is

at the triple point when ice, water,

and vapor are all present, and in

equilibrium, inside the cell. The
thermometer to be calibrated is

immersed in the central well.

In this expression a is a constant which we must still evaluate. By
choosing this linear form for T[X) we have fixed it so that equal tem-

perature differences, or temperature intervals, correspond to equal

changes in X. This means, for example, that every time the mercury
column in the mercury-in-glass thermometer changes in length by one

unit, the temperature changes by a definite fixed amount, no matter

what the starting temperature. It also follows that two temperatures,

measured with the same thermometer, are in the same ratio as their

corresponding X's, that is,

T|X.)

T[X2 )
X->

To determine the constant a, and hence to calibrate the thermometer,

we specify a standard fixed point at which all thermometers must give

the same reading for temperature T. This fixed point is chosen to be that

at which ice, liquid water, and water vapor coexist in equilibrium and is

called the triple point of water. This state can be achieved only at a defi-

nite pressure and is unique (Fig. 21-1). The water vapor pressure at the

triple point is 4.58 mm-Hg. The temperature at this standard fixed point

was arbitrarily set at 273. 16 degrees Kelvin and was abbreviated 273. 16°

K. Later,* the name kelvin (symbol K) replaced degree Kelvin (symbol

°K) and the unit of thermodynamic temperature was defined as follows:

The kelvin, unit of thermodynamic temperature, is the fraction 1/273.16

o) the thermodynamic temperature of the tuple point of water. f

If wc indicate values at the triple point by the subscript tr, then for

any thermometer,

T[X) X_

T[Xlr ) Xtr

• Adopted in 1967 at the Tenth General ( onference on Weights and Measures
I In triple point ol watei w.is chosen ovei the freezing poini previousl) used] be< ause

tin t< ii n u i is more reprodu< Lble by -i fai toi ol ten than the lattei



where, for all thermometers,

T[Xlr )
= 273.16 K,

so that

T[X) = 273.16 K^- (21-2)

Hence, when the thermometric property has the value X, the tempera-

ture T, on the particular private scale selected, is given in K by T[X),

when the value of X and Xtr are inserted on the right-hand side of this

equation.

We can now apply Eq. 21-2 to several thermometers. For a liquid-in

glass thermometer X is L, the length of the liquid column, and Eq. 21-2

yields

T[L) = 273.16 K-j^-

For a gas at constant pressure, X is V, the volume of the gas, and

T{V) = 273.16 K^- (constant P).
Vtr

For a gas at constant volume, X is P, the gas pressure, and

T|P) = 273.16 K-|- (constant V).

For a platinum resistance thermometer, X is R, the electrical resistance,

and

T(R) = 273.16 K-^-'

and likewise for other thermometric substances and thermometric

properties.

A certain platinum resistance thermometer has a resistance R of 90.35 ohms EXAMPLE
when its bulb is placed in a triple-point cell like that of Fig. 21-1. What tem-

perature is defined by Eq. 21-2 if the bulb is placed in an environment such that

its resistance is 96.28 ohms-
From Eq. 21-2,

T[X) = 273.16 K-£-
Xtr

^96.28^
(273.16 K)(^^) = 280.6 K.

Note that this temperature is on a private scale, defined by applying Eq. 21-2

to a particular device, the platinum resistance thermometer.

The question now arises whether the value we obtain for the tem-

perature of a system depends on the choice of the thermometer we use

to measure it. We have insured by definition that all the different kinds

of thermometers will agree at the standard fixed point, but what hap-

pens at other points- We can imagine a series of tests in which the tem-

perature of a given system is measured simultaneously with many dif-

ferent thermometers. Results of such tests show that the thermometers
all read differently. Even when different thermometers of the same kind
are used, such as constant-volume gas thermometers using different



gases, we obtain different temperature readings for a given system in a

given state.

Hence, to obtain a definite temperature scale, we must select one

particular kind of thermometer as the standard. The choice will be

made, not on the basis of experimental convenience, but by inquiring

whether the temperature scale defined by a particular thermometer
proves to be a useful quantity in the formulation of the laws of physics.

The smallest variation in readings is found among different constant-

volume gas thermometers, which suggests that we choose a gas as the

standard thermometric substance. It turns out that as the amount of

gas used in such a thermometer, and therefore its pressure, is reduced,

the variation in readings between gas thermometers using different

kinds of gas is reduced also. Hence, there seems to be something funda-

mental about the behavior of a constant-volume thermometer con-

taining a gas at low pressure.

If the volume of a gas is kept constant, its pressure depends on the tem-

perature and increases steadily with rising temperature. The constant-

volume gas thermometer uses the pressure at constant volume as the

thermometric property.

The thermometer is shown diagrammatically in Fig. 21-2. It consists

of a bulb of glass, porcelain, quartz, platinum or platinum-iridium

(depending on the temperature range over which it is to be used), con-

nected by a capillary tube to a mercury manometer. The bulb contain-

ing some gas is put into the bath or environment whose temperature is

to be measured; by raising or lowering the mercury reservoir the mer-

cury in the left branch of the U-tube can be made to coincide with a

fixed reference mark, thus keeping the confined gas at a constant vol-

ume. Then we read the height of the mercury in the right branch. The
pressure of the confined gas is the difference of the heights of the mer-

cury columns (times pg) plus the atmospheric pressure, as indicated by

the barometer. In practice the apparatus is very elaborate and we must
make many corrections, for example, (1) to allow for the small volume
change owing to slight contraction or expansion of the bulb and (2) to

allow for the fact that not all the confined gas (such as that in the capil-

lary) has been immersed in the bath. Assume that all corrections have

been made, and let P be the corrected value of the pressure at the tem-

perature of the bath. Then the temperature is given provisionally (see

below) by

T(P) = 273.16 K
Ptr

(constant V). 121-3]

The constant-volume thermometer, used as described below, is the

thermometer which serves to establish the temperature scale used uni-

versally in scientific work today.

21-4
THE CONSTANT
VOLUME GAS
THERMOMETER

figure 21-2

A representation of a constant-

volume gas thermometer. As long as

the mercury in the left manometer
tube remains at the same position

on the scale (zero) the volume of

the confined gas will be constant.

The meniscus can always be

brought to the zero position by

raising or lowering reservoir R.

Let a certain amount of gas be put into the bulb of a constant-volume !£!-.">

gas thermometer so that when the bulb is surrounded by water at the IDEAL CAS
triple pmnt the pressure I',,- is equal to a definite value, say 80 cm-Hg. TEMPERATURE SCALE
Now surround the bulb with steam condensing at 1-atm pressure and,

with the volume kept constant at its previous value, measure the gas
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figure 21-3
The readings of a constant-volume

gas thermometer for the

temperature T of condensing steam

as a function of P,r , when different

gases are used. As the amount of

gas in the thermometer is reduced

its pressure Ptr at the triple point

decreases. Note that at a particular

P, r the values of T given by different

gas thermometers differ. The
discrepancy is small but

measurable, being about 0.2% in the

most extreme cases shown (0 2 and

H2 at 100 cm-Hg
;
note that the

entire vertical axis covers only 1.00

K). Helium gives nearly the same T
at all pressures (the curve is almost

horizontal) so that its behavior is

the most similar to that of an ideal

gas over the entire range shown.

pressure PSl the pressure at the steam point, in this case, Ps8o. Then cal-

culate the temperature provisionally from T[Ps%o) = 273.16 K (Ps8<>/80

cm-Hg). Next remove some of the gas so that P, r has a smaller value,

say 40 cm-Hg. Then measure the new value of Ps and calculate another

provisional temperature from T(Ps4o) = 273.16 K (Ps4<>/40 cm-Hg). Con-
tinue this same procedure, reducing the amount of gas in the bulb again,

and at this new lower value of P, r calculating the temperature at the

steam point T[PS ). It we plot the values T[PS ) against Plr and have enough
data, we can extrapolate the resulting curve to the intersection with the

axis where P,r = 0.

In Fig. 21-3, we plot curves obtained from such a procedure for

constant-volume thermometers of some different gases. These curves

show that the temperature readings of a constant-volume gas ther-

mometer depend on the gas used at ordinary values of the reference

pressure. However, as the reference pressure is decreased, the tempera-

ture readings of constant-volume gas thermometers using different

gases approach the same value. Therefore, the extrapolated value of the

temperature depends only on the general properties of gases and not
on any particular gas. We therefore define an ideal gas temperature
scale by the relation

T 273.16 Klim -£-
p,ro V tr

(constant V). (21-4)

Our standard thermometer is therefore chosen to be a constant-volume
gas thermometer using a temperature scale defined by Eq. 21-4.

Although our temperature scale is independent of the properties of

any one particular gas, it does depend on the properties of gases in gen-

eral (that is, on the properties of a so-called ideal gas). Therefore, to

measure a temperature, a gas must be used at that temperature. The
lowest temperature that can be measured with any gas thermometer is

about 1 K. To obtain this temperature we must use low-pressure

helium, for helium becomes a liquid at a temperature lower than any
other gas. Therefore we cannot give experimental meaning to tempera-
tures below about 1 K, by means of a gas thermometer.
We would like to define a temperature scale in a way that is inde-



pendent of the properties of any particular substance. We will show in

Section 25-6 that the absolute thermodynamic temperature scale,

called the Kelvin scale, is such a scale. We will show also that the ideal

gas scale and the Kelvin scale are identical in the range of tempera-

tures in which a gas thermometer may be used. For this reason we can

write "K" after an ideal gas temperature, as we have already done.

We will also show in Section 25-6 that the Kelvin scale has an abso-

lute zero of K and that temperatures below this do not exist. The
absolute zero of temperature has defied all attempts to reach it experi-

mentally, although it is possible to come arbitrarily close.* The ex-

istence of the absolute zero is inferred by extrapolation. You should not

think of absolute zero as a state of zero energy and no motion. The con-

ception that all molecular action would cease at absolute zero is incor-

rect. This notion assumes that the purely macroscopic concept of tem-

perature is strictly connected to the microscopic concept of molecular

motion. When we try to make such a connection, we find in fact that

as we approach absolute zero the kinetic energy of the molecules ap-

proaches a finite value, the so-called zero-point energy. The molecular

energy is a minimum, but not zero, at absolute zero.

Table 21-1
Some temperatures! (K)

Carbon thermonuclear reaction

Helium thermonuclear reaction

Solar interior

Solar corona

Shock wave in air at Mach 20
Luminous nebulae

Solar surface

Tungsten melts
Lead melts

Water freezes

Oxygen boils jl atm)

Hydrogen boils
(
1 atm)

Helium (He 4
) boils at 1 atm

He3 boils at attainable low pressure

Adiabatic demagnetization of paramagnetic salts

Adiabatic demagnetization of nuclei

tSee Scientific American, September 1954, special issue on heat.

In Table 21-1 we list the temperatures, on the Kelvin scale, of various

bodies and processes.
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3.6 x 103
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2.0 x 10'
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Two temperature scales in common use are the Celsiust and the SI-6
Fahrenheit scales. These are defined in terms of the Kelvin scale, which THE CELSIUS AND
is the fundamental temperature scale in science. FAHRENHEIT SCALES

The Celsius temperature scale uses the unit "degree Celsius" (sym-

* It is possible to prepare systems thai bavi Keh in temperatures Surprisingly

enough, such temperatures are not reached by passing through K but by proceeding

through infinite temperatures. That is, negative temperatures are not colder' than abso

lute zero but instead are 'hotter' than infinite temperatures. See Si iem e i
' n es In

Castle, Emmerich, Heiki s Millei am.1 Rayne published by Walkei and Company, New
York, 1965. The absolute zero remains experimentally unattainable,

[In i ied on a scale invented by a Swede- named ( lelsius m l
' 42 was called the

cale until 1948, when the Ninth General Conference on Weights and

lecidi I that d u should be changi !



bol °C) equal to the unit "kelvin." If we let Tc represent the Celsius

temperature, then

Tc=T- 273.15° (21-5)

relates the Celsius temperature Tf (°C) and the Kelvin temperature

T(K). We see that the triple point of water (= 273.16 K by definition)

corresponds to 0.01° C. By experiment the temperature at which ice

and air-saturated water are in equilibrium at atmospheric pressure —

the so-called ice point — proves to be 0.00° C and the temperature at

which steam and liquid water are in equilibrium at 1-atm pressure —

the so-called steam point — proves to be 100.00° C.

The Fahrenheit scale, still in use in some English-speaking coun-

tries (England itself adopted the Celsius scale for commercial and civil

use in 1964) is not used in scientific work. The relationship between

the Fahrenheit and Celsius scales is defined to be

TF = 32 + fTr.

From this relation we can conclude that the ice point (0.00° C) equals

32.0° F, that the steam point (100.0° C) equals 212.0° F, and that one

Fahrenheit degree is exactly f as large as one Celsius degree. In Fig. 21-4

we compare the Kelvin, Celsius, and Fahrenheit scales.

Let us now summarize the ideas of the last few sections. The standard

fixed point in thermometry is the triple point of water which is arbi-

trarily assigned a value of 273.16 K. The constant-volume gas ther-

mometer is the standard thermometer. The extrapolated gas scale is

used to define the ideal gas temperature from T— 273.16 K lim [P/Plr ).

This scale is identical with the (absolute thermodynamic) Kelvin scale

in the range in which a gas thermometer can be used.

By using the standard thermometer in this way, we can experimen-

tally determine other reference points for temperature measurements,
called fixed points. We list the basic fixed points adopted for experi-

mental reference in Table 21-2. The temperatures can be expressed on

Table 21-2
Fixed points on the international practical temperature
scale"

Temperature
Substance State K °C

Hydrogen Triple point 13.81 -259.34
Hydrogen Boiling point'' 17.042 -256.108
Hydrogen Boiling point 20.28 -252.87
Neon Boiling point 27.102 -246.048
Oxygen Triple point 54.361 -218.789
Oxygen Boiling point 90.188 -182.962
Waterr Triple point 273.16 0.01

Water'' Boiling point 375.15 100
Zinc Freezing point 692.73 419.58
Silver Freezing point 1235.08 961.93
Gold Freezing point 1337.58 1064.43

"The so-called IPTS-68, adopted in 1968 by the International
Committee on Weights and Measures.
6 This boiling point is for a pressure of 25/76 atm. All other boiling

points (and all freezing points) are for a pressure of 1 atm.
c The water used should have the isotopic composition of sea
water.

Triple

point

of water

Absolute

zero

273.16 K

OK

0.01° C -32.02° F

-273.15° C -a- -459.67° F

figure 21-4
The Kelvin, Celsius, and Fahrenheit

temperature scales.

21-7
THE INTERNATIONAL
PRACTICAL
TEMPERATURE SCALE



the Celsius scale, with the use of Eq. 21-5, once the Kelvin temperature

is determined.

Determining ideal gas temperatures is painstaking. It would not make
sense to use this procedure to determine temperatures for all work.

Hence, an International Practical Temperature Scale (IPTS) was adopted

in 1927 (revised in 1948 and again in 1968) to provide a scale that can

be used easily for practical purposes, such as for calibration of indus-

trial or scientific instruments. This scale consists of a set of recipes for

providing in practice the best possible approximations to the Kelvin

scale. A set of fixed points, the basic points in Table 21-2, is adopted,

and a set of instruments is specified to be used in interpolating between

these fixed points and in extrapolating beyond the highest fixed point.

The IPTS-68 departs from the Kelvin scale at temperatures between
the fixed points, but the difference is usually negligible. The IPTS-68

has become the legal standard in nearly all countries.

Common effects of temperature changes are changes in size and

changes of state of materials. Let us consider changes of size which
occur without changes of state. Consider a simple model of a crystal-

line solid. The atoms are held together in a regular array by forces of

electrical origin. The forces between atoms are like those that would

be exerted by a set of springs connecting the atoms, so that we can

visualize the solid body as a microscopic bedspring (Fig. 21-5). These

"springs" are quite stiff (Problem 9, Chapter 15), and there are about

1022 of them per cubic centimeter. At any temperature the atoms of the

solid are vibrating. The amplitude of vibration is about 10 9 cm, about

one-tenth of an atomic diameter, and the frequency about 10 13 Hz.

When the temperature is increased the average distance between

atoms increases, which leads to an expansion of the whole solid body.

The change in any linear dimension of the solid, such as its length,

width, or thickness, is called a linear expansion. If the length of this

linear dimension is /, the change in length, arising from a change in

temperature AT, is A7. We find from experiment that, if AT is small

enough, this change in length Ai is proportional to the temperature

change AT and to the original length 1. Hence, we can write

M = al AT, (21-6)

where a, called the coefficient of linear expansion, has different values

for different materials. Rewriting this formula we obtain

a =
/AT

so that a has the meaning of a fractional change in length per degree

temperature change.

Strictly speaking, the value of a depends on the actual temperature

and the reference temperature chosen to determine / (see Problem 13).

However, its variation is usually negligible compared to the accuracy

with which engineering measurements need to be made. We can safely

take it as a constant for a given material, independent of the tempera-

ture. In Table 21-3 we list the experimental values for the average co-

efficient of linear expansion ol several common solids. For all the sub-

stances listed, the change in size consists of an expansion as the

21-8
TEMPERATURE
EXPANSION

figure 21-5
A solid behaves in many ways as if

it is a microscopic "bedspring" in

which the molecules are held

together by elastic forces.



Table 21-3
Some values* of

Substance a (per C°) Substance a (per C°)

Aluminum 23 x 10 « Hard rubber 80 x 10 °

Brass 19 x 10- 6 Ice 51 x 10- 6

Copper 17 x 10 * Invar 0.7 x 10"
Glass (ordinary) 9 x 10- 6 Lead 29 x 10"6

Glass (pyrex) 3.2 x l0-« Steel 11 x 10«

* For the range 0° C to 100° C
;
except - 10° C to 0° C for ice.

temperature rises, for a is positive. The order of magnitude of the ex-

pansion is about 1 millimeter per meter length per 100 Celsius degrees.**

A steel metric scale is to be ruled so that the millimeter intervals are accurate EXAMPLE 2
to within about 5 x 10 5 mm at a certain temperature. What is the maximum
temperature variation allowable during the ruling"

From Eq. 21-6,

we have

M = al AT,

5 x 10" 5 mm =
( 1 1 x 10- 6/C°)| 1 .0 mm) AT

in which we have used a for steel, taken from Table 21-3. This yields AT =
5 C°. The temperature maintained during the ruling process must be main-

tained when the scale is being used and it must be held constant to within

about 5 C°.

Note (see Table 21-3) that if the alloy invar is used instead of steel, then for

the same required tolerance one can permit a temperature variation of about

75 C°
;
or for the same temperature variation (AT= 5 C°) the tolerance achieved

would be more than an order of magnitude better.

On the microscopic level thermal expansion of a solid suggests an increase in

the average separation between the atoms in the solid. The potential energy

curve for two adjacent atoms in a crystalline solid as a function of their inter-

nuclear separation is an asymmetric curve like that of Fig. 21-6. As the atoms
move close together, their separation decreasing from the equilibrium value

r , strong repulsive forces come into play and the potential curve rises steeply

[F = —dU/dr); as the atoms move farther apart, their separation increasing from

the equilibrium value, somewhat weaker attractive forces take over and the

potential curve rises more slowly. At a given vibrational energy the separation

of the atoms will change periodically from a minimum to a maximum value,

the average separation being greater than the equilibrium separation because

of the asymmetric nature of the potential energy curve. At still higher vibra-

tional energy the average separation will be even greater. The effect is en-

hanced by the fact that in taking a time average of the motion one must allow

for the longer time spent at extreme separations (lower vibrational speeds). Be-

cause the vibrational energy increases as the temperature rises, the average

separation between atoms increases with temperature and the solid as a whole
expands.

Note that if the potential energy curve were symmetric about the equi-

librium separation, then no matter how large the amplitude of the vibration

becomes the average separation would correspond to the equilibrium separa-

tion. Hence, thermal expansion is a direct consequence of the deviation from

**One Celsius degree (1 C°) is a temperature interval (AT) of one unit measured on a

Celsius scale. One degree Celsius (

1° C) is a specific temperature reading (7V) on that scale.

U(r)

figure 21-6
Potential energy curve for two
adjacent atoms in a crystalline

solid as a function of internuclear

separation. The equilibrium

separation is r . Because the curve

is asymmetric the average

separation [11,12] increases as the

temperature (Ti,T2 ), and hence the

vibrational energy [Eh E->], increases.



symmetry (i.e., the assymetry) of the potential energy curve characteristic of

solids.

Some crystalline solids, in certain temperature regions, may contract as the

temperature rises. The above analysis remains valid if one assumes that only

compressional (i.e., longitudinal) modes of vibration exist or that these modes
predominate. However, solids may vibrate in shear-like (i.e., transverse) modes
as well and these modes of vibration will allow the solid to contract as the

temperature rises, the average separation of the planes of atoms decreasing. For

certain types of crystalline structure and in certain temperature regions these

transverse modes of vibration may predominate over the longitudinal ones,

giving a net negative coefficient of thermal expansion.

It should be emphasized that the microscopic models presented here are

oversimplifications of a complex phenomenon which can be treated with

greater insight with the use of thermodynamics and quantum theory.

For many solids, called isotropic, the percent change in length for a

given temperature change is the same for all lines in the solid. The
expansion is quite analogous to a photographic enlargement, except

that a solid is three-dimensional. Thus, if you have a flat plate with a

hole punched in it, A//7 (= aAT) for a given AT is the same for the length,

the thickness, the face diagonal, the body diagonal, and the hole diam-

eter. Every line, whether straight or curved, lengthens in the ratio a
per degree temperature rise. If you scratch your name on the plate, the

line representing your name has the same fractional change in length

as any other line. The analogy to a photographic enlargement is shown
in Fig. 21-7.
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figure 21-7
The same steel rule at two different temperatures. On expansion every

dimension is increased by the same proportion: the scale, the numbers, the

hole, and the thickness are all increased by the same factor. (The expansion

shown, from (a) to (b), is obviously exaggerated, for it would correspond to

an imaginary temperature rise of about 100,000 C°!)

With these ideas in mind, you should be able to show (see Problems

14 and 16) that to a high degree of accuracy the fractional change in area

A per degree temperature change for an isotropic solid is 2a, that is,

A^ = IolA AT,

and the fractional change in volume V per degree temperature change

for an isotropic solid is 3a, that is,

AV= 3aV AT.

Because the shape of a fluid is not definite, only the change in vol

lime with temperature is significant. Gases respond strongly to tem-

perature or pressure changes, whereas the change in volume of Liquids

with changes in temperature or pressure is very much smaller. If we



let (3 represent the coefficient of volume expansion for a liquid, that is,

1 AV
P = VAT

we find that /3 is relatively independent of the temperature. Liquids

typically expand with increasing temperature, their volume expansion

being generally about ten times greater than that of solids.

However, the most common liquid, water, does not behave like other

liquids. In Fig. 21-8 we show the expansion curve for water. Notice that

above 4° C water expands as the temperature rises, although not

linearly. As the temperature is lowered from 4 to 0° C, however, water

expands instead of contracting. Such an expansion with decreasing

temperature is not observed in any other common liquid; it is observed

in rubberlike substances and in certain crystalline solids over limited

temperature intervals. The density of water is a maximum at 4° C,

where its value* is 1000 kg/m3 or 1.000 g/cm3
. At all other temperatures

its density is less. This behavior of water is the reason why lakes freeze

first at their upper surface.

-
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1. Is temperature a microscopic or macroscopic concept?

2. Are there physical quantities other than temperature that tend to equalize

if two different systems are joined!
1

3. Give a reasonable explanation for this: a piece of ice and a thermometer
are suspended in an insulated evacuated enclosure so that they are not in

contact and yet the thermometer reading decreases for a time.

4. Can a temperature be assigned to a vacuum-

5. Does our "temperature sense" have a built-in sense of direction; that is,

does hotter necessarily mean higher temperature, or is this just an arbi-

trary convention" Celsius, by the way, originally chose the steam point as

0° C and the ice point as 100° C.

6. Figure 21-1 shows an apparatus by which the triple point of water is real-

ized. How would you modify this apparatus to realize the freezing point of

water-

7. How would you suggest measuring the temperature of (a) the sun, (b) the

figure 21-8
(a) The variation with temperature

of density of water under

atmospheric pressure, (b) The
variation between and 10° C in

more detail.

questions

* It is to this value of unit maximum density of water that the relative sizes of the kilo-

gram and meter were originally supposed to correspond. Accurate measurements show,
however, that the international standards of mass and length do not correspond exactly

to this value. The maximum density of water is actually 999.973 kg/m3 at 3.98° C.



earth's upper atmosphere, (c) an insect, \d) the moon, [e] the ocean floor,

and \f) liquid helium 7

8. Is one gas any better than another for purposes of a standard constant-

volume gas thermometer? What properties are desirable in a gas for such

purposes?

9. State some objections to using water-in-glass as a thermometer. Is mercury-

in-glass an improvement?

10. Can you explain why the column of mercury first descends and then rises

when a mercury- in-glass thermometer is put in a flame?

1 1

.

What do the Celsius and Fahrenheit temperature conventions have in

common?

12. Considering the Celsius, Fahrenheit, and Kelvin scales, does any one stand

out as "Nature's scale"? Discuss.

13. What are the dimensions of a, the coefficient of linear expansion? Does the

value of a depend on the unit of length used? When F° are used instead of

C° as a unit of temperature change, does the numerical value of a change?

If so, how?

14. A metal ball can pass through a metal ring. When the ball is heated, how-

ever, it gets stuck in the ring. What would happen if the ring, rather than

the ball, were heated?

15. A bimetallic strip, consisting of two different metal strips riveted together,

is used as a control element in the common thermostat. Explain how it

works.

16. Two strips, one of iron and one of zinc, are riveted together side by side to

form a straight bar which curves when heated. Why is it that the iron is on
the inside of the curve?

17. Explain how the period of a pendulum clock can be kept constant with

temperature by attaching tubes of mercury to the bottom of the pendulum.

(See Problem 32.)

18. Explain why some rubberlike substances contract with rising temperature.

(See Question 25, Chapter 25.)

19. Explain why the apparent expansion of a liquid in a bulb does not give the

true expansion of the liquid.

20. Why do liquids typically have much larger volume coefficients of expansion

than solids?

21. Does the change in volume of a body when its temperature is raised depend

on whether the body has cavities inside, other things being equal? Con-

sider a solid sphere and a hollow sphere, for example.

22. What difficulties would arise if you defined temperature in terms of the

density of water?

23. Explain why lakes freeze first at the surface.

24. What is it that causes water pipes to burst in the winter-'

25. What can you conclude about how the melting point of ice depends on

pressure from the fact that ice floats on water?

SECTION 21-3

I. A resistance ihcrminneter is a thermometer in which the thcrmometric

property is electrical resistance. We are free to define temperatures measured

by such a thermometer in Kelvins to be directly proportional to the resis-

tance R, measured in ohms. A certain resistance thermometer is found to

have a resistance R of 90.35 ohms when its bulb is placed in water at the

triple point temperature 273.16 K). What temperature is indicated by the

thermometer if the bulb is placed In an environment such that its resistance

is 96 '- "inns Answei 291.1 K,

problems



2. It is an everyday observation that hot and cold objects cool down or warm
up to the temperature of their surroundings. If the temperature AT between

an object and its surroundings is not too great, the rate of cooling or warm-

ing is approximately proportional to the temperature difference between

the object and its surroundings; that is,

*F~JCAT.
dt

where K is a constant. The minus sign appears because AT decreases with

time if AT is positive and vice versa. This is known as Newton's law of

cooling, [a] On what factors does K depend' What are its dimensions? (b)

If at some instant f = the temperature difference is ATn , show that it is

AT = ATo<r*'

at a time t later.

3. A mercury-in-glass thermometer is placed in boiling water for a few min-

utes and then removed. The temperature readings at various times after

removal are as follows:

t, s T, °C t, s T, °C t, s T, °C t, s T, °C

98.4 25 65.1 100 50.3 700 26.5

5 76.1 30 63.9 150 43.7 1000 26.1

10 71.1 40 61.6 200 38.8 1400 26.0

15 67.7 50 59.4 300 32.7 2000 26.0

20 66.4 70 55.4 500 27.8 3000 26.0

Plot K as a function of time, assuming Newton's law of cooling to apply

[see Problem 2]. To what extent are you justified in assuming that New-
ton's law of cooling applies here-

SECTION 21-5

4. If the ideal gas temperature at the steam point is 373.15 K, what is the

limiting value of the ratio of the pressures of a gas at the steam point and

at the triple point of water when the gas is kept at constant volume?

5. Let ptr be the pressure in the bulb of a constant-volume gas thermometer
when the bulb is at the triple-point temperature of 273.16 K and p the pres-

sure when the bulb is at room temperature. Given three constant-volume

gas thermometers: for No. 1 the gas is oxygen and p„- = 20 cm-Hg
;
for No. 2

the gas is also oxygen but p, r = 40 cm-Hg
;
for No. 3 the gas is hydrogen

and ptr = 30 cm-Hg. The measured values of p for the three thermometers

are p lt p 2 , and p :i . [a] An approximate value of the room temperature T can

be obtained with each of the thermometers using

T, = 273.16 K Pi
tt ; T2 = 273.16 K

20 cm-Hg 40 cm-Hg

P3
T,= 273.16 K

30 cm-Hg

Mark each of the following statements "true" or "false": (1) With the

method described, all three thermometers will give the same value of T
(2) The two oxygen thermometers will agree with each other but not with

the hydrogen thermometer. (3) Each of the three will give a different value

of T. [b] In the event that there is disagreement among the three thermom-

eters, explain how you would change the method of using them to cause all

three to give the same value of T
Answer: [a] (1) False; (2) false; (3) true, [b] Take the limiting value as

Ptr - 0.



SECTION 21-6

6. [a) The temperature of the surface of the sun is about 6000 K. Express this

on the Fahrenheit scale, [b] Express normal human body temperature, 98.6°

F, on the Celsius scale, (c) In the continental United States, the highest

officially recorded temperature is 134° F at Death Valley, California, and

the lowest is —70° F at Rogers Pass, Montana. Express these extremes on

the Celsius scale. \d) Express the normal boiling point of oxygen, — 183°C,

on the Fahrenheit scale, [e] At what Celsius temperature would you find a

room to be uncomfortably warm"

7. At what temperature do the following pairs of scales give the same reading?

[a] Fahrenheit and Celsius. \b) Fahrenheit and Kelvin, [c] Celsius and Kelvin.

Answer: [a) -40°. [b] 575°. \c) Not possible.

SECTION 21-7

8. In the interval between and 660° C, a platinum resistance thermometer of

definite specifications is used for interpolating temperatures on the Inter-

national Practical Temperature Scale. The temperature Tc is given by a

formula for the variation of resistance with temperature:

R = Ro[l + ATc + BTc2
).

R», A, and B are constants determined by measurements at the ice point, the

steam point, and the sulphur point, [a] If R equals 10.000 ohms at the ice

point, 13.946 ohms at the steam point, and 24.817 ohms at the sulphur

point, find R a , A, and B. [b] Plot R versus Tc in the temperature range from

to 660° C.

SECTION 21-8

9. The Pyrex glass mirror in the telescope at the Mount Palomar Observatory

has a diameter of 200 in. The temperature ranges from —10° to 50° C on

Mount Palomar. Determine the maximum change in the diameter of the

mirror. Answer: 0.038 in.

10. A circular hole in an aluminum plate is 1.000 in. (2.540 cm) in diameter at

0° C. What is its diameter when the temperature of the plate is raised to

100° C?

1 1. Steel railroad tracks are laid when the temperature is 0° C. A standard sec-

tion of rail is then 12.0 m long. What gap should be left between rail sec-

tions so that there is no compression when the temperature gets as high as

42° C? Answer. 0.55 cm.

12. A steel rod is 3.000 cm in diameter at 25° C. A brass ring has an interior

diameter of 2.992 cm at 25° C. At what common temperature will the ring

lust slide onto the rod?

13. Show that if a is treated as a variable, dependent on the temperature T,

then

u 1 + /:« (T) dT

where L» is the length at a reference temperature To.

14. The area A of a rectangular plate is ab. Its coefficient of linear expansion

is a. After a temperature rise AT, side a is longer by Aa and side b is Longei

by A/7. Show that if we neglect the small quantity Ad Ab/ab (see Fig. 2 I 9]

then A.4 = 2aA AT.

15. A glass window is exactly 20 cm [7.9 in.] by 30 cm [11.8 in.) at 10° C. By

how much has its area increased when its um|u uture is40°C'

Answer: 0.32 cm- (0.050 in '

] 6 Prove that if we negle( I extremely small quantities the change in volume
ut ,i si. In] mi expansion through a temperature rise AT is given by AV =

JcrVA7 where a is the coefficient ol lineal expansion



17. Find the change in volume of an aluminum sphere of 10.0-cm (3.94-in.)

radius when it is heated from 0° to 100° C. Answer: 29 cm3 (1.8 in. 3 ).

18. When the temperature of a "copper" penny is raised by 100 C c
, its diam-

eter increases by 0.18%. To two significant figures give the percent in-

crease in the [a] area of a face, [b) thickness, (c) volume, and [d] mass of the

penny, [e] What is the coefficient of linear expansion-'

19. Density is mass per unit volume. If the volume V is temperature dependent,

so is the density p. Show that the change in density Ap with change in tem-

perature AT is given by

Ap = -0p AT

where /3 is the volume coefficient of expansion. Explain the minus sign.

20. Show that when the temperature of a liquid in a barometer changes by AT,

and the pressure is constant, the height h changes by Ah = fib AT where /3

is the coefficient of volume expansion.

21. [a] Show that if the lengths of two rods of different solids are inversely

proportional to their respective coefficients of linear expansion at some
initial temperature, the difference in length between them will be constant

at all temperatures. \b) What should be the lengths of a steel and a brass

rod at 0° C so that at all temperatures their difference in length is 0.30 m?
Answer: [b] Steel, 71 cm

;
brass, 41 cm.

22. Consider a mercury-in-glass thermometer. Assume that the cross-section

of the capillary is constant at A n , and that V(1 is the volume of the bulb of

mercury at 0.00° C. If the mercury just fills the bulb at 0.00° C, show that

the length of the mercury column in the capillary at a temperature t° C is

23.

24.

25.

26.

27.

'-> 3a)t.

that is, proportional to the temperature, where (3 is the volume coefficient

of expansion of mercury and a is the linear coefficient of expansion of glass.

Imagine an aluminum cup of 0.1 liter capacity filled with mercury at 12° C.

How much mercury, if any, will spill out of the cup if the temperature is

raised to 18° C? (The coefficient of volume expansion of mercury is 1.8 x
10~ 4/C°.) Answer: 70 mm 3

.

A clock pendulum made of Invar has a period of 0.500 s at 20° C. If the clock

is used in a climate where the temperature averages 30° C, what correction

(approximately) is necessary at the end of 30 days to the time given by the

clock?

[a] Prove that the change in rotational inertia I with temperature of a solid

object is given by A/= 2al AT [b] Prove that the change in period f of a phys-

ical pendulum with temperature is given by At = \at AT.

Consider a uniform solid brass cylinder of mass M = 0.50 kg and radius

R = 0.030 m. The cylinder is placed in frictionless bearings and set to rotate

about its cylinder axis with an angular velocity w = 60 rad/s. (a) What is the

angular momentum of the cylinder and how much work is required to reach

this rate of rotation, starting from rest? After the cylinder has reached the

state of rotation just described we heat it, without mechanical contact,

from room temperature (20° C) to 100° C. Take the mean coefficient of

linear expansion of brass to be a = 2.0 x 10 5/C°. Find the fractional changes,

if any, in [b] the angular velocity, (c) the angular momentum, and [d] the

kinetic energy of rotation of the cylinder.

A 1.0-m long vertical glass tube is half-filled with a liquid at 20° C. How
much will the height of the liquid column change when the tube is heated

to 30° C: Take agIass = 1.0 x 10- 5/C° and j8liquid = 4 x 10~ 5/C
o

.

Answer: Increases by 0.10 mm.
A solid aluminim cylinder is suspended by a flexible steel belt attached to

opposite walls at the same level, as shown in Fig. 21-10. It is required that

the axis C of the cylinder not be moved by thermal expansions and contrac-

figure 21-10
Problem 28
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tions of the cylinder and belt. The angle = 50° and remains practically

unaffected by temperature changes. Find the radius R of the cylinder when
T= 290 K if L = 2.5 m at this temperature. iNeglect the weight of the belt.)

29. Two vertical glass tubes filled with a liquid are connected at their lower

ends by a horizontal capillary tube. One tube is surrounded by a bath con-

taining ice and water in equilibrium (0.0° C), the other by a hot-water bath

It). The difference in height of the liquids in the two columns is Ah. and h

is the height of the column at 0.0° C. [a) Show how this apparatus (Fig. 21-

11), first used in 1816 by Dulong and Petit, can be used to measure the true

coefficient of volume expansion /3 of a liquid (rather than the differential

expansion between glass and liquid). \b) Determine fi if t = 16.0° C, h =
126 cm, and Ah = 1.50 cm. Answer: \b) 7.44- x lOVC.

30. An aluminum cube 20 cm on an edge floats on mercury. How much fur-

ther will the block sink down when the temperature rises from 270 K to

320 K? (The coefficient of volume expansion of mercury is 1.8 x 10~ 4/C°.)

31. The distance between the towers of the main span of the Golden Gate

Bridge at San Francisco is 4200 ft. The sag of the cable halfway between

the towers at 50° F is 470 ft. Take a = 6.5 x 10 6/F° for the cable and compute

[a) the change in length of the cable and \b) the change in sag for a tempera-

ture change from —20 to 110° F. Assume no bending or separation of the

towers and a parabolic shape for the cable. Answer: [a] 3.7 ft. [b) 6.5 ft.

32. A glass tube nearly filled with mercury is attached in tandem to the bottom

of an iron pendulum rod 100 cm long. How high must the mercury be in

the glass tube so that the center of mass of this pendulum will not rise or

fall with changes in temperature' (The cross-sectional area of the tube is

equal to that of the iron rod. Neglect the mass of the glass. Iron has a den-

sity of 7.87 x 10 3 kg/m 3 and a linear coefficient of expansion equal to 12 x

10 _6
/C°. The coefficient of volume expansion of mercury is 18 x 10 _5

/C°.)

figure 21-

Problem 29

11



22
heat and

the first law of

thermodynamics
When two systems at different temperatures are placed together, the

final temperature reached by both systems is somewhere between the

two starting temperatures. This is a common observation. Humans have

long sought for a deeper understanding of such phenomena. Up to the

beginning of the nineteenth century, they were explained by postulat-

ing that a material substance, caloric, existed in every body. It was be-

lieved that a body at high temperature contained more caloric than one

at a low temperature. When the two bodies were put together, the body

rich in caloric lost some to the other until both bodies reached the same
temperature. The caloric theory was able to describe many processes,

such as heat conduction or the mixing of substances in a calorimeter,

in a satisfactory way. However, the concept of heat as a substance,

whose total amount remained constant, eventually could not stand the

test of experiment. Nevertheless, we still describe many common tem-

perature changes as the transfer of "something" from one body at a

higher temperature to one at the lower, and this "something" we call

heat. A useful but nonoperational definition, is: heat is that which is

transferred between a system and its surroundings as a result of tem-

perature differences only.

Eventually it became generally understood that heat is a form of

energy rather than a substance. The first conclusive evidence that heat

could not be a substance was given by Benjamin Thompson (1753-

1814), an American who later became Count Rumford of Bavaria. In a

paper read before the Royal Society* in 1798 he wrote:

* Rumford, an American, was instrumental in founding the Royal Institution in London.

On the other hand, the Smithsonian Institution in Washington was founded on the basis

of a £100,000 bequest from the estate of an Englishman, James Smithson (1765-1829).

22-1
HEAT, A FORM OF
ENERGY

475



I . . . am persuaded, that a habit of keeping the eyes open to everything that is

going on in the ordinary course of the business of life has oftener led, as it were

by accident, or in the playful excursions of the imagination ... to useful doubts

and sensible schemes for investigation and improvement, than all the more
intense meditations of philosophers, in the hours expressly set apart for study.

It was by accident that I was led to make the Experiments of which I am about

to give an account.

Rumford made this discovery while supervising the boring of cannon
for the Bavarian government. To prevent overheating, the bore of the

cannon was kept full of water. The water was replenished as it boiled

away during the boring process. It was accepted that caloric had to be

supplied to water to boil it. The continuous production of caloric was
explained by assuming that when a substance was more finely sub-

divided, as in boring, its capacity for retaining caloric became smaller,

and that the caloric released in this way was what caused the water to

boil. Rumford observed in specific experiments, however, that the water

boiled away even when his boring tools became so dull that they were
no longer cutting or subdividing matter.

He wrote after ruling out by experiment all possible caloric interpre-

tations,

... in reasoning on this subject, we must not forget to consider that most re-

markable circumstance, that the source of Heat generated by friction, in these

Experiments, appeared evidently to be inexhaustible ... it appears to me to

be extremely difficult, it not quite impossible, to form any distinct idea of any

thing capable of being excited and communicated in the manner the Heat was
excited and communicated in these Experiments, except it be MOTION.

Here we have the germ of the idea that the mechanical work ex-

pended in the boring process was responsible for the creation of heat.

The idea was not clearly put until much later, by others. Instead of the

continuous disappearance of mechanical energy and the continuous cre-

ation of heat, neither obeying any conservation principle, the whole
process is now viewed as a transformation of energy from one form to

another, the total energy being conserved.

Although the concept of energy and its conservation seems self-

evident today, it was a novel idea as late as the 1850s and had eluded

such men as Galileo and Newton. Throughout the subsequent history

of physics this conservation idea led to new discoveries. Its early his-

tory was remarkable in many ways. Several thinkers arrived at this great

concept at about the same time; at first, all of them either met with a

cold reception or were ignored. The principle of the conservation of

energy was established independently by Julius Mayer (1814-1878) in

Germany, James Joule (1818-1889) in England, Hermann von Helm-
holtz |1821-1894) in Germany, and L. A. Colding (1815-1888) in Den-
mark/ 1

It was Joule who showed by experiment that, when a given quantity

of mechanical energy is converted to heat, the same quantity of heat

Alter the posthumous publication of his Reflections on the Motive Power of Fire (in

1872, 40 years aftei his death] it became clear that Sadi Carnol I 796- \XM) had arrived

at the conservation of energy principle before all the others. It should give some food foi

thought tu realize thai the five nun who first understood the conservation ol energy prin-

ciple were all younp and all had majoi professional Interests outside the field of physics:

Mayer irrn L8 fielmholtz physiology age 12 Colding engineering; age 27),

[oul< be inherited his father's brewer) agi and Carnol en

r umford ag< i an old man l>\ i omparison



is always developed. Thus, the equivalence of heat and mechanical work

as two forms of energy was definitely established.

Helmholtz first expressed clearly the idea that not only heat and

mechanical energy but all forms of energy are equivalent, and that a

given amount of one form cannot disappear without an equal amount
appearing in some of the other forms.

The unit of heat Q used to be defined* quantitatively in terms of a speci- 22"2
fied change produced in a body during a specified process. Thus, if the QUANTITY OF HEAT
temperature of one kilogram of water is raised from 14.5 to 15.5° C by AND SPECIFIC HEAT
heating, we say that one kilocalorie (kcal) of heat has been added to the

system. The calorie (= 10~3 kcal) is also used as a heat unit. (Inciden-

tally, the "calorie" used to measure the energy content of foods is ac-

tually a kilocalorie.) In the engineering system the unit of heat is the

British thermal unit (Btu), which is defined as the heat necessary to

raise the temperature of one pound of water from 63 to 64° F.

The reference temperatures are stated because, near room tempera-

ture, there is a slight variation in the heat needed for a one-degree tem-

perature rise with the temperature interval chosen. We will neglect

this variation for most practical purposes. The heat units are related

as follows:

1.000 kcal = 1000 cal = 3.968 Btu.

Substances differ from one another in the quantity of heat needed to

produce a given rise of temperature in a given mass. The ratio of the

amount of heat energy AQ supplied to a body to its corresponding tem-

perature rise AT is called the heat capacity C of the body
;
that is,

C = heat capacity = -r=-

The word "capacity" may be misleading because it suggests the essen-

tially meaningless statement "the amount of heat a body can hold,"

whereas what is meant is simply the energy that must be added as heat

in order to raise the temperature of the body one degree.

The heat capacity per unit mass of a body, called specific heat, is

characteristic of the material of which the body is composed:

c =
heat capacity = AQ

mass m AT

We properly speak, on the one hand, of the heat capacity of a penny but,

on the other, of the specific heat of copper.

Neither the heat capacity of a body nor the specific heat of a material

is constant but depends on the location of the temperature interval. The
previous equations give only average values for these quantities in the

temperature range of AT. In the limit, as AT —» 0, we can speak of

the specific heat at a particular temperature T.

The heat that must be given to a body of mass m, whose material

has a specific heat capacity c, to increase its temperature from T, to

Tf, is, assuming AT « Tf - T„

Q = 2 AQ = V mc AT. (22-2)

We shall see in Section 22-5 how the calorie is now defined.



In the differential limit this becomes

Q = m I

' c dT 122-3)

where c is a function of the temperature. At ordinary temperatures and

over ordinary temperature intervals, specific heats can be considered

to be constants. Figure 22-1 shows the variation in the specific heat of

water with temperature. Information of this sort is obtained by using

an electrical heating coil to supply heat at a rate that can be accurately

determined. We see from the graph that the specific heat of water varies

less than \% from its value of 1.000 cal/g-C° at 15° C.

1.008

0.996
40 60

Temperature, "C

figure 22-1
The variation with temperature of

the specific heat of water at a

pressure of 1.00 atm. The circle,

located at 15° C, suggests the

definition of the calorie.

Equation 22-1 does not define specific heat uniquely. We must also

specify the conditions under which the heat AQ is added to the speci-

men. We have implied that the condition is that the specimen remain

at normal (constant) atmospheric pressure while we add the heat. This

is a common condition, but there are many other possibilities, each

leading, in general, to a different value for c. To obtain a unique value

for c we must specify the conditions, such as specific heat at constant

pressure c,„ specific heat at constant volume c,, etc.

Table 22-1
Values for c,, for some solids

(at room temperature and for p 1.0 atm)

Molecular Molar Molar
Specific heat Specific heat weight heat capacity heat capacity

Substance cal/g C° l/K C g/mol cal/mol C° I/mol C°

Aluminum 0.215 0.900 27.0 5.82 24.4

Carbon 0.121 0.507 12.0 1.46 6.11

Copper 0.0923 0.386 63.5 5.85 24.5

Lead 0.0305 0.128 207 6.32 26.5

Silver 0.0564 0.236 108 6.09 25.5

Tungsten 0.0321 0.134 184 5.92 24.8

Table 22-1 (second and third columns) shows the specific heats at

1
1 >nstant pressure of some solid elements; we will discuss the specific

heats of gases later. You should realize from the way the calorie and

the Btu arc defined that 1 cal/g-C°= 1 kcal/kg C° = 1 Btu/lb F°, exactly.

Note that the specific heat of water, equal to 1 .00 cal/g-C°, is large com
pared to that ol most substances



A 75-gram block of copper, taken from a furnace, is dropped into a 300-gram

glass beaker containing 200 grams of water. The temperature of the water rises

from 12 to 27° C. What was the temperature of the furnace?

This is an example of two systems originally at different temperatures reach-

ing thermal equilibrium after contact. No mechanical energy is involved, only

heat exchange. Hence,

heat from copper = heat to (beaker + water),

m cCr[Tc - Te )
= [mGcG + mwcw)\Te — Tw).

The subscript C stands for copper, G for glass, and W for water. The initial

copper temperature is Tr, the initial beaker water temperature is Tw, and Te

is the final equilibrium temperature. Substituting the given values, with c<- =

0.093 cal/g-C°, Cv, = 0.12 cal/g-C°, and cw = 1.0 cal/g-C°, we obtain

EXAMPLE 1

|75 g)(0.093 cal/g-C°)|Tr - 27° C)

or, solving for Tr,

= [(300g)(0.12cal/g-C°)

+ (200 g)(1.0 cal/g-C°)](27° C - 12° C)

Tc = 530° C

What approximations, both experimental and theoretical, were used implicitly

to arrive at this answer?

From the second column of Table 22-1 we conclude that the specific heats of

solids vary widely from one material to another. However quite a different story

emerges if we compare samples of materials that contain the same number of

molecules rather than samples that have the same mass. We can do this by

expressing specific heats (called when so expressed molar heat capacities) in

cal/mol-C° rather than in cal/g-C .* In 1819 Dulong and Petit pointed out that

the molar heat capacities of all substances, with few exceptions (see carbon

in Table 22- 1 ), have values close to 6 cal/mol C°. The molar heat capacity, listed

in the fifth and sixth columns of Table 22- 1 , is found by multiplying the specific

heat (second and third columns) by the molecular weight (fourth column). We
see that the amount of heat required per molecule to raise the temperature of a

solid by a given amount seems to be about the same for almost all materials.

This is striking evidence for the molecular theory of matter.

Actually molar heat capacities vary with temperature, approaching zero as

T —
» K and approaching the Dulong-Petit value as T —> °°. Since the number

of molecules rather than the kind of molecule seems to be important in de-

termining the heat required to increase the temperature of a body by a given

amount, we are led to expect that the molar heat capacities of different sub-

stances will vary with temperature in much the same way. Figure 22-2 shows
that, indeed, the molar heat capacities of various substances can be made to

fall on the same curve by a simple, empirical adjustment in the temperature

scale. The horizontal scale in Fig. 22-2 is the dimensionless ratio T/To, where

T is the Kelvin temperature and Ti> is a characteristic temperature, called the

Debye temperature, that has a particular constant value for each material.

For lead, Tr> has the empirical value of 88 K and for carbon, Td= 1860 K. From
these data you can show that a scale value of T/Td = 0.600 corresponds to T =

53 K for lead but to T= 1120 K for carbon. Alternatively, room temperature

|~300 K) corresponds to T/TD = 3.4 for lead and to T/TD = 0.16 for carbon. Thus

22-3
MOLAR HEAT
CAPACITIES OF SOLIDS

* A mole (abbr. mol) of any substance is the amount of the substance that contains a

specified number of elementary entities, namely, 6.02252 x 1023
, called Avogadro's num-

ber. This number is the result of the defining relation that one mol of carbon atoms (ac-

tually, of the isotope C 12
) shall have a mass of 12 g, exactly. The gram molecular weight

M of a substance is the number of grams per mole of that substance. Thus the gram
molecular weight of ordinary oxygen molecules is 32.0 g/mol. Although the mole is an

amount of substance, we cannot translate it into mass, as grams, until we specify what
the elementary entity is

;
it may be atoms, molecules, ions, electrons, other particles,

or specified groups of such particles.



figure 22-2
The molar heat capacities (c,)

showing a few selected points only.

Line I represents the Dulong and
Petit rule and curve II represents a

theory due to Debye.

we see from Fig. 22-2 that in the early days, when only room temperature

specific heats were available, lead would conform to the Dulong and Petit rule

but carbon would seem to be an exception.

The straight line / in Fig. 22-2 is the Dulong and Petit value of 1819; it

agrees with experiment at high temperature but fails at low temperatures. It

corresponds to the assumption that every atom in a solid vibrates independently

like a classical oscillator. Curve II is due to Debye (1912). In the Debye theory,

a characteristic temperature TD , which is directly related to a vibrational fre-

quency characteristic of the material, can be obtained independent of specific

heat experiments. One then uses quantum principles to analyze the coupled

vibrations of the atoms in a solid and obtains a specific heat formula which,

in terms of the dimensionless ratio T/Tn, is the same for all substances. The
excellent agreement of this formula (curve II) with experiment is a triumph of

quantum physics.*

The materials displayed in Fig. 22-2 are "normal" in that they do not melt,

boil, change their crystal structure, etc., in the temperature range indicated.

Specific heat measurements, which tells us how a solid absorbs energy as its

temperature is raised, are a sensitive probe to detect such molecular, atomic,

or electronic rearrangements. Figure 22-3, for example, shows the specific heat

of tantalum near 4.39 K. Below this transition temperature tantalum loses all

its electric resistance — it becomes superconducting. Above this temperature

it has the resistance expected of a normal metal.
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figure 22-3
The specific heat of tantalum near

its superconducting transition

temperature.

5.5

The transfer of energy arising from the temperature difference between
adjacent parts of a body is called heat conduction. Consider a slab of

material of cross-sectional area A and thickness Ax, whose faces are

kept at different temperatures. We measure the heat AQ that flows per-

pendicular to the faces in a time At. Experiment shows that AQ is pro-

portional to At and to the cross-sectional area A for a given temperature
difference AT, and that AQ is proportional to AT/Ax for a given At and
A, providing both ATand Ax are small. That is,

AQ . AT—— ^ A
At Ax

approximately. (22-4fl)

22-4
HEAT CONDUCTION

' The data reported in Fig. 22-2 are values oi c, but those m Table 22-1 are c,,. The former

is easier to calculate theoretically because the thermal expansion need not be taken into

account hut , for solids) the latter is much easier to measure. The two are related by the

simple thermodynamic formula

C + WIkP

in which fi is the therm. il
i o( Ffii Lent ol volume expansion h A\ V A/" is the is,.

thermal) compressibility and p is the densit) At mum temperature the different b<

- typi( al solids is about >'



In the limit of a slab of infinitesimal thickness dx, across which there is

a temperature difference dT, we obtain the fundamental law of heat

conduction, in which the heat flow H is given by

H -kA-j--
dx

(22-4b)

Here H (measured, say, in cal/s
;
see Eq. 22-Aa) is the time rate of heat

transfer across the area A, dT/dx is called the temperature gradient, and

A is a constant of proportionality called the thermal conductivity. We
choose the direction of heat flow to be the direction in which x in-

creases; since heat flows in the direction of decreasing T, we introduce

a minus sign in Eq. 22-4 (that is, we wish H to be positive when dT/dx

is negative).

A substance with a large thermal conductivity k is a good heat con-

ductor; one with a small thermal conductivity k is a poor heat con-

ductor, or a good thermal insulator. The value of k depends on the tem-

perature, increasing slightly with increasing temperature, but k can

be taken to be practically constant throughout a substance if the tem-

perature difference between its parts is not too great. In Table 22-2 we
list values of k for various substances; we see that metals as a group are

better heat conductors than nonmetals, and that gases are poor heat con-

ductors.

Let us apply Eq. 22-4-b to a rod of length L and constant cross-sec-

tional area A in which a steady state has been reached (Fig. 22-4). In a

Table 22-2
Thermal conductivities

(Gases at 0° C; others at about room temperature)

kcal/s-m-C° J/s-m-C°

Metals
Aluminum 4.9 x 10 2 20 x 10'

Brass 2.6 x io- 2 11 x 10 1

Copper 9.2 x 10- 2 39 x 10 1

Lead 8.3 x io- 3 35
Silver 9.9 x 10 2 41 x 10 1

Steel 1.1 x 10 2 46
Gases

Air 5.7 x 10 6 2.4 x IO" 2

Hydrogen 3.3 x io- 5 1.4 x 10- 1

Oxygen 5.6 x io-6 2.3 x IO" 2

Others
Asbestos 2 x io- 5 8 x IO 2

Concrete 2 x 10 4 8 x 10-'

Cork 4 x 10 5 17 x IO" 2

Glass 2 x 10 4 8 x 10 1

Ice 4 x IO 4 17 x 10 >

Wood 2 x io-5 8 x IO 2

Insulator

Heat flow —

T2 >TX

figure 22-4
Conduction of heat through an

insulated conducting bar.



steady state the temperature at each point is constant in time. Hence,

H is the same at all cross-sections. (Why?) ButH = —kA[dTldx), so that,

for a constant k and A, the temperature gradient dT/dx is the same at

all cross-sections. Hence, T decreases linearly along the rod so that

—dT/dx = [To — Ti)/L. Therefore, the time rate of transfer of heat energy

is

H=kA Tt-Tx
(22-5)

The phenomenon of heat conduction also shows that the concepts of

heat and temperature are distinctly different. Different rods, having the

same temperature difference between their ends, may transfer entirely

different quantities of heat in the same time.

Consider a compound slab, consisting of two materials having different thick-

nesses, Li and L->, and different thermal conductivities, ki and k 2 . If the tem-

peratures of the outer surfaces are T> and T, find the rate of heat transfer

through the compound slab (Fig. 22-5) in a steady state.

Let Tx be the temperature at the interface between the two materials. Then

ksA[T2 - Tx

and

In a steady state Hi

ii2 U

ff.
k 1A(Ts--T,)

i
= H, so that

kiAiTz --Tx) kiA[Tx -Ti]

u u

Let H be the rate of heat transfer (the same for all sections). Then, solving for

Tj and substituting into either of these equations, we obtain

H
A[T-, ~ T.)

(Z..//C) + [LJkt]

The extension to any number of sections in series is obviously

H
A(T2 - Tx)

l[Uki)

EXAMPLE 2

T-:

Heat flow—=»-

Tx

figure 22-5
Example 2. Conduction of heat

through two layers of matter with

different thermal conductivities.

We have seen earlier that the foot-pound (Section 7-2) was developed as

a unit of work and the Btu (together with the calorie; see Section 22-2)

as a unit of heat. Work and heat were thought of as separate concepts

until Rumford, in 1798, suggested (Section 22-1) that heat had a me-
chanical aspect, thus proposing a connection between them. This con-

nection was firmly established in the middle of the nineteenth century

as the principle of conservation of energy. This principle asserts that

heat and work are each forms of energy and that there should be a defi-

nite relationship, called the mechanical equivalent of heat, between
them. It was Joule, in 1850, who first found by experiment how many
fool pounds oi work are equivalent to 1 Btu of heat.

Joule used an apparatus in which falling weights rotated a set of

paddles in an insulated water container (Fig. 22-6). In one cycle of opera-

nt m the hilling weights do a known amount of work on the watei of

mass m, and we note that the temperature rises by AT. Now we could

22-5
THE MECHANICAL
EQUIVALENT OF HEAT



have produced this same rise in temperature by transfering heat energy

Q to the system, given by

Q = mc AT.

Thus, we measure W, observe AT, and calculate Q. The results are

1 Btu (= 252.0 cal) = 777.9 ft lb,

that is, 777.9 ft • lb of mechanical work will, when converted entirely

into heat energy, generate 1 Btu
;
that is, it will raise the temperature of

one pound of water from 63° F to 64° F. We can write this relation in

other units as*

1 cal = 4.186 J.

It is appropriate that the SI unit of energy is the joule (= 1 N • m = 1 kg • m 2/s2
).

In modern laboratory practice the calorie is not much used or needed. It is, how-

ever, deeply embedded in the literature of science. To permit the continued use

of this familiar unit — but to recognize the practical importance of the joule —

a

new calorie, the thermochemical calorie, is defined as

1 calorie (thermochemical) = 4.184 joule (exactly).

In ordinary laboratory practice this calorie does not differ significantly from that

defined earlier.

Joule also made other experiments (stirring mercury, forcing water

through narrow tubes, rubbing together iron rings in a mercury bath,

etc.). His conclusions are noteworthy for (1) the skill and ingenuity that

he showed, (2) the accuracy of his final results, which differ only by

about 1% from present values, and (3) the influence that they had in

convincing scientists of the correctness of the concept that heat, like

work, is a form of energy.

cc
u
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Jb.

O

hi

IV)

IV)

figure 22-6
Joule's arrangement for measuring

the mechanical equivalent of heat.

The falling weights turn paddles

which stir the water in the

container, thus raising its

temperature.

We have seen that heat is energy that flows from one body to another

because of a temperature difference between them. The idea that heat

is something in a body, as the caloric theory assumed, contradicts many
experimental facts. It is only as it flows, because of a temperature differ-

ence, that the energy is called heat energy. If heat were a substance, or

a definite kind of energy that kept its identity while contained in a sys-

tem, it would not be possible to remove heat indefinitely from a system
which does not change. Yet Rumford showed that this was possible. In

fact, by continually performing mechanical work in Joule's apparatus,

we can obtain an indefinite amount of heat out of the water, by con-

necting it to a cooler system, for example, without changing the condi-

tion of the water.

In the same way work is not something of which a system contains a

definite amount. We can put an indefinite amount of work into a sys-

tem, as Joule's apparatus again illustrates. Work, like heat, involves a

transfer of energy. In mechanics, work is involved in energy transfers

22-6
HEAT AND WORK

* Henry A. Rowland, in 1879, carried out a painstaking determination of the mechanical
equivalent of heat which, to this day, remains a model of careful experimentation. His
result differs from the accepted value today by only 1 part in 2000. Rowland graduated

from Rensselaer Polytechnic Institute in 1870 and in 1876 became the first Professor of

Physics at the then newly established Johns Hopkins University, where he conducted this

experiment. See "The Education of an American Scientist, Henry A. Rowland, " by Samuel
Rezneck, American Journal of Physics, February, 1960 and 'Rowland's Physics' by )ohn

D. Miller, Physics Today, July, 1976.



in which temperature played no role. If heat energy is transmitted by

temperature differences, we can distinguish heat and work by defining

work as energy that is transmitted from one system to another in such

a way that a difference of temperature is not directly involved. This

definition is consistent with our previous use of the term. That is, in the

expression dW = F dx, the force F can arise from electrical, magnetic,

gravitational, and other sources. The term work includes all these

energy transfer processes, but it specifically excludes energy transfer

arising from temperature differences.

Consider another simple example, that of rubbing two surfaces to-

gether. There is no limit to the amount of heat that can be removed

from this system or to the amount of work that can be put into it, so

that there is no definite meaning to phrases such as "the heat in the

system" or "the work in the system." The quantities Q and W are not

characteristic of the (equilibrium) state of the system but rather of the

thermodynamic process by which the system moves from one equi-

librium state to another, by interacting with its environment. It is only

during such a process that we can give meaning to heat and work; we
can then identify Q with the heat transferred to or from the system and

W with the work done on or by the system. The study of such processes

and of the changes in energy involved in the performance of work and

the flow of heat is the subject matter of thermodynamics.

In Fig. 22-7 we consider a general thermodynamic process. We must
first state definitely what the system is and what the environment is.

In the figure we draw a closed surface surrounding the system to define

it. In [a] the system is in its initial state, in equilibrium with the en-

vironment external to it. In (b) the system interacts with its environ-

ment through some specific thermodynamic process. During this

process, energy in the form of heat and/or work may go into or out of

the system. Arrows representing the flow of Q or W must pierce the

surface enclosing the system. In (c) the system has reached its final

state, again in equilibrium with the environment external to it.

Figure 22-8 shows a falling weight which turns a generator, which in

turn sends an electric current through a resistor immersed in a water

container. Let us choose the system to be the generator and the at-

tached electric circuit, the water, and its container. Then the environ-

ment is the weight and the earth, which pulls on the weight. The
process consists of letting the weight fall a distance h in the earth's

gravitational field. During this process the environment (by means of

the cord) does work W on the system. There are no temperature differ-

ences between the system and its environment and hence Q = for this

process.

Our choice of a system in thermodynamic problems is arbitrary. Let

us now choose the system to be only the water and its container in Fig.

22-8. The environment now is the generator and attached circuit as well

as the weight and the earth. For this choice of system there now is a

temperature difference between the environment (resistor) and the sys-

tem (water), and heat Q will flow into the system during the process.

No forces act through the system boundary to produce displacements,

however, and hence W — for this process. This example shows that we
must first state definitely what the system is and what the environment

is before we can decide whether the change in the state of the system is

due to the flow of heat or to the performance of work or both. There will

be a transfer oi heat between system and environment only when a

System
boundary

(c)

Environment

figure 22-7
(a) A system in an initial state, in

equilibrium with its surroundings.

(b) A thermodynamic process during

which the system may exchange

heat Q or work W with its

environment, (c) A final equilibrium

state reached as the result of the

process.
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figure 22-8
Heat and work. A weight, in falling,

does work on an electric generator

which sends current through a

resistor which heats the water in

which it is immersed.

Heat reservoir of controllable

temperature T

figure 22-9
Work is done by the gas at pressure

p as it expands against the piston.

Heat may enter or leave the system

from the heat reservoir on which
the cylinder rests.
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temperature difference exists across the system boundary; if no tem-

perature difference exists, the energy transfer involves work.

Let us now compute Q and W for a specific thermodynamic process.

Consider a gas in a cylindrical container with a movable piston. Let the

gas be the system. Initially it is in equilibrium with the environment

external to it (which is the heat reservoir and the piston, shown in Fig.

22-9) and has a pressure p, and a volume Vu We can think of the contain-

ing walls as the system boundary. Heat can flow into the system or out

of it through the bottom of the cylinder and work can be done on the

system or by the system by compressing or expanding the gas, respec-

tively, with the piston. Consider a process whereby the system interacts

with its environment and reaches a final equilibrium state character-

ized by a pressure p/ and a volume Vf.

In Fig. 22-9 we show the gas expanding against the piston. The work
done by the gas in displacing the piston through an infinitesimal dis-

tance ds is

dW = F • ds = pA ds = p dV

where dV is the differential change in the volume of the gas. In general,

the pressure will not be constant during a displacement. To obtain the

total work W done on the piston by the gas in a large displacement, we
must know how p varies with the displacement. Then we compute the

integral

dW= p dVW

over the range in volume. This integral can be graphically evaluated as

the area under the curve in a p— V diagram, as shown for a special case

in Fig. 22-10.

There are many different ways in which the system can be taken

figure 22-10
The work done by a gas is equal to

the area under a p-V curve.



from the initial state i to the final state f. For example [Fig. 22-11), the

pressure may be kept constant from i to a and then the volume kept

constant from a to f. Then the work done by the expanding gas is equal

to the area under the line ia. Another possibility is the path ibf. in which
case the work done by the gas is the area under the line bf. The continu-

ous curve from i to f is another possible path in which the work done by

the gas is still different from the previous two paths. We can see, there-

fore, that the work done by a system depends not only on the initial

and final states but also on the intermediate states, that is, on the path

of the process.

A similar result follows if we compute the flow of heat during the

process. State i is characterized by a temperature T, and state fby a tem-

perature Tf. The heat flowing into the system, say, depends on how the

system is heated. We can heat it at a constant pressure p„ for example,

until we reach the temperature Tf, and then change the pressure at con-

stant temperature to the final value Pf. Or we can first lower the pressure

to Pf and then heat it at that pressure to the final temperature Tf. Or we
can follow many other paths. Each path gives a different result for the

heat flowing into the system. Hence, the heat lost or gained by a sys-

tem depends not only on the initial and final states but also on the

intermediate states, that is, on the path of the process. This is an experi-

mental fact. As J. C. Slater has written:

".
. . It would be pleasant to be able to say, in a given state of the system, that the

system has so and so much heat energy. Starting from the absolute zero of tem-

perature, where we could say that the heat energy was zero, we could heat the

body up to the state we were interested in, find fdQ from absolute zero up to

this state, and call that the heat energy. But the stubborn fact remains that we
would get different answers if we heated it up in different ways. . . . There is

nothing to do about it."

Both heat and work "depend on the path" taken; neither one is inde-

pendent of the path, and neither one can be conserved alone.

figure 22-11
The work done by a system

depends not only on the initial state

(i) and the final state [f] but on the

intermediate path as well.

We can now tie all these ideas together. Let a system change from an

initial equilibrium state i to a final equilibrium state fin a definite way,

the heat absorbed by the system being Q and the work done by the sys-

tem being W. Then we compute the Q — W. Now we start over and

change the system from the same state i to the same state f, but this

time in another way by a different path. We do this over and over again,

using different paths each time. We find that in every case the quantity

Q — W is the same. That is, although Q and W separately depend on the

path taken, Q — W does not depend at all on how we took the system

from state i to state f but only on the initial and final (equilibrium)

states.

You will recall from mechanics that when an object is moved from

an initial point ; to a final point f in a gravitational field in the absence

of friction, the work done depends only on the positions of the two
points and not at all on the path through which the body is moved.
From this we concluded that there is a function of the space coordinates

of the body whose final value minus its initial value equals the work
dime in displacing the body. We called it the potential energy function.

Now in thermodynamics we find that when a system has its state

i banged from state i to state /. the quantity Q - W depends only on the

initial and final coordinates and not at all on the path taken between

these end points. We conclude that there is a function of the thcrmo-

22-7
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dynamic coordinates whose final value minus its initial value equals

the change Q — W in the process. We call this function the internal

energy function.

Now Q is the energy added to the system by the transfer of heat and

W is the energy given up by the system in performing work, so that

Q — W represents, by definition, the internal energy change of the sys-

tem. Let us represent the internal energy function by the letter U. Then
the internal energy of the system in state f, Uf , minus the internal

energy of the system in state i, I/,, is simply the change in internal

energy of the system, and this quantity has a definite value independent

of how the system went from state i to state f. We have

Uf - Ui = AU
and

MJ=Q-W. (22-6)

Just as for potential energy, so for internal energy too it is the change

that matters. If some arbitrary value is chosen for the internal energy in

some standard reference state, its value in any other state can be given

a definite value. Equation 22-6 is known as the first law of thermo-

dynamics. In applying Eq. 22-6 we must remember that Q is considered

positive when heat enters the system and W is positive when work is

done by the system.

If our system undergoes only an infinitesimal change in state, only an

infinitesimal amount of heat dQ is absorbed and only an infinitesimal

amount of work dW is done, so that the internal energy change dU is

also infinitesimal. In such a case, the first law is written in differential*

form as

dU=dQ-dW. (22-7)

We may express the first law in words by saying: Every thermodynamic sys-

tem in an equilibrium state possesses a state variable called the internal energy

U whose change dU in a differential process is given by Eq. 22-7. Recall that the

essential content of the zeroth law of thermodynamics (p. 459) is, speaking

loosely: there exists a useful thermodynamic quantity called "temperature."

The essential content of the first law is: there exists a useful thermodynamic
quantity called "internal energy"-, the law also provides, in Eq. 22-6, a recipe

for measuring changes in internal energy quantitatively.

The first law of thermodynamics is thought to apply to every process

in nature that proceeds between equilibrium states. Note that the pro-

cess may or may not involve equilibrium states. We may apply the first

law to the explosion of a firecracker in an insulated steel drum, for ex-

ample. Because of its generality, the information that the first law gives

is far from complete, although exact and correct. There are some very

general questions which it cannot answer. For example, although it tells

us that energy is conserved in every process, it does not tell us whether
any particular process can actually occur. An entirely different generali-

zation, called the second law of thermodynamics, gives us this informa-

tion, and much of the subject matter of thermodynamics depends on
this second law (Chapter 25).

* W and Q are not actual functions of the state of a system, that is, they do not depend on
the values of the system's coordinates. Hence, dW and dQ are not exact differentials as the

term is used in mathematics. All they mean here is a very small quantity. More advanced
books write them as dQ and dW to indicate their inexact nature. However, dU is an exact

differential, for U is an exact function of the system's coordinates.



We have seen that when a gas expands the work it does on its environ-

ment is

W = fp dV,

where p is the pressure exerted on or by the gas and dV is the differential

change in volume of the gas. Consider a special case in which the pres-

sure remains constant while the volume changes by a finite amount, say

from V, to Vf. Then

W=\ pdV=p \'dV = p{Vf-Vl
(constant pressure).

A process taking place at constant pressure is called an isobaric process.

For example, water is heated in the boiler of a steam engine up to its

boiling point and is vaporized to steam, then the steam is superheated,

all processes proceeding at a constant pressure.

In Fig. 22-12 we show an isobaric process. The system is FLO in a

cylindrical container. A frictionless airtight piston is loaded with sand

to produce the desired pressure on the FLO and to maintain it auto-

matically. Heat can be transferred from the environment to the system

by a Bunsen burner. If the process continues long enough, the water

boils and some is converted to steam,- we assume that this occurs. The
system may expand, very slowly (quasi-statically) but the pressure it

exerts on the piston is automatically always the same, for this pressure

must be equal to the constant pressure which the piston exerts on the

system. If we wedged the piston so that it could not move, or if we
added or took away some sand during the heating process, the process

would not be isobaric.

Let us consider the boiling process. We know that substances will

change their phase from liquid to vapor at a definite combination of

values of pressure and temperature. Water will vaporize at 100° C and

atmospheric pressure, for example. For a system to undergo a change of

phase heat must be added to it, or taken from it, quite apart from the

heat necessary to bring its temperature to the required value. Consider

the change of phase of a mass m of liquid to a vapor occurring at con-

stant temperature and pressure. Let Vi be the volume of liquid and W
the volume of vapor. The work done by this substance in expanding

from Vi to Vv at constant pressure is

W = p[Vv -Vi).

Let L represent the heat of vaporization, that is, the heat needed per unit

mass to change a substance from liquid to vapor at constant tempera-

ture and pressure. Then the heat absorbed by the mass m during the

change of state is

Q = mL
From the first law of thermodynamics, we have

AU= Q-W
so that

tor this process.

22-8
SOME APPLICATIONS
OF THE FIRST LAW OF
THERMODYNAMICS

Frictionless

and airtight

contact

figure 22-12
Water boiling at constant pressure

(isobarically). The pressure is kept

constant by the weight of the sand,

the piston, and the external

atmospheric pressure.

bU = mL-p[Vr- V,)

At atmospheric pressure 1.00 g of water, having a volume of 1.00 cm3
, becomes EXAI^II*EE **l

1671 cm3 of steam when boiled. The heat of vaporization of water is 539 cal/g

.it I .um I [ence, it m 1.00 g,

Q = mL = 539 cal,



This quantity, which represents heat added to the system from the environ-

ment, is positive.

W = p[Vv - Vi)= (1.013 x 105 N/m2 )[(1671 - 1) X 10" 6 m3
]

= 169.5 J.

This quantity, which represents work done by the system on the environment,

is positive.

Since 1 cal equals 4.186 J, W = 41 cal. Then,

&U= Uv - Ui = mL-p[Vv
- Vi)= (539-41) cal

= 498 cal.

This quantity is positive; the internal energy of the system increases during this

process. Hence, of the 539 cal needed to boil 1 g of water (at 100° C and 1 atm),

41 cal go into external work of expansion and 498 cal go into internal energy

added to the system. This energy represents the internal work done in over-

coming the strong attraction of H>0 molecules for one another in the liquid

state.

How would you expect the 80 cal that are needed to melt 1 g of ice to water

(at 0° C and 1 atm) to be shared by the external work and the internal energy"

A process that takes place in such a way that no heat flows into or out

of the system is called an adiabatic process. Experimentally such

processes are achieved either by sealing the system off from its sur-

roundings with heat insulating material or by performing the process

quickly. Because the flow of heat is somewhat slow, any process can be

made practically adiabatic if it is performed quickly enough.

For an adiabatic process Q equals zero, so that from the first law we
obtain

MJ=Uf
- Ui = -W.

Hence, the internal energy of a system increases exactly by the amount
of work done on the system in an adiabatic process. If work is done by

the system in an adiabatic process, the internal energy of the system

decreases by exactly the amount of external work it performs. An in-

crease of internal energy usually raises the system's temperature and

conversely, a decrease of internal energy usually lowers the system's

temperature. A gas that expands adiabatically does external work and

its internal energy decreases,- such a process is used to attain low tem-

peratures. The increase of temperature during an adiabatic compression

of air is well known from the heating of a bicycle pump.
In Fig. 22-13 we show a simple adiabatic process. The system is a gas

inside a cylinder made of heat-insulating material. Heat cannot enter

the system from its environment or leave the system to the environ-

ment. Again we have a pile of sand on a frictionless airtight piston. The
only interaction permitted between system and environment is through

the performance of work. Such a process can occur when sand is added

or removed from the piston, so that the gas can be compressed or can

expand against the piston.

Among the many engineering examples of adiabatic processes are the

expansion of steam in the cylinder of a steam engine, the expansion of

hot gases in an internal combustion engine, and the compression of air

in a Diesel engine or in an air compressor. These processes all occur

rapidly enough so that only a very small amount of heat can enter or

leave the system through its walls during that short time. The compres-
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Heat-

insulating

material

figure 22-13
In an adiabatic process there is no
flow of heat to or from the system.

Here the walls are insulated and,

as sand is removed or added, the

volume of the gas changes

adiabatically.

sions and rarefactions of a sound wave in a gas are adiabatic (Example

6, Chapter 23).

The most important reason for studying adiabatic processes, how-

ever, is that ideal engines use processes that are exactly adiabatic. These

ideal engines determine the theoretical limits to the operation and

capabilities of real engines. We shall look further into this in Chapter 25.

A process of much theoretical interest is that of free expansion. This

is an adiabatic process in which no work is performed on or by the sys-

tem. Something like this can be achieved by connecting one vessel

which contains a gas to another evacuated vessel with a stopcock con-

nection, the whole system being enclosed with thermal insulation (Fig.

22-14). If the stopcock is suddenly opened, the gas rushes into the

vacuum and expands freely. Because of the heat insulation this process

is adiabatic, and because the walls of the vessels are rigid no external

work is done on the system. Hence, in the first law we have Q= and

W = 0, so that Ui — Uf for this process. The initial and final internal

energies are equal in free expansion.

In free expansion, after we open the stopcock we have no further con-

trol over the process. At intermediate states the pressure, volume, and

temperature do not have unique values characteristic of the system as a

whole, that is, the system passes through nonequilibrium states so that

we cannot plot the course of the process by a curve on a p-V diagram.

We can plot the initial and final states as points on such plots because

they are well-defined, equilibrium states. The free expansion is a good

example of an irreversible process; see Section 25-2.

Stopcock closed

Heat-insulating materia

Stopcock open

.:<- :.:'
. •:. •

.
:>,•' ••-... - •.-;.'.•

.

_.

figure* 22-1 I

Free expansion. There is no change

of internal energy U since there is

no flow of heat Q and no external

work W is done.

Initial equilibrium state Final equilibrium state



1. Give examples to distinguish clearly between temperature and heat.

2. (a) Show how heat conduction and calorimetry could be explained by the

caloric theory, [b] List some heat phenomena that cannot be explained by

the caloric theory.

3. Give an example of a process in which no heat is transferred to or from the

system but the temperature of the system changes.

4. Can heat be considered a form of stored (or potential) energy? Would such an

interpretation contradict the concept of heat as energy in process of transfer

because of a temperature difference-'

5. Apply Eq. 22-1 to boiling water.

6. It is difficult to "boil" eggs in water at the top of a high mountain because

water boils there at a relatively low temperature. What is a simple, practical

way of overcoming this difficulty?

7. Will a three-minute egg cook any faster if the water is boiling furiously than

if it is simmering quietly?

8. Can heat be added to a substance without causing the temperature of the

substance to rise? If so, does this contradict the concept of heat as energy

in process of transfer because of a temperature difference?

9. Why must heat energy be supplied to melt ice — the temperature doesn't

change, after all?

10. (a) Can ice be heated to a temperature above 0° C without its melting? Ex-

plain, [b) Can water be cooled to a temperature below 0° C without its

freezing? Explain. (See "The Undercooling of Liquids" by David Turnbull

in Scientific American, January 1965.)

11. Does putting sand on it help you to drive on an icy road? Does your answer

depend on the temperature? Explain.

12. Explain the fact that the presence of a large body of water nearby, such as a

sea or ocean, tends to moderate the temperature extremes of the climate on

adjacent land.

13. Theory shows that the coefficient of linear expansion a (see Sec. 21-8) is

proportional to the heat capacity C». Show that this is to be expected.

[Hint: Heat capacity measures the rate of change of the vibrational energy

with temperature.)

14. If someone told you that a conventional electric fan not only does not cool

the air but heats it slightly, how would you reply?

15. Both heat conduction and wave propagation involve the transfer of energy.

Is there any difference in principle between these two phenomena?

16. When a hot body warms a cool one are their temperature changes equal in

magnitude? Give examples. Can one then say that temperature passes from

one to the other?

17. What connection is there between an object's feeling hot or cold and its

heat capacity? Between this and its thermal conductivity?

18. A block of wood and a block of metal are at the same temperature. When the

blocks feel cold the metal feels colder than the wood; when the blocks feel

hot the metal feels hotter than the wood. Explain. At what temperature will

the blocks feel equally cold or hot?

19. Explain why your finger sticks to a metal ice tray just taken from the

refrigerator.

20. On a winter day the temperature of the inside surface of a wall is much
lower than room temperature and that of the outside surface is much higher

than the outdoor temperature. Explain.

The physiological mechanisms which maintain man's internal tempera-

ture operate in a limited range of external temperature. Explain how this

range can be extended at each extreme by the use of clothes. (See "Heat,

Cold, and Clothing" by James B. Kelley in Scientific American, February

1956.)

questions



22. What requirements for thermal conductivity, specific heat capacity, and

coefficient of expansion would you want a material to be used as a cooking

utensil to satisfy:

23. Consider that heat can be transferred by convection and radiation, as well as

by conduction, and explain why a thermos bottle is double-walled, evac-

uated, and silvered.

24. The system heating the cabin of a rocket ship seems to fail when the rocket

ship is far out in free space. Give one possible explanation.

25. In what way is steady-state heat flow analogous to the flow of an incompres-

sible fluid"

26. Is the mechanical equivalent of heat, /, a physical quantity or merely a con-

version factor for converting energy from heat units to mechanical units

and vice versa"

27. Defend this statement: "In Joule's experiment on the mechanical equiva-

lent of heat, described in Section 22-5, no heat is involved.''

28. Is the temperature of an isolated system |no interaction with the environ-

ment) conserved"

29. Is heat the same as internal energy' If not, give an example in which a sys-

tem's internal energy changes without a flow of heat across the system's

boundary.

30. Can one distinguish between whether the internal energy of a body was
acquired by heat transfer or acquired by performance of work'

31. If the pressure and volume of a system are given, is the temperature always

uniquely determined :

32. Does a gas do any work when it expands adiabatically" If so, what is the

source of the energy needed to do this work:

33. A quantity of gas occupies an initial volume V„ at a pressure p» and a tem-

perature To. It expands to a volume V [a] at constant temperature and [b] at

constant pressure. In which case does the gas do more work-"

34. Discuss the process of the freezing of water from the point of view of the

first law of thermodynamics. Remember that ice occupies a greater volume
than an equal mass of water.

35. A thermos bottle contains coffee. The thermos bottle is vigorously shaken.

Consider the coffee as the system, {a) Does its temperature rise' (£>) Has heat

been added to it? |c) Has work been done on it" [d] Has its internal energy

changed"

36. We have seen that "energy conservation" is a universal law of nature. At the

same time national leaders urge "energy conservation" upon us (driving

slower, etc.). Explain the two quite different meanings of these words.

SECTION 22-2

1

.

Suppose the specific heat of a substance is found to vary with temperature as

c = A + BT2
,

where A and B are constants and T is Celsius temperature. Compare the

mean specific heat of the substance in a temperature range T= to T= To

to the specific heat at the midpoint To/2.

Answer: Mean specific heat exceeds that at the midpoint by BT 2/12.

2. By means of a heating coil energy is transferred at a constant rate to a sub-

stance in a thermally insulated container. The temperature of the substance

is measured as a function of time. \a) Show how we can deduce the wav in

which the heat capacity ol the body depends on the temperature from this

Information b] Suppose thai in a certain temperature range it is ton ml thai

the temperature 7' is proportional to r
:i

, where I is the time How does the

heat capacity depend on / in this range?

.ili ulate tin- spci itn In ,n i
it ,i metal from the following data A containei

problems



made of the metal weighs 8.0 lb (mass = 3.6 kg) and contains 30 lb (mass =

14 kg) of water. A 4.0 lb (mass = 1.8 kg) piece of the metal initially at a

temperature of 350° F (180° C) is dropped into the water. The container and

water initially have a temperature of 60° F (16° C) and the final temperature

of the entire system is 65° F (18° C).

Answer: 0.14 Btu/lb F° (0.099 cal/g • C°).

4. Two 50-g ice cubes are dropped into 200 g of water in a glass. If the water

was initially at a temperature of 25° C, and if the ice came directly from a

freezer operating at a temperature of —15° C, what will be the final tempera-

ture of the drink' The specific heat of ice is approximately 0.50 cal/g • C°

in this temperature range and the heat required to melt ice to water is

approximately 80 cal/g.

5. A thermometer of mass 0.0550 kg and of specific heat 0.200 cal/g • C°

reads 15.0° C. It is then completely immersed in 0.300 kg of water and it

comes to the same final temperature as the water. If the thermometer reads

44.4° C and is accurate, what was the temperature of the water before in-

sertion of the thermometer, neglecting other heat losses 'Answer: 45.5° C.

6. A copper ring has a diameter of exactly 1 .00000 in. at its temperature of 0° C.

An aluminum sphere has a diameter of exactly 1 .00200 in. at its tempera-

ture of 100° C. The sphere is placed on top of the ring (Fig. 22-15), and the

two are allowed to come to thermal equilibrium, no heat being lost to the

surroundings. The sphere just passes through the ring at the equilibrium

temperature. What is the ratio of the mass of the sphere to the mass of the

ring'

SECTION 22-3

7. Show that the number of atomic mass units per gram of a substance is equal

to the number of particles per mole (Avogadro's number).

SECTION 22-4

8. Consider the rod shown in Fig. 22-4. Suppose L = 25 cm, A = 1.0 cm2
, and

the material is copper. If T2 = 1 25° C, Ti = 0° C, and a steady state is reached,

find [a] the temperature gradient, [b] the rate of heat transfer, and (c) the

temperature at a point in the rod 10 cm from the high-temperature end.

9. A cylindrical copper rod of length 1.2 m and cross-sectional area 4.8 cm2 is

insulated to prevent heat loss through its surface. The ends are maintained

at a temperature difference of 100 C° by having one end in a water-ice

mixture and the other in boiling water and steam, [a] Find the rate at which
heat is transferred along the rod. [b] Find the rate at which ice melts at one

end. Answer: [a] 3.7 cal/s. [b) 0.046 g/s.

10. [a] Calculate the rate at which body heat flows out through the clothing of

a skier, given the following data. The body surface area is 1.8 m2 and the

clothing is 1.0 cm thick; skin surface temperature is 33° C, whereas the

outer surface of the clothing is at —5° C
;
the thermal conductivity of the

clothing is 0.04 W/m K. [b] How would the answer change if, after a fall,

the skier's clothes become soaked with water-'

11. Two identical square rods of metal are welded end-to-end as shown in Fig.

22-16a. Assume that 10 cal of heat flows through the rods in 2 min. How
long would it take for 10 cal to flow through the rods if they are welded as

shown in Fig. 22- 16b: Answer: 0.5 min.
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12. Show that in a compound slab the temperature gradient in each portion is

inversely proportional to the thermal conductivity.

13. Assume that the thermal conductivity of copper is twice that of aluminum
and four times that of brass. Three metal rods, made of copper, aluminum,

and brass, respectively, are each 6.0 in. long and 1.0 in. in diameter. These

rods are placed end-to-end, with the aluminum between the other two. The
free ends of the copper and brass rods are maintained at 100 and 0° C,

respectively. Find the equilibrium temperatures of the copper-aluminum

junction and the aluminum-brass junction.

Answer: Cu-Al, 86° C
;
Al-Brass, 57° C.

14. (a) What is the rate of heat loss in W/m2 through a glass window 3.0 mm
thick if the outside temperature is —20° F and the inside temperature is

+72° F? (b) If a storm window is installed having the same thickness of glass

but with an air gap of 7.5 cm between the two windows, what will be the

corresponding rate of heat loss"

A tank of water has been outdoors in cold weather until a 5.0-cm thick slab

of ice has formed on its surface iFig. 22-17). The air above the ice is at —10°

C. Calculate the rate of formation of ice (in cm/h) on the bottom surface of

the ice slab. Take the thermal conductivity, density and heat of fusion of ice

to be 0.0040 cal/s cm • C°, 0.92 g/cm3 and 80 cal/g, respectively. Assume
that no heat enters or leaves the water through the walls of the tank.

Answer: 0.39 cm/h.

Assuming k is constant, show that the radial rate of flow of heat in a sub-

stance between two concentric spheres is given by

IS

16

19.

H ITi ~ T^TTkrg,

r> - r,

where the inner sphere has a radius ri and temperature T,, and the outer

sphere has a radius r-> and temperature T>.

17. Energy released by radioactivity within the earth is conducted outward as

heat through the oceans. For purposes of approximate calculation, assume
the average temperature gradient within the solid earth beneath the ocean

to be 0.07 C7m and the average thermal conductivity to be 2 x 10 ~ 4

kcal/m s • C°, and [a] determine the rate of heat transfer per square meter.

Assume that this is approximately the rate for the entire surface of the

earth, and [b] determine how much heat is thereby transferred through the

earth's surface each day.

Answer: (a) 1.4 x 10

~

s kcal/m2
• s. \b) 6.2 x 10' 4 kcal/day.

18. Assuming k is constant, show that the radial rate of flow of heat in a sub-

stance between two coaxial cylinders is given by

H = |T, - T^l-nLk

In [r,/n]

where the inner cylinder has a radius n and temperature T,, and the outer

cylinder has a radius r2 and temperature T2 , each cylinder having a length L.

A long tungsten heater wire is rated at 3.0 kW/m and is 5.0 x 10 ~* m in

diameter. It is embedded along the axis of a ceramic cylinder of diameter

0.12 m. When operating at the rated power, the wire is at 1500° C
;
the out-

side of the cylinder is at 20° C. Find the thermal conductivity of the ceramic;

use the result given in Problem 18. Answer: 1.8 J/m • s C°.
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SECTION 22-5

20. In a Joule experiment, a mass of 6.00 kg falls through a height of 50.0 m and

rotates ,i paddle wheel thai stirs 0.600 kg of water. The watei is initially at

15.0 C. By how much docs its tempera tun- use'

2 1 An energetic athlete dissipates all the energy m .1 diet oi 400() kcal pei day

It he were to release tins energy at a steady rate how would tins outpul



compare with the energy output of a 100-W bulb' [Note: The calorie of

nutrition is really a kilocalorie, as we have defined it.)

Answer: 1.9 times as great.

22. Power is supplied at the rate of 0.40 hp for 2.0 min in drilling a hole in a

1.0-lb copper block, [a] How much heat is generated-' [b] What is the rise in

temperature of the copper if only 759c of the power warms the copper?

(c) What happens to the other 25%?

23. [a] Compute the possible increase in temperature for water going over

Niagara Falls, 162 ft high, [b) What factors would tend to prevent this

possible rise' Answer: [a) 0.12 C°.

24. A 2.0-g (1.4 x 10 4-slug) bullet moving at a speed of 200 m/s (660 ft/s) be-

comes embedded in a 2.0 kg (0.14-slug) wooden block suspended as a pendu-

lum bob (a ballistic pendulum). Calculate the rise in temperature of the

bullet, assuming that all the absorbed energy raises the bullet's temperature.

25. A block of ice at 0° C whose mass is initially 50.0 kg slides along a hori-

zontal surface, starting at a speed of 5.38 m/s and finally coming to rest

after traveling 28.3 m. Compute the mass of ice melted as a result of the

friction between the block and the surface. Answer: 2.16 g.

26. The specific heat of silver, measured at atmospheric pressure, is found to

vary with temperature between 50 and 100 K by the empirical equation

c„ = 0.076T - 0.00026T2 -0.15,

where c
;
, is in cal/mol • K and T is the Kelvin temperature. Calculate the

quantity of heat required to raise 216 g of silver from 50 to 100 K.

27. Count Rumford weighed a metal object at low temperature and then at high

temperature to see whether its "caloric content" increased. He concluded

that (for gold) the "caloric" did not weigh more than 10 -6 the weight of the

sample, [a] Should the mass of a sample increase when heated, according to

modern theories' \b) If so, by what order of magnitude' (c) Was Rumford
safe in rejecting the caloric theory on this basis, in retrospect'

Answer: [a] Yes. (b) About 10 14 kg. (c) No.

28. Take the average specific heat of copper to be 0.090 cal/g • C° in the tem-

perature range to 1000° C. If 1.00 kg of copper is heated from to 1000° C,

by how much does its mass increase'

29. A "flow calorimeter" is used to measure the specific heat of a liquid. Heat is

added at a known rate to a stream of the liquid as it passes through the

calorimeter at a known rate. Then a measurement of the resulting tempera-

ture difference between the inflow and the outflow points of the liquid

stream enables us to compute the specific heat of the liquid.

A liquid of density 0.85 g/cm3 flows through a calorimeter at the rate of

8.0 cm3
/s. Heat is added by means of a 250-W electric heating coil, and a

temperature difference of 15 C° is established in steady-state conditions

between the inflow and outflow points. Find the specific heat of the liquid.

Answer: 2500 J/kg • C°.

30. A chef, upon awaking one morning to find his stove out of order, decides to

boil the water for his wife's coffee by shaking it in a thermos flask. Suppose

that he uses \ liter of tap water at 59° F, and that the water falls 1.0 ft each

shake, the chef making 30 shakes each minute. Neglecting any loss of heat,

how long must he shake the flask before the water boils'

SECTION 22-7

31. Determine the value of /, the mechanical equivalent of heat, from the fol-

lowing data: 2000 cal (7.936 Btu) of heat are supplied to a system; the sys-

tem does 3350 J (2471 ft • lb) of external work during that time
;
the increase

of internal energy during the process is 5030 J (3710 ft • lb).

Answer: 4.190 J/cal (779 ft lb/Btu).

SECTION 22-8

32. A thermodynamic system is taken from an initial state A to another B and

back again to A, via state C, as shown by the path A-B-C-A in the p-V dia-
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gram of Fig. 22-\8a. [a) Complete the table in Fig. 22-18£> by filling in

appropriate + or — indications for the signs of the thermodynamic quantities

associated with each process, [b] Calculate the numerical value of the work
done by the system for the complete cycle A-B-C-A.

33. Figure 22- 19a shows a cylinder containing gas and closed by a movable
piston. The cylinder is submerged in an ice-water mixture. The piston is

quickly pushed down from position (1) to position (2). The piston is held at

position (2) until the gas is again at 0° C and then is slowly raised back to

position (1). Figure 22-195 is ap-V diagram for the process. If 100 g of ice are

melted during the cycle, how much work has been done on the gas?

Answer: 8000 cal.

34. When a system is taken from state j to state /along the path fa/in Fig. 22-20

it is found that Q = 50 cal and W = 20 cal. Along the path ibf, Q = 36 cal.

[a) What is W along the path ibf7
. [b] If W = — 13 cal for the curved return

path ft. what is Q for this path- (c) Take Ut
= 10 cal. What is l/r? \d) If Ub =

22 cal, what is Q for the process ib- For the process bf 7
.

35. An iron ball is dropped onto a concrete floor from a height of 10 m. On the

first rebound it rises to a height of 0.50 m. Assume that all the macro-

scopic mechanical energy lost in the collision with the floor goes into the

ball. The specific heat of iron is 0.12 cal/g • C°. During the collision [a] has

heat been added to the ball? \b) Has work been done on it? [c] Has its in-

ternal energy changed? If so, by how much? [d] How much has the tempera-

ture of the ball risen after the first collision?

Answer: [a] No. [b] Yes. (c) Yes, by +93 J/kg. \d) 0.20 C°.

36. A cylinder has a well-fitted 2.0-kg metal piston whose cross-sectional area

is 2.0 cm- |Fig. 22-21). The cylinder contains water and steam at 100 C
The piston is observed to fall slowly at a rate of 0.30 cm/s because heat

(low s diit of the cylinder through the cylinder walls As this happens some

steam condenses in the chamber. The density of the steam inside the

chamber is 6.0 X 10 ' g/cm'1
. [a] Calculate the rate of condensation of steam.

|/j) What is the rate of change of internal energy of the steam and u.itei in

side the chambei i 1 At what rate is heat leaving the chamber''

figure 22-20
Problem 34

figure 22-21

Problem 36
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Thermodynamics deals only with macroscopic variables, such as pres- 23-1
sure, temperature, and volume. Its basic laws, expressed in terms of INTRODUCTION
such quantities, say nothing at all about the fact that matter is made up
of atoms. Statistical mechanics, however, which deals with the same
areas of science that thermodynamics does, presupposes the existence of

atoms. Its basic laws are the laws of mechanics, which are applied to the

atoms that make up the system.

No existing electronic computer could solve the problem of applying

the laws of mechanics individually to every atom in a gas, say. If there

were one, the results of such calculations would be too voluminous to

be useful. Fortunately, the detailed life histories of individual atoms in

a gas are not important if we want to calculate only the macroscopic

behavior of the gas. We apply the laws of mechanics statistically, then,

and we find that we are able to express all the thermodynamic variables

as certain averages of atomic properties. For example, the pressure

exerted by a gas on the wall of the containing vessel is the average rate

per unit area at which the atoms of the gas transfer momentum to the

wall as they collide with it. The number of atoms in a macroscopic sys-

tem is usually so large that such averages are very sharply defined

quantities indeed.

We can apply the laws of mechanics statistically to assemblies of

atoms at two different levels. At the level called kinetic theory we pro-

ceed in a rather physical way, using relatively simple mathematical
averaging techniques. In this chapter we will use these methods to en-

large our understanding of pressure, temperature, specific heat, and
internal energy at the atomic level. Kinetic theory was developed by

Robert Boyle (1627-1691), Daniel Bernoulli (1700-1782), James Joule
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(1818-1889), A. Kronig (1822-1879), Rudolph Clausius (1822-1888), and
Clerk Maxwell (1831-1879), among others.* In this book we apply the

kinetic theory to gases only, because the interactions between atoms in

gases are much weaker than in liquids and solids; this greatly simplifies

the mathematical difficulties.

At another level, we can apply the laws of mechanics statistically

using techniques that are more formal and abstract than those of kinetic

theory. This approach, developed by J.
Willard Gibbs (1839-1903) and

by Ludwig Boltzmann 1
1844-1906) among others, is called statistical

mechanics, a term that includes kinetic theory as a sub-branch. Using

these methods one can derive the laws of thermodynamics, thus estab-

lishing that science as a branch of mechanics. The fullest flowering of

statistical mechanics {quantum statistics) involves the statistical appli-

cation of the laws of quantum mechanics — rather than those of classical

mechanics— to many-atom systems.

Let a mass nM of a gas be confined in a container of volume V
;
M is the

molecular weight (grams/mole) and n is the number of moles. The
density p of the gas is nM/V and it is clear that we can reduce p either by

removing some gas from the container (reducing n) or by putting the

gas in a larger container (increasing V). We find from experiment that,

at low enough densities, all gases, no matter what their chemical com-
position, tend to show a certain simple relationship among the thermo-

dynamic variables p, V, and T. This suggests the concept of an ideal gas,

one that would have the same simple behavior under all conditions. In

this section we give a macroscopic or thermodynamic definition of an

ideal gas. In Section 23-3 we will define an ideal gas microscopically,

from the standpoint of kinetic theory, and we will see what we can learn

by comparing these two approaches.

Given a mass nM of any gas in a state of thermal equilibrium we can

measure its pressure p, its temperature T, and its volume V. For low
enough values of the density experiment show that (1) for a given mass
of gas held at a constant temperature, the pressure is inversely propor-

tional to the volume (Boyle's law) and (2) for a given mass of gas held at

a constant pressure, the volume is directly proportional to the tempera-

ture (law of Charles and Gay-Lussac). We can summarize these two ex-

perimental results by the relation

pV = a constant (for a fixed mass of gas). (23-1)

The volume occupied by a gas at a given pressure and temperature is

proportional to its mass. Thus the constant in Eq. 23-1 must also be

proportional to the mass of the gas. In Section 22-2 (see Fig. 22-2) we
saw the great simplification that occurs in studies of the specific heats

of solids if we compare samples of solids that contain the same number
of molecules rather than samples which have the same mass in grams.

We did this by using the mole as our mass unit. Let us also do that here.

We therefore write the constant in Eq. 23-1 as nR, where n is the

number of moles of the gas and R is a constant that must be determined

for each gas by experiment. Our expectation that simplicity will emerge

if we compare gases on a molar basis is justified because experiment

23-2
IDEAL GAS-A
MACROSCOPIC
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shows that, at low enough densities, R has the same value for all gases,

namely

R = 8.314 J/mol-K = 1.986 cal/mol-K.

R is called the universal gas constant. We then write Eq. 23-1 as

pV=nRT (23-2)

and we define an ideal gas as one that obeys this relation under all con-

ditions. There is no such thing as a truly ideal gas, but it remains a use-

ful and simple concept connected with reality by the fact that all real

gases approach the ideal gas abstraction in their behavior if the density

is low enough. Equation 23-2 is called the equation of state of an ideal

gas.

If we could fill the bulb of an (ideal) constant-volume gas thermom-
eter with an ideal gas, we see from Eq. 23-2 that we could define tem-

perature in terms of its pressure readings, that is,

T= 273.16 K
Ptr

(ideal gas).

Here p, r is the gas pressure at the triple point, at which the temperature

Ttr is 273.16 K by definition. In practice we must fill our thermometer
with a real gas and measure the temperature by extrapolating to zero

density using Eq. 21-4,

T = 273. 16 K lim ^- (real gas).
P,r^0 Ptr

If we had an ideal gas available (which we do not), the extrapolation

would be unnecessary.

A cylinder contains oxygen at a temperature of 20° C and a pressure of 15 atm in

a volume of 100 liters. A piston is lowered into the cylinder decreasing the vol-

ume occupied by the gas to 80 liters and raising the temperature to 25° C. As-

suming oxygen to behave like an ideal gas under these conditions, what then is

the gas pressure?

From Eq. 23-1, since the mass of gas remains unchanged, we may write

ptVi _ PfVf

Ti Tf

Our initial conditions are

Pi = 15 atm, T = 293 K, Vi = 100 liters.

Our final conditions are

Pf= I 7}=298K, Vf = 80 liters.

Hence,

/Tf\fpiVi\ 1 298 K \/15 atm x 100 liters\

MvJUrUliteJl 293 K j
= 19 atm.

EXAMPLE 1

Calculate the work per mole done by an ideal gas which expands isothermally, EXAMPLE 2
that is, at constant temperature, from an initial volume V* to a final volume Vf .

The work done may be represented as

W f" dV.



From the ideal gas law we have

P =
nRT
V

so that W/n, the work per mole, is

n J,,

The temperature is constant so that

RT
V

W = RT
vfdV_

, V

dv.

RT In
V,

is the work per mole done by an ideal gas in an isothermal expansion at tempera-

ture T from an initial volume V, to a final volume V>.

Notice that when the gas expands, so that V> > V-,, the work done by the gas

is positive; when the gas is compressed, so that V/ < V,, the work done by the

gas is negative. This is consistent with the sign convention adopted for W in the

first law of thermodynamics. The work done is shown as the shaded area in

Fig. 23-1. The solid line is an isotherm, that is, a curve giving the relation of p
to V at a constant temperature.

In practice, how can we keep an expanding or contracting gas at constant

temperature"

pV= nRT
T = constant

figure 23-1

Example 2. The shaded area

represents the work done by n

moles of gas in expanding from V,

to V, with the temperature held

constant.

From the microscopic point of view we define an ideal gas by making

the following assumptions; it will then be our task to apply the laws of

classical mechanics statistically to the gas atoms and to show that our

microscopic definition is consistent with the macroscopic definition

of the preceding section.

1. A gas consists of particles, called molecules. Depending on the

gas, each molecule will consist of one atom or a group of atoms. If the

gas is an element or a compound and is in a stable state, we consider all

its molecules to be identical.

2. The molecules are in random motion and obey Newton's laws of

motion. The molecules move in all directions and with various speeds.

In computing the properties of the motion, we assume that Newtonian
mechanics works at the microscopic level. As for all our assumptions,

this one will stand or fall depending on whether or not the experimental

results it predicts are correct.

3. The total number of molecules is large. The direction and speed

of motion of any one molecule may change abruptly on collision with

the wall or another molecule. Any particular molecule will follow a

zigzag path because of these collisions. However, because there are so

many molecules we assume that the resulting large number of collisions

maintains the over-all distribution of molecular velocities and the

randomness of the motion.

4. The volume of the molecules is a negligibly small fraction of the

volume occupied by the gas. Even though there are many molecules,

they are extremely small. We know that the volume occupied by a gas

can be changed through a large range of values with little difficulty, and

that when a gas condenses the volume occupied by the liquid may be

t linns, 1 1 ids (it times smallei than that of the gas. Hence, our assumption

is plausible. Later we shall investigate the actual size of molecules and

set- whether we need to modify this assumption.

23-3
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5. No appreciable forces act on the molecules except during a colli-

sion. To the extent that this is true a molecule moves with uniform

velocity between collisions. Because we have assumed the molecules

to be so small, the average distance between molecules is large com-

pared to the size of a molecule. Hence, we assume that the range of

molecular forces is comparable to the molecular size.

6. Collisions are elastic and are of negligible duration. Collisions

between molecules and with the walls of the container conserve mo-

mentum and (we assume) kinetic energy. Because the collision time is

negligible compared to the time spent by a molecule between collisions,

the kinetic energy which is converted to potential energy during the

collision is available again as kinetic energy after such a brief time that

we can ignore this exchange entirely.

Let us now calculate the pressure of an ideal gas from kinetic theory.

To simplify matters, we consider a gas in a cubical vessel whose walls

are perfectly elastic. Let each edge be of length 1. Call the faces normal

to the x-axis (Fig. 23-2) A } and A 2l each of area P. Consider a molecule

which has a velocity v. We can resolve v into components vx , vy , and vz

in the directions of the edges. If this particle collides with A\, it will

rebound with its x-component of velocity reversed. There will be no
effect on vy or vz , so that the change in the particle's momentum will be

final momentum — initial momentum = —mvx — [mvx ]
Imvj

normal to A x . Hence, the momentum imparted to^4i will be 2mvx , since

the total momentum is conserved.

Suppose that this particle reaches A 2 without striking any other par-

ticle on the way. The time required to cross the cube will be l/vx . At
A-, it will again have its x-component of velocity reversed and will re-

turn to Ai. Assuming no collisions in between, the round trip will take

a time 2l/vx . Hence, the number of collisions per unit time this particle

makes with Ai is vx/2l, so that the rate at which it transfers momentum
to A\ is

vx mvx
2

2mvxYl =
1

To obtain the total force on A u that is, the rate at which momentum is

imparted to A x by all the gas molecules, we must sum up mvx
2/l for all

the particles. Then, to find the pressure, we divide this force by the area

of A i, namely P.

If m is the mass of each molecule, we have

23-4
KINETIC CALCULATION
OF THE PRESSURE

figure 23-2
A cubical box of side 1, containing

an ideal gas. A molecule is shown
moving toward A\.

m
+ VX2

2 +

where vx i is the x-component of the velocity of particle 1, vx2 is that of

particle 2, etc. If N is the total number of particles in the container and
n v is the number per unit volume, then N/73 = n r or P = N/n v . Hence,

p = mn, N
But mn v is simply the mass per unit volume, that is, the density p. The
quantity [vxl

2 + v,,->
2 + • -)/N is the average value of vx2 for all the par-

ticles in the container. Let us call this vx2
. Then



p = pvx2 .

For any particle v2 = vx2 + vy
2 + vz

2
. Because we have many particles

and because they are moving entirely at random, the average values of

vx2 , vy
2

, and vz
2 are equal and the value of each is exactly one-third the

average value of v2
. There is no preference among thejnolecules for

motion along any one of the three axes. Hence, vx2 = }v2
, so that

P = pv72 = ipv2
. (23-3)

Although we derived this result by neglecting collisions between par-

ticles, the result is true even when we consider collisions. Because of

the exchange of velocities in an elastic collision between identical par-

ticles, there will always be some one molecule that will collide with A-2

with momentum mvx corresponding to the one that left A t with this

same momentum. Also, the time spent during collisions is negligible

compared to the time spent between collisions. Hence, our neglect of

collisions is merely a convenient device for calculation. Similarly, we
could have chosen a container of any shape— the cube merely simplifies

the calculation. Although we have calculated the pressure exerted only

on the side A u it follows from Pascal's law that the pressure is the same
on all sides and everywhere in the interior.*

The square root of v2
is called the root-mean-square speed of the

molecules and is a kind of average molecular speed. t Using Eq. 23-3,

we can calculate this root-mean-square speed from measured values of

the pressure and density of the gas. Thus,

vTms = V^=y]^- |23-4a)

In Eq. 23-3 we relate a macroscopic quantity (the pressure p) to an

average value of a microscopic quantity (that is, to v2 or v,.ms
2

). However,

averages can be taken over short times or over long times, over small

regions of space or large regions of space. The average computed in a

small region for a short time might depend on the time or region chosen,

so that the values obtained in this way may fluctuate. This could hap-

pen in a gas of very low density, for example. We can ignore fluctuations,

however, when the number of particles in the system is large enough.

Calculate the root-mean-square speed of hydrogen molecules at 0.00° C and EX/VI^II*1jE 3
1.00-atm pressure, assuming hydrogen to be an ideal gas. Under these condi-

tions hydrogen has a density p of 8.99 x 10~ 2 kg/m3
. Then, since p = 1.00 atm =

1.01 X 10s N/m 2
,

v„„s= J— = 1840 m/s.
V p

This is of the order of a mile per second, or 3600 mi/h.

Table 23-1 gives the results of similar calculations for some gases at

0° C. These molecular speeds are roughly of the same order as the speed

W' neglect the weight ol the gaa a negligible effe< I unless the gas > s ol very large extent

.is in the atmosphere See Section 1 7-3 and Problem [6

; We will consider tins turtbei in Se< Hon 24-2 in whieb we dis< USS the mold Lil.it distribu

timi -



Table 23-1

Translational

kinetic energy

Molecular per mole (at 0° C),

weight,* vrms (at 0° C), |Mvrms
2

,

Gas g/mol m/s J/mol

H, 2.02 1838 3370

He 4.0 1311 3430
H2 18 615 3400

Ne 20.1 584 3420

N, 28 493 3390

CO 28 493 3390

Air 28.8 485 3280

o, 32 461 3400

CO. 44 393 3400

* The molecular weight and the mole are defined on page 479. We
will discuss the last column in this table in the next section.

of sound at the same temperature. For example, in air at 0° C, vrms = 485

m/s and the speed of sound is 331 m/s and in hydrogen v,.ms = 1838 m/s

and sound travels at 1286 m/s. These results are to be expected in terms

of our model of a gas; see Prob. 34. We visualize the propagation of

sound waves as a directional motion of the molecules as a whole super-

imposed on their random motion. Hence, the energy of the sound wave
is carried as kinetic energy from one molecule to the next one with

which it collides. The molecules themselves, in spite of their high

speeds, do not move very far during a period of the sound vibration; they

are confined to a rather small space by the effects of a large number of

collisions. t However, the energy of the sound wave is communicated
from one molecule to the next with that high speed, even though we do

not expect the speed of sound to be exactly equal to v,.ms , a point that

we will clarify in Example 6.

Assuming that the speed of sound in a gas is the same as the root-mean- square EXAMPLE 4
speed of the molecules, show how the speed of sound for an ideal gas would
depend on the temperature. (Actually this assumption is only crudely correct.

Compare Eq. 23-4<3 and Eq. 23-15.)

The density of a gas is

nM
P = ~V

in which M is the molecular weight (grams/mole) and n is the number of moles.

Combining this with the ideal gas law

yields

We obtain from Eq. 23-4a

pV = nRT

P = RT
p M

'

J— =
P

so that the speed of sound Vi at a temperature Ti is related to the speed of sound

t This explains why there is a time lag between opening an ammonia bottle at one end of a

room and smelling it at the other end. Although molecular speeds are high, the large num-
ber of collisions restrains the advance of the ammonia molecules. They diffuse through
the air at speeds that are very much less than molecular speeds.



v-2 in the same gas at a temperature T2 by

Yi
Vo

For example, if the speed of sound at 273 K is 332 m/s in air, its speed in air

at 300 K will be

Iff x 332 m/s = 348 m/s.

Would our result change if the speed of sound were proportional to, rather than

equal to, the root-mean-square speed of the molecules of a gas?

If we multiply each side of Eq. 23-3 by the volume V, we obtain

pV=ipVv*,

where pV is simply the total mass of gas, p being the density. We can

also write the mass of gas as nM, in which n is the number of moles and

M is the molecular weight. Making this substitution yields

pV= }nMv~2 .

The quantity inMv2
is two-thirds_the total kinetic energy of translation

of the molecules, that is, flinMv2
)*. We can then write

pV = KinMv*).

The equation of state of an ideal gas is

pV = nRT.

Combining these two expressions, we obtain

}Mv2 IRT. 123-5)

That is, the total translational kinetic energy per mole of the molecules

of an ideal gas is proportional to the temperature. We may say that this

result, Eq. 23-5, is necessary to fit the kinetic theory to the equation of

state of an ideal gas, or we may consider Eq. 23-5 as a definition of gas

temperature on a kinetic theory or microscopic basis. In either case, we
gain some insight into the meaning of temperature for gases.

The temperature of a gas is related to the total translational kinetic energy

measured with respect to the center of mass of the gas. The kinetic energy asso-

ciated with the motion of the center of mass of the gas has no bearing on the

gas temperature. In Section 23-3 we assumed random motion as part of our

statistical definition of an ideal gas and in Section 23-4 we calculated v2 on this

basis. For a random distribution of molecular velocities with direction the cen-

ter of mass would be at rest, so that we must use a reference frame in which the

center of mass of the gas is at rest. For all other frames the molecules will each

have velocities greater by u (the velocity of the center of mass in that frame)

than in the center of mass frame; hence, the motions will no longer be random
and we will obtain different values for v2

. The temperature of a gas in a con

tainer does not increase when we put the container on a moving train!

Let us now divide each side of Eq. 23-5 by Avogadro's number, Mi,

which (see page 479, footnote) is the number of molecules per mole of

a gas. Thus M/M> (= m) is the mass of a single molecule and we have

i(M/Mo)v^ = imV2 = f|£/M.)T.

It fV is the total number <>t molecules and m is the mass ol each molecule then

\mvS + imv-.1 + bmN - = imNv* in which mN | nM) is the total

mass ol thi

23-5
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Now imv2 is the average translational kinetic energy per molecule. The
ratio R/No — which we call k, the Boltzmann constant — plays the role

of the gas constant per molecule. We have

im~v* = §kT (23-6)

in which*

* -&" 6.023 xffffSSedmol = lM0 * "^ "mol«ukK

We shall return to Boltzmann's constant in Chapter 24.

In the last column of Table 23-1 we list calculated values of |Mvrms
2

.

As Eq. 23-5 predicts, this quantity (the translational kinetic energy per

mole) has (closely) the same value for all gases at the same temperatures,

0° C in this case. From Eq. 23-6 we conclude that at the same tempera-

ture T the ratio of the root-mean-square speeds of molecules of two dif-

ferent gases is equal to the square root of the inverse ratio of their

masses. That is, from

we obtain

(23-7)

We can apply Eq. 23-7 to the diffusion of two different gases in a con-

tainer with porous walls placed in an evacuated space. The lighter gas,

whose molecules move more rapidly on the average, will escape faster

than the heavier one. The ratio of the numbers of molecules of the two
gases which find their way through the porous walls for a short time in-

terval is equal to the square root of the inverse ratio of their masses,

Vmo/raj. This diffusion process is one method of separating (fission-

able) U235 (0.7% abundance) from a normal sample of uranium contain-

ing mostly (nonfissionable) U238 (99.3% abundance). To quote from the

Smyth report, t

As long ago as 1896 Lord Rayleigh showed that a mixture of gases of different

atomic weight could be partly separated by allowing some of it to diffuse

through a porous barrier into an evacuated space. Because of their higher average

speed the molecules of the light gas diffuse through the barrier faster so that the

gas which has passed through the barrier (i.e., the "diffusate") is enriched in the

lighter constituent and the residual gas which has not passed through the barrier

is impoverished in the lighter constituent. The gas most highly enriched in the

lighter constituent is the so-called "instantaneous diffusate"; it is the part that

diffuses before the impoverishment of the residue has become appreciable. . . .

On the assumption that the diffusion rates are inversely proportional to the

square roots of the molecular weights* the separation factor for the instanta-

neous diffusate, called the "ideal separation factor" a, is given by

a = VMJMU

where Mi is the molecular weight of the lighter gas and M 2 that of the heavier.

Applying this formula to the case of uranium will illustrate the magnitude of

the separation problem. Since uranium itself is not a gas, some gaseous com-

* See footnote, p. 479.

t A General Account of the Development of Methods of Using Atomic Energy for Mili-

tary Purposes . . . , H. D. Smyth, U.S. Government Printing Office, 1945.

tNote that the ratio mjmi of the masses of the two molecules of different gases is the

same as the ratio Mj/M, of their molecular weights, because the molecular weights refer

to the same number of molecules. Compare Eq. 23-7.



pound of uranium must be used. The only one obviously suitable is uranium
hexafluoride, UF«. . . . Since fluorine has only one isotope, the two important

uranium hexafluorides are U235F6 and U238F6; their molecular weights are 349

[g/mol] and 352 [g/mol]. Thus if a small fraction of a quantity of uranium

hexafluoride is allowed to diffuse through a porous barrier, the diffusate will be

enriched in U235F« by a factor

a = vf|= 1.0043 . . .

To separate the uranium isotopes, many successive diffusion stages (i.e., a

cascade) must be used. . . . Studies by Cohen and others show that the best flow

arrangement for the successive stages is that in which half the gas pumped into

each stage diffused through the barrier, the other (impoverished) half being re-

turned to the feed of the next lower stage. ... If one desires to produce 99 per

cent pure U235F6 , and if one uses a cascade in which each stage has a reasonable

overall enrichment factor, then it turns out that roughly 4000 stages are re-

quired. . . . Most of the material that eventually emerges from the cascade has

been recycled many times. Calculation shows that for an actual uranium-sepa-

ration plant it may be necessary to force through the barriers of the first stage

100,000 times the volume of gas that comes out the top of the cascade (i.e., as

desired product U235F6 ).

Forces between molecules are of electromagnetic origin. All molecules contain

electric charges in motion. These molecules are electrically neutral in the sense

that the negative charge of the electrons is equal and opposite to the charge of

the nuclei. This does not mean, however, that molecules do not interact elec-

trically. For example, when two molecules approach each other, the charges on

each are disturbed and depart slightly from their usual positions in such a way
that the average distance between opposite charges in the two molecules is a

little smaller than that between like charges. Hence, an attractive intermolecu-

lar force results. This internal rearrangement takes place only when molecules

are fairly close together, so that these forces act only over short distances; they

are short-range forces. If the molecules come very close together, so that their

outer charges begin to overlap, the intermolecular force becomes repulsive. The
molecules repel each other because there is no way for a molecule to rearrange

itself internally to prevent repulsion of the adjacent external electrons. It is this

repulsion on contact that accounts for the billiard-ball character of molecular

collisions in gases. If it were not for this repulsion, molecules would move right

through each other instead of rebounding on collision.

Let us assume that molecules are approximately spherically symmetrical.

Then we can describe intermolecular forces graphically by plotting the mutual

potential energy of two molecules, U, as a function of distance r between their

centers. The force F acting on each molecule is related to the potential energy

U by F = —dU/dr. In Fig. 23-3a we plot a typical U[r). Here we can imagine one

molecule to be fixed at O. Then the other molecule will be repelled from O
when the slope of U is negative and will be attracted to O when the slope is posi-

tive. At ro no force acts between the molecules; the slope is zero there. In Fig.

23-3fc we plot the mutual force F\r) corresponding to this potential energy func-

tion. The line £ in Fig. 23-3a represents the total mechanical energy of the col-

liding molecules. The intersection of U[r) with this line is a "turning point" of

the motion (see Section 8-5). The separation of the centers of two molecules at

the turning point is the distance of closest approach. The separation distance at

which the mutual potential energy is zero may be taken as the approximate dis-

tance of closest approach in a collision and hence as the diameter of the mole-

cule. For simple molecules the diameter is about 2.5 x 10 '" m. The forces be-

tween molecules practically cease at about 10 '' m or 4 diameters apart so that

molecular forces are very short-range ones. The distance r„ at which the poten

tial is a minimum tin- equilibrium point] is about 3.5 * 10 "' m for simple mole

( ill is ( )t i ourse different molecules bave different sizes and internal arrange

i

hi charges bo that intermoleculai forces vary from one molecule to

23-6
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fa) The mutual potential energy of

two molecules versus then

separation. £ shows their total

mechanical energy [= K + U). lb) The
mutual force -dU/dr. corresponding

to this potential energy C/isa

minimum .it rj at which separation

F=0.



another. However, they always show the qualitative behavior indicated in the

figures.*

In the solid state molecules vibrate about the equilibrium position r , their

total energy E being negative, that is, lying below the horizontal axis in Fig.

23-3a. The molecules do not have enough energy to escape from the potential

valley (that is, from the attractive binding force). The centers of vibration O are

more or less fixed in a solid. In a liquid the molecules have greater vibrational

energy about centers which are free to move but which remain about the same
distance from one another. These molecules have their greatest kinetic energy

in the gaseous state. In a gas the average distance between the molecules is con-

siderably greater than the effective range of intermolecular forces, and the mole-

cules move in straight lines between collisions. Clerk Maxwell discusses the

relation between the kinetic theory model of a gas and the intermolecular forces

as follows: "Instead of saying that the particles are hard, spherical, and elastic,

we may if we please say that the particles are centers of force, of which the ac-

tion is insensible except at a certain small distance, when it suddenly appears

as a repulsive force of very great intensity. It is evident that either assumption

will lead to the same results."

It is interesting to compare the measured intermolecular forces with the

gravitational force of attraction between molecules. If we choose a separation

distance of 4 x 10 10 m, for example, the force between two helium atoms is

about 6 x 10 13 N. The gravitational force at that separation is about 7 x 10 -42 N,

smaller than the intermolecular force by a factor of 1029
! This is a typical result

and shows that gravitational forces are negligible in comparison with inter-

molecular forces. Although the intermolecular forces appear to be small by

ordinary standards, we must remember that the mass of a molecule is so small

(about 10~26 kg) that these forces can impart instantaneous accelerations of the

order of 10 15 m/s2
1 10 14

g). These accelerations may last for only a very short time,

of course, because one molecule can very quickly move out of the range of in-

fluence of the other.

We picture the molecules in an ideal gas as hard elastic spheres; that 23-

T

is, we assume that there are no forces between the molecules except SPECIFIC HEATS OF AN
during collisions and that the molecules are not deformed by collisions. IDEAL GAS
If this is so, there is no internal potential energy and the internal energy

of an ideal gas is entirely kinetic. We have already found that the aver-

age translational kinetic energy per molecule is ficT, so that the internal

energy L7 of an ideal gas containing N molecules isf

U = iNkT=%nRT. (23-8)

This prediction of kinetic theory says that the internal energy of an
ideal gas is proportional to the Kelvin temperature and depends only

on the temperature, being independent of pressure and volume. With
this result we can now obtain information about the specific heats of

an ideal gas.

The specific heat of a substance is the heat required per unit mass per

unit temperature change. A convenient unit of mass is the mole. The
corresponding specific heat is called the molar heat capacity and is

represented by C. Only two varieties of molar heat capacity are im-

portant for gases, namely, that at constant volume, C r , and that at con-

stant pressure, C,,.

* See "The Force between Molecules," by B. V. Derjaguin, Scientific American, July 1960,

for a discussion of the measurement of molecular attractions between macroscopic bodies.

+ We will see in Section 23-8 that this result applies only to monatomic gases, for which
rotational and vibrational energies are not possible. Only in this case can we equate U
to the translational kinetic energy.



figure 23-4
The temperature of a given mass of

gas is raised by the same amount
by a constant-pressure process

a -* b) and by a constant-volume

process [a -* c)

(rf)

Let us confine a certain number of moles of an ideal gas in a piston-

cylinder arrangement as in Fig. 23-4a. The cylinder rests on a heat

reservoir whose temperature can be raised or lowered at will, so that

we may add heat to the system or remove it, as we wish. The gas has

a pressure p such that its upward force on the (frictionless) piston just

balances the weight of the piston and its sand load. The state of the

system is represented by point a in the p-V diagram of Fig. 23-4d
}
this

diagram shows two isothermal lines, all points on one corresponding

to a temperature Tand all points on the other to a (higher) temperature

T+ AT.

Now let us raise the temperature of the system by AT, by slowly in-

creasing the reservoir temperature. As we do this let us add sand to

the piston so that the volume V does not change. This constant-volume

process carries the system from the initial state of Fig. 23-4a to the final

state of Fig. 23-4c. Equivalently, it goes from point a to point c in Fig.

23-4d. Let us apply the first law of thermodynamics

AL/= Q - W

to this process. By definition of C, we have Q
(= p AV) = because AV = 0. Thus

AL7 = nC r AT.

nC v AT. Also, W

123-9)

Let us restore the system to its original state and again raise its tem-

perature by AT, this time leaving the sand load undisturbed so that

the pressure p does not change. This constant pressure process carries

the system from the initial state of Fig. 23-4a to the final state of Fig.

23-4/7. Equivalently, it goes from point a to point b m Fig. 23-4J. Let

us apply the first law to this process. By definition of C,, we have Q =

A / Also, W = p A V. Now for an ideal gas, LJ depends only on the



temperature. Since processes a —* b and a -» c in Fig. 23-4 involve the

same change AT in temperature, they must also involve the same

change AL7 in internal energy, namely, that given by Eq. 23-9. Thus
for the constant-pressure process the first law yields

nCn AT=nC v AT + p AV.

Let us apply the equation of state pV= nRT to the constant-pressure

process a —> b. For p constant we have, by taking differences,

p AV=nR AT.

Combining these equations yields

CP -CV = R. (23-10)

This shows that the molar heat capacity of an ideal gas at constant

pressure is always larger than that at constant volume by an amount
equal to the universal gas constant R (= 8.31 J/mol-K or 1.99 cal/mol-K).

Although Eq. 23-10 is exact only for an ideal gas, it is nearly true for

real gases at moderate pressure (see Table 23-2). Notice that in obtain-

ing this result we did not use the specific relation U = %nRT, but only

the fact that U depends on temperature alone.

If we can compute C», then Eq. 23-10 will give us C,, and vice versa.

We can obtain Cv by combining Eq. 23-9 with the kinetic theory result

for the internal energy of an ideal gas, U — fnRT (Eq. 23-8). Thus, in

the limit of differential changes,

This result (about 3 cal/mol-K) turns out to be rather good for mona-
tomic gases. It is, however, in serious disagreement with values ob-

tained for diatomic and polyatomic gases (see Table 23-2). This sug-

gests that Eq. 23-8 is not generally correct (see footnote on p. 507).

Since that relation followed directly from the kinetic theory model,

we conclude that we must change the model if kinetic theory is to

survive as a useful approximation to the behavior of real gases.

Show that for an ideal gas undergoing an adiabatic process pVy = a constant, EXAMPLE 5
where y = Cp/Cv .

Let us apply the first law of thermodynamics

Q = AU + W.

For an adiabatic process Q = 0. For W we put p AV. Since the gas is assumed
to be ideal, U depends only on temperature and, from Eq. 23-9, AU = nC r AT.

With these substitutions we have

= nC r AT + p AV
or

p AV
AT-

nC r

For an ideal gas pV = nRT, so that, if p, V, and T are allowed to take on small

variations,

p AV+V Ap = nR AT
or

pAV+VAp
nR



Equating these two expressions and using Eq. 23-10 (Q, — C r = R], we obtain,

after some rearrangement,

p AVC„ + V ApC,- =

Dividing by pVd- and recalling that, by definition, C,JC- = y, we get

Ap AV .

In the limiting case of differential changes this reduces to

which [assuming y to be constant) we can integrate as

or

In p + y In V = a constant

pV y = a constant. (23-12)

The value of the constant is proportional to the quantity of gas. In Fig. 23-5

we compare the isothermal and adiabatic behaviors of an ideal gas.

pV = constant

pV y = constant

(7 = 1.40)

Ti = 100 K

T2 = 200 K

T3 = 300 K

T4 = 400 K

figure 23-5

Ti, T>, T:i and T4 show how the

pressure of one mole of an ideal gas

changes as its volume is changed,

the temperature being held constant

(isothermal process). A,, A-., A* and A+
show how the pressure of an ideal

gas changes as its volume is

changed, no heat being allowed to

flow to or from the gas (adiabatic

process). An adiabatic increase in

volume (for example going from a to

b along Ail is always accompanied

by a decrease in temperature, since

at a, T= 400 K, whereas at b, T =
300 K.

20

Volume, liters

The compressions and rarefactions in a sound wave are practically adiabatic at EXAJ^IPIjE 6
audio frequencies. Show that in such a case the speed of sound in an ideal gas

is given by

In Chapter 20 we showed the speed of sound to be v= VB/p, where p is the

gas density and B is the bulk modulus of the gas, B = —V[Ap/AV). Howevei
li will depend on the conditions that prevail as the pressure is changed II we
assume the temperature to remain constant we have, in the limit ol differential

changes



^isothermal
— Mji/) (23-13)

V" y I isothermal

In an isothermal process for an ideal gas we have

pV = a constant

or, by differentiation with respect to V,

\" V/ isothermal

Combined with Eq. 23-13 this yields

"isothermal
=

P-

In a sound wave, however, the conditions are not isothermal but closely

adiabatic. The appropriate bulk modulus is then

Baltic = -v(|£) (23-14)
\" VI adiabatic

In an adiabatic process for an ideal gas we have

pVy = a constant

or, by differentiating with respect to V,

pyvy-* + v>(^) = o.
\" vi adiabatic

This, combined with Eq. 23-14, yields

Badlabatic
= JP

and, for the speed of sound, [a IZ^
v=^-r ff 123-15)

To understand why the compressions and rarefactions are adiabatic rather

than isothermal, recall that compression of a gas causes a temperature rise and

rarefaction a temperature fall unless heat energy is removed or added. Hence,

in a gas through which sound propagates, the compressed regions are warmer
than the rarefied ones. In principle, heat will be conducted from compression

to rarefaction. The rate of heat conduction per unit area, however, depends

(see Section 22-4) on the thermal conductivity of the gas and on the distance

between compression and adjacent rarefaction, which is half a wavelength. The
wavelength of audible sound is much too large for any significant rate of heat

flow even in gases that are the best heat conductors. Hence, the conditions are

essentially adiabatic in sound propagation and not isothermal. Actually the

condition for breakdown of the adiabatic approximation is that the wavelength

of the wave be comparable with the mean free path of molecules in the gas,

an extreme situation (see Section 24-1).

Newton derived a formula for the speed of sound in 1710, when the only gas

law formulated was Boyle's law. He assumed isothermal rather than adiabatic

conditions and obtained v = Vp/p rather than the (correct) value of V-y pip.

Newton was able to get good agreement with experimental values by making
(then) reasonable corrections to his basic model.* His error and the correct

model were pointed out by Laplace in 1816, more than a century later. We must
remember that, at that date, the concept of energy was not yet understood and

the science of thermodynamics did not exist.

Does this result modify the result obtained in Example 4? Can you now
explain why the speed of sound in a gas is not the same as the root-mean-square

speed of the gas molecules'

*See "Newton's Derivation of the Velocity of Sound" by Haven Whiteside, American
lournal of Physics, May 1964.



A modification of the kinetic theory model designed to explain the 23-8
specific heats of gases was first suggested by Clausius in 1857. Recall EQUIP'ARTITION OF
that in our model we assumed a molecule to behave like a hard elastic ENERGY
sphere and we treated its kinetic energy as purely translational. The
specific heat prediction was satisfactory for monatomic molecules. Fur-

ther, because of the success of this simple model in other respects in

predicting the correct behavior of gases of all kinds over wide tempera-

ture ranges, we feel confident that it is the average kinetic energy of

translation which determines what we measure as the temperature of

a gas.

In the case of specific heats, however, we are concerned with all pos-

sible ways of absorbing energy and we must ask whether or not a mole-

cule can store energy internally, that is, in a form other than kinetic

energy of translation. This would certainly be so if we pictured a mole-

cule, not as a rigid particle, but as an object with internal structure.

For then a molecule could rotate and vibrate as well as move with trans-

lational motion. In collisions, the rotational and vibrational modes of

motion could be excited, and this would contribute to the internal

energy of the gas. Here then is a model which enables us to modify the

kinetic theory formula for the internal energy of a gas.

Let us now find the total energy of a system containing a large num-
ber of such molecules, where each molecule is thought of as an object

having internal structure. The energy will consist of kinetic energy of

translation, with terms like \mv/-, of kinetic energy of rotation, with

terms like i/wx2
;
of kinetic energy of vibration of the atoms in a mole-

cule, with terms like i/i.v
2 (where /* is the reduced mass), and of poten-

tial energy of vibration of the atoms in a molecule, with terms like

ikx2
. Although other kinds of energy contributions exist, such as

magnetic, for gases we can describe the total energy quite accurately

by terms such as these. Although these terms have different origins,

they all have the same mathematical form, namely, a positive constant

times the square of a quantity which can take on negative or positive

values. We can show from statistical mechanics that when the number
of particles is large and Newtonian mechanics holds, all these terms

have the same average value, and this average value depends only on

the temperature. In other words, the available energy depends only on
the temperature and distributes itself in equal shares to each of the

independent ways in which the molecules can absorb energy. This

theorem, stated here without proof, is called the equipartition of energy

and was deduced by Clerk Maxwell. Each such independent mode of

energy absorption is called a degree of freedom.

From Eq. 23-8 we know that the kinetic energy of translation per

mole of gaseous molecules is %RT. The kinetic energy of translation

per mole is the sum of three terms, however, namely \Mv.r
2

,
jMvy2

,

and iMv2
2

. The theorem of equipartition requires that each such term

contribute the same amount to the total energy per mole, or ±RT per

degree of freedom.

For monatomic gases the molecules have only translational motion

(no internal structure in kinetic theory), so that U = fuRT. It follows

from Eq. 23-1 1 that C = %R = 3 cal/mol K. Then from Eq. 23-10, C„ =

2#, and the ratio of specific heat is

For a diatomic gas we can think of each molecule as having ;i dumb-



bell shape (two spheres joined by a rigid rod). Such a molecule can rotate

about any one of three mutually perpendicular axes. However, the rota-

tional inertia about an axis along the rigid rod should be negligible

compared to that about axes perpendicular to the rod, so that the rota-

tional energy should consist of only two terms,* such as \l(ny
z and

iIo)z
2

. Each rotational degree of freedom is required by equipartition

to contribute the same energy as each translational degree, so that for

a diatomic gas having both rotational and translational motion,

U = 3n[}RT) + 2n{}RT) = fnRT,

dU
n dT

or C, - -^^ = iR = 5 cal/mol-K

and CP = C v + R = $R,

For polyatomic gases, each molecule contains three or more spheres

(atoms) joined together by rods in our model, so that the molecule is

capable of rotating energetically about each of three mutually perpen-

dicular axes. Hence, for a polyatomic gas having both rotational and

translational motion,

U = 3n{iRT) + 3n[±RT) = 3nRT,

or Cv = -^4 = 3R = 6 cal/mol-K,
n dT

and C„ = 4R,

or y — -j=r= 1.33.

Let us now turn to experiment to test these ideas. In Table 23-2 we
list the experimentally determined molar heat capacities for common
gases at 20° C and 1.0 atm. Notice that for monatomic and diatomic

Table 23-2

Q, Cv,

Type of Gas Gas cal/mol-K cal/mol-K Op (_*(! y = Cp/Cv

Monatomic He 4.97 2.98 1.99 1.67

A 4.97 2.98 1.99 1.67

Diatomic H2 6.87 4.88 1.99 1.41

o. 7.03 5.03 2.00 1.40

N-, 6.95 4.96 1.99 1.40

CI, 8.29 6.15 2.14 1.35

Polyatomic C02 8.83 6.80 2.03 1.30

so. 9.65 7.50 2.15 1.29

NH3 8.80 6.65 2.15 1.31

C-iH, 12.35 10.30 2.05 1.20

* We have already ruled out the possibility that a monatomic molecule could rotate.

Actually it could spin about any one of three mutually perpendicular axes if it had any
extent, such as a finite sphere. Implicitly, therefore, we have adopted a point mass as

our model of the atom. Hence, in a diatomic molecule we are rid of one rotational degree

of freedom, for point masses joined by a rigid line have no rotational energy about an axis

along that line.



gases the values of C, Cp , and y are close to the ideal gas predictions.

In some diatomic gases, like chlorine, and in most polyatomic gases

the specific heats are larger than the predicted values. Even y shows

no simple regularity for polyatomic gases. This suggests that our model
is not yet close enough to reality.

We have not yet considered energy contributions from the vibrations

of the atoms in diatomic and polyatomic molecules. That is, we can

modify the dumbbell model and join the spheres instead by springs.

This new model will greatly improve our results in some cases. Instead

of having a theoretical model for all gases, however, we now require

an empirical model which differs from gas to gas. We can obtain a rea-

sonably good picture of molecular behavior this way and the empirical

model is therefore useful; however it ceases to be fundamental.

figure 23-6
Variation of the molar heat C, of

hydrogen with temperature. Note
that T is drawn on a logarithmic

scale. Hydrogen dissociates before

3200 K is reached. The dashed

curve is for a diatomic molecule

that does not dissociate before

10,000 K is reached.

200 500

Temperature, K

10,000

To see this more clearly, let us consider Fig. 23-6, which shows the

variation of the molar heat capacity of hydrogen with temperature.

The value of 5 cal/mol-K, which is predicted for diatomic molecules

by our model, is characteristic of hydrogen only in the temperature

range from about 250 to 750 K. Above 750 K, C, increases steadily

toward 7 cal/mol-K and below 250 K, C, decreases steadily to 3 cal/mol

K. Other gases show similar variations of molar heat with temperature.

Here is a possible explanation. At low temperatures apparently (see

Example 7) the hydrogen molecule has translational energy only and,

for some reason, cannot rotate. As the temperature rises rotation be-

comes possible so that at "ordinary" temperatures a hydrogen molecule

acts like our dumbbell model. At high temperatures the collisions be-

tween molecules cause the atoms in the molecule to vibrate and the

molecule ceases to behave as a rigid body. Different gases, because of

their different molecular structure, may show these effects at different

temperatures. Thus a chlorine molecule appears to vibrate at room
temperature.

Although this description is essentially correct, and we have ob-

tained much insight into the behavior of molecules, this behavior con-

tradicts classical kinetic theory. For kinetic theory is based on New-
tonian mechanics applied to a large collection of particles, and the

equipartition of energy is a necessary consequence of this classical

statistical mechanics. But /'/ equipartition of energy holds, then, no

mattei what happens to the total interim! energy as the temperature



changes, each part of the energy— translational, rotational, and vibra-

tional— must share equally in the change. There is no classical mech-

anism for changing one mode of mechanical energy at a time in such a

system. Kinetic theory requires that the specific heats of gases be in-

dependent of the temperature.

Hence, we have come to the limit of validity of classical mechanics

when we try to explain the structure of the atom (or molecule). Just

as Newtonian principles break down at very high speeds (near the speed

of light), so here in the region of very small dimensions they also break

down. Relativity theory modifies Newtonian ideas to account for the

behavior of physical systems in the region of high speeds. It is quantum
physics that modifies Newtonian ideas to account for the behavior of

physical systems in the region of small dimensions. Both relativity

theory and quantum mechanics are generalizations of classical theory

in the sense that they give the (correct) Newtonian results in the re-

gions in which Newtonian physics has accurately described experi-

mental observations. In the following two chapters we shall confine

our attention to the very fruitful application of thermodynamics and

the kinetic theory to "classical" systems.

According to quantum theory the internal energy of an atom (or molecule) is EX/VMPLE T
"quantized"; that is, the atom cannot have any of a continuous set of internal

energies but only certain discrete ones. After being raised from its lowest energy

state to some higher one the atom can give up this energy by emitting radiation

whose energy equals the difference in energy between the upper and lower in-

ternal energy states of the atom.

When two atoms collide, some of their translational kinetic energy may be

converted into internal energy of one or both of the atoms. In such a case the

collision is inelastic, for translational kinetic energy is not conserved. In a gas,

the average translational kinetic energy of an atom is %kT. When the tempera-

ture is raised to a value where fkT is about equal to some allowed internal

excitation energy of the atom, then an appreciable number of the atoms can

absorb enough energy through inelastic collisions to be raised to this higher

internal energy state. We can detect this because, after an interval, radiation

corresponding to the absorbed energy will be emitted.

[a] Compute the average translational kinetic energy per molecule in a gas

at room temperature.

We have, for T = 300 K,

|AT= 1(1.38 x lO 23 J/molecule-K)(300 K)

= 6.21 x 10- 21 J/molecule

= 3.88 x 10 2 eV/molecule.

This is about ys eV per molecule. Some molecules will have larger energies

and some smaller energies than this average value.

[b] The first allowed (internal) excited state of a hydrogen atom is 10.2 eV
above its lowest (ground) state. What temperature is needed to excite a "large"

number of hydrogen atoms to emit radiation of this energy?

We require

and we have from above

Hence

ikT= 10.2 eV

fA(300 K) = 2V eV.

T= 300 K x 10.2/(A) « 7.5 x 104 K.

Actually, because many molecules have energies much greater than the average

value, appreciable excitation may occur at somewhat lower temperatures.



We can now appreciate why the kinetic theory assumption, that molecules

can be regarded as having no internal structure and collide elastically with one

another, holds true at ordinary temperatures. Only at temperatures high enough

to give the molecules an average translational kinetic energy comparable to the

energy difference between the lowest and the first allowed excited state of the

molecule will the internal structure of the molecule change and the collisions

become inelastic. Indeed, in retrospect one may say that early evidence that the

internal energy of an atom is quantized existed in experiments with gas colli-

sions and that the seeds of quantum theory lay in the kinetic theory of gases.*

1

.

In discussing the fact that it is impossible to apply the laws of mechanics

individually to atoms in a macroscopic system, Mayer and Mayer state:

"The very complexity of the problem [that is, the fact that the number of

atoms is large] is the secret of its solution." Discuss this sentence.

2. Is there any such thing as a truly continuous body of matter!
1

3. In kinetic theory we assume that there are a large number of molecules in

a gas. Real gases behave like an ideal gas at low densities. Are these state-

ments contradictory- If not, what conclusion can you draw from them?

4. We have assumed that the walls of the container are elastic for molecular

collisions. Actually, the walls may be inelastic. In practice this makes no

difference as long as the walls are at the same temperature as the gas.

Explain.

5. In large-scale inelastic collisions mechanical energy is lost through internal

friction resulting in a rise of temperature owing to increased internal mo-
lecular agitation. Is there a loss of mechanical energy to heat in an inelastic

collision between molecules'

6. What justification is there in neglecting the change in gravitational poten-

tial energy of molecules in a gas"

7. We have assumed that the force exerted by molecules on the wall of a con-

tainer is steady in time. How is this justified?

8. The average velocity of the molecules in a gas must be zero if the gas as a

whole and the container are not in translational motion. Explain how it

can be that the average speed is not zero.

9. Consider a hot, stationary golf ball sitting on a tee and a cold golf ball just

moving off the tee after being hit. Can the numerical value of the kinetic

energy of the molecules' motion relative to the tee be the same in each

case? If so, what is the difference between the two cases?

10. By considering quantities which must be conserved in an elastic collision,

show that in general molecules of a gas cannot have the same speeds after

a collision as they had before. Is it possible, then, for a gas to consist of

molecules which all have the same speed?

1 1

.

Justify the fact that the pressure of a gas depends on the square of the speed

of its particles by explaining the dependence of pressure on the collision

frequency and the momentum transfer of the particles.

12. Why does the boiling temperature of a liquid increase with pressure?

13. Pails of hot and cold water are set out in freezing weather. Explain [a] if

the pails have lids, the cold water will freeze first but [b] if the pails do

not have lids, it is possible for the hot water to freeze first. [Hint: If equal

masses of water are taken at two starting temperatures, more rapid evapora-

tion from the hotter one may diminish its mass enough to compensate for

the greater temperature range it must cover to reach freezing. See "The

Freezing of Hot and Cold Water" by G. S. Kell, American journal of Physics.

May 1969.1

See "On Teaching Quantum Phenomena" by Sir N. 1
; Mott in Contemporary Physics,

August 1964.

questions



14. How is the speed of sound related to gas variables in the kinetic theory

model?

15. Far above the earth's surface the gas kinetic temperature (see Eq. 23-5) is

reported to be the order of 1000 K. However, a person placed in such an

environment would freeze to death rather than vaporize. Explain.

16. Why must the time allowed for diffusion separation be relatively short?

17. Suppose we want to obtain U238 instead of U235 as the end product of a dif-

fusion process. Would we use the same process- If not, explain how the

separation process would have to be modified.

18. Considering the diffusion of gases into each other (see footnote on page

503), can you draw an analogy to a large jostling crowd with many "col-

lisions" on a large inclined plane with a slope of a few degrees'

19. Can you describe a centrifugal device for gaseous separation? Is a centrifuge

better than a diffusion chamber for separation of gases?

20. Would you expect real molecules to be spherically symmetrical? If not,

how would the potential energy function of Fig. 23-3 change?

21. Explain how we might keep a gas at a constant temperature during a ther-

modynamic process.

22. Explain why the temperature of a gas drops in an adiabatic expansion.

23. If hot air rises, why is it cooler at the top of a mountain than near sea level?

24. Comment on this statement: "There are two ways to carry out an adiabatic

process. One is to do it quickly and the other is to do it in an insulated box.

"

25. A sealed rubber balloon contains a very light gas. The balloon is released

and it rises high into the atmosphere. Describe and explain the thermal and

mechanical behavior of the balloon.

26. Explain why the specific heat at constant pressure is greater than the spe-

cific heat at constant volume.

27. It is more common to excite radiation from gaseous atoms by use of elec-

trical discharge than by thermal methods. Why?

28. Extensive quantities have values that depend on what the system's bound-

aries are, whereas intensive quantities are independent of the choice of

boundaries. That is, extensive quantities are necessarily defined for a whole

system, whereas intensive quantities apply uniformly to any small part of

the system. Of the following quantities, determine which are extensive

and which are intensive: pressure, volume, temperature, density, mass,

internal energy.

SECTION 23-2

1. At 0° C and 1.000-atm pressure the densities of air, oxygen, and nitrogen

are, respectively, 1.293 kg/m3
, 1.429 kg/m3

, and 1.251 kg/m3
. Calculate

the percentage of nitrogen in the air from these data, assuming only these

two gases to be present. Answer: 76.4%, by mass.

2. {a) What is the volume occupied by one mole of an ideal gas at standard

conditions, that is, pressure of one atmosphere and temperature of 0° C?
[b] Show that the number of molecules per cubic centimeter (Loschmidt
number) at standard conditions is 2.687 x 10 19

.

3. The best vacuum that can be attained in the laboratory corresponds to a

pressure of about 10~ 14 atm, or about 10 10 ram-Hg. How many molecules
are there per cubic centimeter in such a "vacuum" at room temperature?
Answer: 2.7 x 10 5

.

4. An air bubble of 20 cm3 volume is at the bottom of a lake 40 m deep where
the temperature is 4° C. The bubble rises to the surface which is at a tem-
perature of 20° C. Take the temperature of the bubble to be the same as

that of the surrounding water and find its volume just before it reaches

the surface?

problems



5. Oxygen gas having a volume of 1.0 liter at 40° C and a pressure of 76 cm-Hg
expands until its volume is 1.5 liters and its pressure is 80 cm-Hg. Find

{a) the mass in moles of oxygen in the system and [b] its final temperature.

Answer: [a] 0.039 mol. (b) 220° C.

6. An automobile tire has a volume of 1000 in. 3 and contains air at a gauge

pressure of 24 lb/in. 2 when the temperature is 0° C. What is the gauge pres-

sure of the air in the tires when its temperature rises to 27° C and its volume
increases to 1020 in. 3 "

7. Compute the number of molecules in a gas contained in a volume of 1.00

cm3 at a pressure of 1.00 x 10 3 atm and a temperature of 200 K.

Answer: 3.67 x 10 1H
.

8. If the water molecules in 1.0 g of water were distributed uniformly over

the surface of the earth, how many such molecules would there be on

1.0 cm2 of the earth's surface"

9. Calculate the work done in compressing 1.00 mol of oxygen from a volume
of 22.4 1 at 0° C and 1.00-atm pressure to 16.8 1 at the same temperature.

Answer: 648 J.

10. Suppose that, as happened historically, we are given Boyle's law

pV= a constant (constant T)

and Charles' law

11.

V/T= a constant (constant p)

separately. Show how these two laws may be combined to yield

pV/T = a constant.

A mercury-filled manometer with two unequal arms is sealed off with the

same pressure p in the two arms as in Fig. 23-7. The cross-sectional area

of the manometer arms is 1.0 cm 2
. With the temperature constant, an ad-

ditional 10 cm3 of mercury is admitted through the stopcock at the bottom;

the level on the left increases 6.0 cm and that on the right increases 4.0 cm.

Find the pressure p„. Answer: 1.5 x 105 Pa.

Air that occupies 5.0 ft
3 (0.14 m3

) at 15 lb/in. 2 (1.034 x 10 5 Pa) gauge pres-

sure is expanded isothermally to atmospheric pressure and then cooled

at constant pressure until it reaches its initial volume. Compute the work
done by the gas.

SECTION 23-4

13. The mass of the H2 molecule is 3.3 x 10 24
g (2.3 x 10 « slug). If 1023 hydro-

gen molecules per second strike 2.0 cm2 (0.31 in. 2
) of wall at an angle of 45°

with the normal when moving with a speed of 105 cm/s (3.3 x 103
ft/s), what

pressure do they exert on the wall? Answer: 2300 Pa (0.35 lb/in. 2
).

12.

50 cm

figure 2
Problem 1

SECTION 23-5

14. At 273 K. and 1.00 x 10 2 atm the density of a gas is 1.24 x 10 r
> g/cm 3

.

(a) Find vrms for the gas molecules, [b] Find the molecular weight of the gas

and identify it.

15. [a] Compute the root-mean-square speed of an argon atom at room tempera-

ture (20° C). [b] At what temperature will the root-mean-square speed be

half that value? Twice that value- Answer: [a] 430 m/s. \b) 73 K
;
1200 K.

16. In a gas of uranium hexafluoride there are isotopes U2S5Fe and U23
*F,; having

molecular weights 349 and 352, respectively, [a] What is the ratio of the

rms speeds of these two molecular isotopes? \b) How could this fact be

used to separate the isotopes?

17. [a] Determine the average value of the kinetic energy of the particles of

an ideal gas at 0.0° C and 100° C. [b) What is the kinetic energy per mole

of an ideal k<i^ at these temperatures?

Answer: (a) 5.65 x 10 2I
), 7.72 x 10 2I

J. [b] 3400 ), 4650 J.

IK At what temperature is the average translational kinetic energy of .1 mole



cule equal to the kinetic energy of an electron accelerated from rest through

a potential difference of one volt (that is, an energy of 1.0 eV)'

19. Oxygen gas at 273 K and 1 .00-atm pressure is confined to a cubical container

10 cm on a side. Compare the change in gravitational potential energy of

an oxygen molecule falling the height of the box with its mean transla-

tional kinetic energy.

Answer: Ratio of the mean translational kinetic energy to the change in

gravitational potential energy is 1.1 x 105
.

20. Find the root-mean-square speeds of {a) helium and [b] argon molecules at

40° C from that of oxygen molecules (460 m/s at 0.00° C). The molecular

weight of oxygen is 32 g/mol, of argon 40, of helium 4.0.

21. (a) Compute the temperature at which the root-mean-square speed is equal

to the speed of escape from the surface of the earth for molecular hydrogen.

For molecular oxygen, (b) Do the same for the moon, assuming gravity on

its surface to be 0.16 g. (c) The temperature high in the earth's upper

atmosphere is about 1000 K. Would you expect to find much hydrogen

there' Much oxygen?

Answer: {a) 1.0 x 10" K
;
1.6 x 105 K. [b] 440 K

;
7000 K.

22. \a) Consider an ideal gas at 273 K and 1.0-atm pressure. Imagine that the

molecules are for the most part evenly spaced at the centers of identical

cubes. Using Avogadro's number and taking the diameter of a molecule to

be 3.0 x 10" 8 cm, find the length of an edge of such a cube and compare this

length to the diameter of a molecule, [b] Now consider a mole of water

having a volume of 18 cm3
. Again imagine the molecules to be evenly

spaced at the centers of identical cubes. Find the length of an edge of such

a cube and compare this length to the diameter of a molecule.

23. Plot and physically interpret [a] the variation of gas density with tempera-

ture for an isobaric (constant-pressure) process and (b) the variation of gas

density with pressure for an isothermal process.

24. Water standing in the open at 27° C evaporates due to the escape of some of

the surface molecules. The heat of vaporization (540 cal/g) may be found

approximately from en, where e is the average energy of the escaping mole-

cules and n is the number of molecules per gram, (a) Find e. [b] How many
times greater is e than the average kinetic energy of H>0 molecules, assum-

ing that the kinetic energy is related to temperature in the same way as it

is for gases?

25. Consider a given mass of an ideal gas. Compare curves representing con-

stant-pressure, constant-volume, and isothermal processes on [a] a p-V

diagram, [b] a p-T diagram, and (c) a V-T diagram, [d] How do these curves

depend on the mass of gas chosen"

26. [a] Show that the variation in pressure in the earth's atmosphere, assumed
to be isothermal, is given by p = p e~MgylRT where M is the molecular weight

of the gas. (See Example 1, Chapter 17.) [b] Show also that n„ = n
Vll
e h,^RT

where n» is the number of molecules per unit volume.

SECTION 23-7

27. [a] What is the internal energy of one mole of an ideal gas at 273 K? (b) Does
it depend on volume or pressure" Does it depend on the nature of the gas"

Answer: [a] 3400 J.

28. One mole of an ideal gas expands adiabatically from an initial tempera-

ture Ti to a final temperature T>. Prove that the work done by the gas is

C,-(Ti — Tt), where C, is the molar heat capacity.

29. One mole of an ideal gas undergoes an isothermal expansion. Find the heat

flow into the gas in terms of the initial and final volumes and the tempera-

ture. Answer: RT In VfIVi.

30. The mass of a gas molecule can be computed from the specific heat at con-

stant volume. Take C„ = 0.075 kcal/kg K for argon and calculate [a) the

mass of an argon atom and [b) the atomic weight of argon.
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31. Take the mass of a helium atom to be 6.66 x 10 -27 kg. Compute the specific

heat at constant volume for helium gas. Answer: 3.11 x 103 J/kg • K.

Air at 0.00° C and 1.00-atm pressure has a density of 1.291 x 10 3 g/cm3 and

the speed of sound in air is 332 m/s at that temperature. Compute the ratio

of specific heats of air.

Show that the speed of sound in an ideal gas is independent of the pressure

and density.

The speed of sound in different gases at the same temperature depends on

the molecular weight of the gas. Show that Vi/v2 = VM->/Mi [constant T)

where Vi is the speed of sound in the gas of molecular weight Mi and v-> is

the speed of sound in the gas of molecular weight M2 .

35. Show that the speed of sound in air increases about 0.61 m/s for each

Celsius degree rise in temperature near 0° C.

36. From the knowledge that c,, the specific heat at constant volume, for a gas

in a container is 5R, what can you conclude about the ratio of the speed of

sound in that gas to the root-mean-square speed of its molecules at a tem-

perature T?

37. The following data are the result of accurate experimental measurements:

1.000 mol of a gas occupies a volume of 2.541 x 10 2 m3 at a pressure of

9.480 x 10 4 Pa when its temperature is 290.0 K. The same mass of gas re-

quires 125.0 cal to raise its temperature from 290.0 to 315.0 K while its

volume is held constant. The ratio [c,,lci] of its specific heats is 1.430.

[a) Use these data to compute the mechanical equivalent of heat /. [b] Ac-

count for the fact that your value of / differs from the accepted three-figure

value — namely, 4.19 J/cal. Answer: [a) 3.86 J/cal.

38. A mass of gas occupies a volume of 4.0 liters at a pressure of 1.0 atm and

a temperature of 300 K. It is compressed adiabatically to a volume of ] .0

liter. Determine (a) the final pressure and [b] the final temperature, assum-

ing it to be an ideal gas for which y = 1.5.

[a] A liter of gas with y — 1.3 is at 273 K and 1.0-atm pressure. It is suddenly

compressed to half its original volume. Find its final pressure and tempera-

ture. \b) The gas is now cooled back to 0° C at constant pressure. What is its

final volume- Answer: [a] 2.5 atm
;
340 K. [b] 0.40 liter.

A reversible heat engine carries 1.00 mol of an ideal monatomic gas around

the cycle shown in Fig. 23-8. Process 1-2 takes place at constant volume,

process 2-3 is adiabatic, and process 3-1 takes place at a constant pressure.

[a) Compute the heat Q, the change in internal energy AU, and the work
done W, for each of the three processes and for the cycle as a whole, (b) If the

initial pressure at point 1 is 1 .00 atm, find the pressure and the volume at

points 2 and 3.

41. A quantity of ideal gas occupies an initial volume V at a pressure p and a

temperature T(1 . It expands to a volume Vi [a] at constant pressure, [b] at

constant temperature, (c) adiabatically. Graph each case on a P- V diagram.

In which case is Q greatest? Least- In which case is W greatest? Least? In

which case is AU greatest? Least?

Answer: greatest least

Q a c

W a c

AU a c

42. A thin tube, sealed at both ends, is 1 .0 m long. It lies horizontally, the middle

1 cm containing mercury and the two equal ends containing air at standard

atmospheric pressure. If the tube is now turned to a vertical position by

what amount will the mercury be displaced' Assume that the process is

[a] isothermal and [b) adiabatic. Which assumption is more reasonable
'
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figure 23-8
Problem 40

SECTION 23 8

•i \ ( )ne mole oi oxygen is heated at a constant pressure starting at 0.00 C I
low

much In. it energy must be added to the .u.is to double its volume?

Answei 8040 I



44. An ideal diatomic gas (4.0 moles) at high temperature experiences a tem-

perature increase of 60 K under constant pressure conditions, {a) How much
heat was added to the gas" [b) By how much did the internal energy of the

gas increase ? (c) How much work was done by the gas? [d] By how much did

the internal translational kinetic energy of the gas increase?

45. Ten grams of oxygen are heated at constant atmospheric pressure from 27.0

to 127° C. [a] How much heat is transferred to the oxygen? [b] What fraction

of the heat is used to raise the internal energy of the oxygen?

Answer: (a) 920 J. [b] 71%.

46. Calculate the mechanical equivalent of heat from the value of R and the

values of Cv and y for oxygen from Table 23-2.

47. Avogadro's law states that under the same condition of temperature and

pressure equal volumes of gas contain equal numbers of molecules. Derive

this law from kinetic theory using Eq. 23-3 and the equipartition of energy

assumption.

48. A room of volume V is filled with a diatomic ideal gas (air) at temperature

Ti and pressure p . The air is heated to a higher temperature T2 , the pressure

remaining constant at pn because the walls of the room are not air-tight.

Show that the internal energy content of the air remaining in the room is

the same at T\ and T2 , and that the energy supplied by the furnace to heat

the air has all gone to heat the air outside the room. If we add no energy to

the air, why bother to light the furnace? (Ignore the furnace energy used to

raise the temperature of the walls, and consider only the energy used to

raise the air temperature.)

49. The atomic weight of iodine is 127. A standing wave in a tube filled with

iodine gas at 400 K has nodes that are 6.77 cm apart when the frequency is

1000 Hz. Is iodine gas monatomic or diatomic? Answer: Diatomic.

50. How would you explain the observed value of C» = 7.50 cal/mol • K for

gaseous S0 2 at 15.0° C and 1.00 atm?

51. Dalton's law states that when mixtures of gases having no chemical inter-

action are present together in a vessel, the pressure exerted by each con-

stituent at a given temperature is the same as it would exert if it alone filled

the whole vessel, and that the total pressure is equal to the sum of the par-

tial pressures of each gas. Derive this law from kinetic theory, using Eq.

23-3.

52. A hydrogen atom, in its lowest (ground) state and moving with 13-eV

kinetic energy, collides head-on with another hydrogen atom which is at

rest in its ground state, [a] Use the conservation laws of energy and mo-
mentum to show that this collision must be elastic. The first allowed

excited state is about 10.2 eV above the ground state. (£>) Show that the

minimum initial kinetic energy that the incident atom needs to raise one

of the atoms to the first excited state is twice the energy difference between

ground state and first excited state.

53. [a] A monatomic ideal gas initially at 17° C is suddenly compressed to one-

tenth its original volume. What is its temperature after compression?

[b] Make the same calculation for a diatomic gas.

Answer: [a) 1350 K. [b] 730 K.
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kinetic theory

ofgases
Between successive collisions a molecule in a gas moves with constant

speed along a straight line. The average distance between such succes-

sive collisions is called the mean free path (Fig. 24- 1 ). If molecules were

points, they would not collide at all and the mean free path would be

infinite. Molecules, however, are not points and hence collisions occur.

If they were so numerous that they completely filled the space available

to them, leaving no room for translational motion, the mean free path

would be zero. Thus the mean free path is related to the size of the mole-

cules and to their number per unit volume.

Consider the molecules of a gas to be spheres of diameter d. The
cross section for a collision is then ird2

. That is, a collision will take

place when the centers of two molecules approach within a distance d

of one another. An equivalent description of collisions made by any one

molecule is to regard that molecule as having a diameter 2d and all

other molecules as point particles (see Fig. 24-2).

Imagine a typical molecule of equivalent diameter 2d moving with

speed v through a gas of equivalent point particles and let us assume, tot

the time being, that the molecule and the point particles exert no forces

on each other. In time t our molecule will sweep out a cylinder of cross-

sectional area nd2 and length vt. If n, is the number of molecules per

unit volume, the cylinder will contain {Trd2 vt\n,- particles (see Fig.

24-3). Since our molecule and the point particles do exert forces on each

i ithrr, this will be the number of collisions experienced by the molecule

in time t. The cylinder of Fig. 24-3 will, in fact, be a broken one, chang

ing direction with every collision.

The mean free path / is the average distance between successive col-

lisions. Hence, /is the total distance vt covered in time t divided by the
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MEAN FREE PATH

figure 2 1-1

A molecule traveling through a gas

colliding with other molecules in

its path. Of course .ill the othei

molecules are moving in .1 similai

fashion.



number of collisions that take place in this time, or

vt 1
/

77 d2n vVt TTIlvd2

This equation is based on the picture of a molecule hitting stationary

targets. Actually the molecule hits moving targets. The collision fre-

quency is increased as a result (see below) and the mean free path is

reduced to

1 =
1

V2 77 n vd2
(24-1)

When the target molecules are moving, the two v's in the first equation above

are not the same. The one in the numerator (= v) is the mean molecular speed

measured with respect to the container. The one in the denominator (= v,.el ) is

the mean relative speed with respect to other molecules; it is this relative speed

that determines the collision rate.

We can see qualitatively that v,.e ,
> v. Thus two molecules of speed v moving

toward each other have a relative speed of 2v (> v); two molecules with speed v

moving at right angles on a collision course have a relative speed of V2 v

(also > v)
;
two molecules moving with speed v in the same direction have a

relative speed of zero (< v). Thus molecules arriving from all of the forward

hemisphere and part of the backward hemisphere have vre i

> v. The molecules

arriving from the rest of the backward hemisphere have vre \
< v but, since their

numbers are smaller, they do not determine the nature of the average over

both hemispheres, which yields vrC |
> v. A quantitative calculation, taking

into account the actual speed distribution of the molecules, gives vTei
= V2 v.

2d

(b)(a)

figure 24-2
(a) If a collision occurs when two

molecules come within a distance

d of each other, the process can be

treated equivalently (b) by thinking

of one molecule as having an

effective diameter 2d and the other

as being a point mass.
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Let us calculate the magnitude of the mean free path and the collision fre-

quency for air molecules at 0° C and 1-atm pressure.

We take 2 x 10~ 8 cm as an effective molecular diameter d. For the conditions

stated, the average speed of air molecules is about 1 x 105 cm/s and there are

about 3 x 10 19 molecules/cm3
. The mean free path is then

7 =
1 1

77 Vl nvd2
77 V2 (3 x 10 19/cm3

)(2 x 10« cm) 2

2 x 10 5 cm.

This is about a thousand molecular diameters.

The corresponding collision frequency is

y= (1 x 10 5 cm/s)/(2x io- cm

= 5 x 109
/s.

Thus, on the average, each molecule makes five billion collisions per second!

In the earth's atmosphere we have seen that the mean free path of

air molecules at sea level (760 mm-Hg) is 2 x 10" 5 cm. At 100 km above
the earth (10 3 mm-Hg) the mean free path is 2 mm. At 300 km (10"6

mm-Hg) it is 15 cm, and yet there are about 10 8 molecules/cm3 in this

region. This emphasizes that molecules are indeed small. At great

enough heights the mean free path concept fails because the upward-
directed molecules follow ballistic paths and may escape from the

atmosphere.

EXAMPLE 1

figure 24-3
A molecule of equivalent diameter

2d traveling with speed v sweeps

out a cylinder of base 77<i
2 and

length vt in a time t. It suffers a

collision with every other molecule

whose center lies within this

cylinder.



In the laboratory the mean free path concept is useful in situations

such as that of Example 1. In even modest laboratory vacuums, how-
ever, it loses some of its meaning because nearly all the collisions are

with the wall of the containing vessel rather than with other mole-

cules. Consider a box 10 cm on edge containing air at 10 7 mm-Hg pres-

sure. The mean free path is 150 cm, so that collisions between mole-

cules are rare indeed. And yet this box contains about 10 12 molecules!

Even in a finite "box," however, there are some conditions in which
particles can travel great distances without striking the walls. In a typi-

cal proton synchrotron, used to accelerate protons to the billion-

electron-volt range of energies, the protons are constrained by a mag-

netic field to move in a circular path and may travel several hundred
thousand miles during the acceleration process. Mean free path con-

siderations are important if the accelerating protons are to have essen-

tially no collisions with residual air molecules. In this case the effec-

tive cross section of the proton is so much smaller than that of the air

molecules that if we have a vacuum of about 10~ 6 mm-Hg, there is

essentially no beam loss by proton scattering from gas molecules

inside the vacuum chamber.

In Chapter 23 we discussed the root-mean-square speed of the mole- 24-2
cules of a gas. However, the speeds of individual molecules vary over a DISTRIBUTION OF
wide range of magnitude,- there is a characteristic distribution of mo- MOLECULAR SPEEDS
lecular speeds for a given gas which depends, as we will see below, on
the temperature. If all the molecules of a gas had the same speed v, this

situation would not persist for very long because the molecular speeds

would be changed by collisions. However, we do not expect many
molecules to have speeds « v,.ms (that is, near zero) or » vrms because

such extreme speeds would require an unlikely sequence of preferen-

tial collisions.

Clerk Maxwell first solved the problem of the most probable distribu-

tion of speeds in a large number of molecules of a gas. His molecular

speed distribution law, for a sample of gas containing TV molecules, is*

N{v) = 4TTN{m/2TTkT) 3l2v2e-""'2l2kT . (24-2)

In this equation N{v) dv is the number of molecules in the gas sample

having speeds between v and v 4- dv. T is the absolute temperature,

k is Boltzmann's constant, and m is the mass of a molecule. Note that

for a given gas the speed distribution depends only on the temperature.

We find N, the total number of molecules in the sample, by adding up

(that is, by integrating) the number present in each differential speed

interval from zero to infinity, or

N I

*

N[v) dv. (24-3)

The unit of N[v) is, say, molecules/(cm/s).

In Fig. 24-4 we plot the Maxwell distribution of speeds for mole-

cules of oxygen at two different temperatures. The number of mole-

cules having a speed between v, and v> equals the area under the curve

between the vertical lines at V\ and v^. As Eq. 24-3 shows, the area

under the speed distribution curve, which is the integral in that equa-

tion, is equal to the total number of molecules in the sample. At any

A derivation of Eq. 24-2 appears in Supplementary Topic IV.
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figure 24-4
The Maxwellian distribution of

speeds of 106 oxygen molecules at

two different temperatures. The
number of molecules within a

certain range of speeds (say, 300 to

600 m/s) is the area under this

section of the curve. The complete

area under either curve is the total

number of molecules (equals 106
) ;

this area must be the same for each

temperature if, as in this case, the

curves refer to a given number of

molecules. The pressure is lower

than atmospheric because oxygen is

a liquid at 1.0 atm and 73 K.
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temperature the number of molecules in a given speed interval* Av
increases as the speed increases up to a maximum (the most probable

speed vp ) and then decreases asymptotically toward zero. The distribu-

tion curve is not symmetrical about the most probable speed because

,the lowest speed must be zero, whereas there is no classical limit to the

upper speed a molecule can attain. In this case the average speed v is

somewhat larger than the most probable value. The root-mean-square

value, vrms , being the square root of the average of the squares of the

speeds, is still larger.

As the temperature increases, the root-mean-square speed vrms (and

v and v,, as well) increases, in accord with our microscopic interpreta-

tion of temperature. The range of typical speeds is now greater, so that

the distribution broadens. Since the area under the distribution curve

(which is the total number of molecules in the sample) remains the

same, the distribution must also flatten as the temperature rises. Hence
the number of molecules which have speeds greater than some given

speed increases as the temperature increases (see Fig. 24-4). This ex-

plains many phenomena, such as the increase in the rates of chemical

reactions with rising temperature.

The distribution of speeds of molecules in a liquid also resembles

the curves of Fig. 24-4. This explains why some molecules in a liquid

(the fast ones) can escape through the surface (evaporate) at tempera-

tures well below the normal boiling point. Only these molecules can

overcome the attraction of the molecules in the surface and escape by

evaporation. The average kinetic energy of the remaining molecules

drops correspondingly, leaving the liquid at a lower temperature. This

explains why evaporation is a cooling process.

From Eq. 24-2 we see that the distribution of molecular speeds de-

pends on the mass of the molecule as well as on the temperature. The
smaller the mass, the larger the proportion of high-speed molecules at

*We cannot simply plot the "number of particles having speed v" against v, because

there are a finite number of particles and an infinite number of possible speeds. Hence,

the probability that a particle has a precisely stated speed, such as 279.343267 • • • m/s, is

exactly zero. However, we can divide the range of speeds into intervals and the proba-

bility that a particle has a speed somewhere in a given interval (such as 279 m/s to 280 m/s)

has a definite nonzero value.



any given temperature. Hence, hydrogen is more likely to escape from

the atmosphere at high altitudes than oxygen or nitrogen. The moon
has a tenuous atmosphere. For the molecules in this atmosphere not

to have a great probability of escaping from the weak gravitational pull

of the moon, even at the low temperatures there, we would expect them
to be molecules or atoms of the heavier elements. Evidence points to

the heavy inert gases, such as krypton and xenon, which were pro-

duced largely by radioactive decay early in the moon's history. The
atmospheric pressure on the moon is about 10 -13 of the earth's atmo-

spheric pressure.

The speeds of ten particles in m/s are 0, 1.0, 2.0, 3.0, 3.0, 3.0, 4.0, 4.0, 5.0, and

6.0. Find [a] the average speed, [b) the root-mean-square speed, and (c) the most
probable speed of these particles.

[a] The average speed is

- + 1.0 + 2.0 + 3.0 + 3.0 + 3.0 + 4.0 + 4.0 + 5.0 + 6.0
v =

io

[b] The mean-square speed is

- + (1.0)
2 + (2.0)

2 + (3.0)
2 + (3.0)

2 + (3.0)
2 + (4.0)

2

= 3.1 m/s.

(4.0)
2 + (5.0)

2 + (6.0)
2

10

= 12.5 m2/s2

and the root-mean-square speed is

Vrms = V12.5 m2/s2 = 3.5 m/s.

(c) Of the ten particles three have speeds of 3.0 m/s, two have speeds of

4.0 m/s, and the other five each have a different speed. Hence, the most prob-

able speed of a particle v,, is

vp = 3.0 m/s.

Use Eq. 24-2 to determine the average speed v, the root-mean-square speed

vrms , and the most probable speed v,, of the molecules in a gas in terms of the

gas parameters.

The quantity N[v) dv is the number of particles in the sample having a speed

between v and v + dv, N[v) being given by Eq. 24-2. We find the average speed

v in the usual way: we multiply the number of particles in each speed interval

by a speed v characteristic of that interval; we sum these products over all

speed intervals and we divide by the total number of particles. Replacing the

summation by an integration, we obtain

_ f N[v)v dv

N

Substituting Eq. 24-2 for N(v) and integrating* we obtain

EXAMPLE 2

EXAMPLE 3

SkT
tt m 1.59

The mean-square speed is given by

* Let A = mllkT. From tables ol integrals

kT
in

(average speed).

1>" <A
- \S ; dv=

w*> I
* v " * s>/5



f° N(v)v2 dv
—j Jo

which yields

=; 3kT
m

= 1.73

TV

kT
in

(root-mean-square speed).

The most probable speed v,, is the speed at which N[v) has its maximum
value. It is given by requiring that

dN[v)

dv
0.

By substituting Eq. 24-2 for N[v) we obtain, as you should show,

v„
2kT kT

1.41 \ — (most probable speed).m V m

In Fig. 24-4 we show vlh v, and vrms at 0° C for a molecular speed distribution in

oxygen.

Maxwell derived his distribution law for molecular speeds (Eq. 24-2) in 1859.

At that early date it was not possible to check this law by direct measurement

and, indeed, it was not until 1920 that Stern made the first serious attempt to

do so. Techniques improved rapidly in the hands of various workers but it was

not until 1955 that a high-precision experimental verification of the law (for

gas molecules) was provided, by Miller and Kusch of Columbia University.

Their apparatus is shown in Fig. 24-5. The walls of oven O were heated, in

one set of experiments, to a uniform temperature of 870 ± 4K, some thallium

having been placed in the oven. At this temperature thallium vapor, at a pres-

sure of 3.2 x 10" 3 mm-Hg, fills the oven. Some molecules of thallium vapor

escape from slit S into the highly evacuated space outside the oven, falling on

the rotating cylinder R. This cylinder, of length I, has a number of helical

grooves cut into it, only one of them being shown in Fig. 24-5. For a given

angular speed w of the cylinder, only molecules of a sharply defined speed v

can pass along the grooves without striking the walls. The speed v can be

found from:

time of travel along the groove

or v = lo}/<f> (24-4)

in which </> (see Fig. 24-5) is the angular displacement between the entrance and

24-3
EXPERIMENTAL
CONFIRMATION OF
THE MAXWELLIAN
DISTRIBUTION

figure 24-5
The apparatus used by Miller and

Kusch to verify the Maxwell speed

distribution law. The mechanism
for rotating the cylinder is not

shown. The whole apparatus is

highly evacuated to reduce

collisions with the residual gas

molecules of the thallium molecules

in the beam emerging from slit S.



the exit of a helical groove. Thus the rotating cylinder is a velocity selector, the

speed selected being proportional to the (controllable) angular speed w, as Eq.

24-4 shows. One observes the beam intensity recorded by detector D as a func-

tion of the selected speed v. Figure 24-6 shows the remarkable agreement be-

tween theory (the solid line) and experiment (the triangles and circles) for thal-

lium vapor.

The distribution of speeds in the beam las distinguished from the distribu-

tion of speeds in the oven) is not proportional to v2e-mV*l2kT, as in Eq. 24-2, but

to v3e~ mv2l2kT
. Consider a group of molecules in the oven whose speeds lie

within a certain small range Vi to Vi 4- Av, where v, is less than the most prob-

able speed vp . We can always find another equal speed interval Av, extending

from v-: to v-2 + Av, where v2 , which will be greater than vp , is chosen so that the

two speed intervals contain the same number of molecules. However, more
molecules in the latter interval than in the former will escape from slit S to form

the beam, because molecules in the latter interval "bombard" the slit with a

greater frequency, by precisely the factor v2/v,. Thus, other things being equal,

fast molecules are favored in escaping from the oven, just in proportion to their

speeds, and the molecules in the beam have a "v3 " rather than a "v2 " distribu-

tion. This effect is allowed for in computing the theoretical curve of Fig. 24-6.

figure 24-6
The solid line shows Maxwell's

molecular speed distribution. The
circles (O) are experimental points

for thallium atoms emerging from

an oven at 870 K
;
the triangles (A)

correspond to 944 K. The horizontal

scale is a plot of v/vp where v,, is

the most probable speed. When
speeds are plotted in this way the

distributions for different

temperatures should fall on the

same curve. At 870 K, vp = 376 m/s

and at 944 K, it is 395 m/s. From
R. C. Miller and P. Kusch, Physical

Review, 99, 1314 (1955).

Rainwater and Havens (1946), also of Columbia University, provided a con-

vincing experimental check of the Maxwell speed distribution law by using a

"gas" of neutrons. The neutrons were produced (as fast neutrons) in continuous

series of short bursts in a cyclotron and allowed to fall on a block of paraffin. By

repeated collisions with the nuclei of the block, the neutrons rapidly slowed

down and came into thermal equilibrium with the block, behaving like a

"neutron gas" in a container. The container, however, is a leaky one because

neutrons diffuse out through the walls of the block and move across the labora

It is possible, by electronic means, to measure the time between the pro

duction of the neutrons in the cyclotron and their arrival at a distant detectoi

after escaping from the paraffin block. Thus one can measure the speed distribu-

tion in a collimated beam of escaping neutrons and can compare it to the pre-

diction of Maxwell; tin agreement ot theory and experiment is excellent.

Although the Maxwdl speed distribution fbi v,->
sc^ agrees remarkably well



with observations under ordinary conditions, it fails at high densities, where

the basic assumptions of the classical kinetic theory fail. In these regions we
must use speed distributions founded on the principles of quantum physics,

the Fermi-Dirac and the Bose-Einstein distributions. These quantum distribu-

tions closely agree with the Maxwell distribution in the classical region (low

density) and agree with experiment where the classical distribution fails. Hence,

there are limits to the applicability of the Maxwell distribution, as in fact there

are to any theory.

The prominence given to atomic and molecular theory during the last 24-4
quarter of the nineteenth century was deplored by many able scien- BROWNIAN MOTION
tists. In spite of the many quantitative agreements between kinetic

theory and the behavior of gases, no proof of the separate existence of

atoms and molecules had been obtained, nor had any observation been

made that could really demonstrate the continuous motions of the

molecules. Ernst Mach (1838-1916) saw no point to "thinking of the

world as a mosaic, since we cannot examine its individual pieces of

stone." It had been established rather early in the development of

kinetic theory that an atom should be about 10 -7 cm or 10 8 cm in

diameter. No one actually expected to see an atom or detect the effect

of a single atom.

The leader of the opposition to the atomic theory was Wilhelm Ost-

wald, rightly regarded as "the father of physical chemistry." He was a

champion of the principle of the conservation of energy and regarded

energy as the ultimate reality. Ostwald argued that with a thermo-

dynamical treatment of a process we know all that is essential about

the process and that further mechanical assumptions about the mech-

anism of the reactions are unproved hypotheses. He abandoned the

atomic and molecular theories and fought to free science "from hypo-

thetical conception which lead to no immediate experimentally veri-

fiable conclusions." Other prominent scientists were reluctant to

admit the atom as an established scientific fact.

Ludwig Boltzmann felt compelled to protest this attitude in an article

in 1897, stressing the indispensability of atomism in natural science.

The progress of science is often guided by the analogies of nature's

processes which occur in the minds of investigators. Kinetic theory

was such a mechanical analogy. As with most analogies it suggests

experiments to test the validity of our mental pictures and leads to fur-

ther investigations and clearer knowledge.

As is always true in such controversies in science, the decision rests

with experiment. The earliest and most direct experimental evidence

for the reality of atoms was the proof of the atomic kinetic theory pro-

vided by the quantitative studies of Brownian motion. These observa-

tions convinced both Mach and Ostwald of the validity of the kinetic

theory and the atomic description of matter on which it rests. The
atomic theory gained unquestioned acceptance in later years when a

wide variety of experiments all led to the same values of the funda-

mental atomic constants.

Brownian motion is named after the English botanist Robert Brown
who discovered in 1827 that pollen suspended in water shows a con-

tinuous random motion when viewed under a microscope. At first

these motions were considered a form of life, but it was soon found that

small inorganic particles behave similarly. There was no quantitative

explanation of this phenomenon until the development of kinetic

theory. Then, in 1905, Albert Einstein developed a theory of Brownian



motion.* In his Autobiographical Notes, Einstein writes, "My major

aim in this was to find facts which would guarantee as much as pos-

sible the existence of atoms of definite size. In the midst of this I dis-

covered that, according to atomistic theory, there would have to be a

movement of suspended microscopic particles open to observation,

without knowing that observations concerning the Brownian motion

were already long familiar."

The basic assumption made by Einstein was that particles sus-

pended in a liquid or a gas share in the thermal motions of the medium
and that on the average the translational kinetic energy of each par-

ticle is f kT, in accordance with the principle of equipartition of energy.

In this view the Brownian motions result from impacts by molecules

of the fluid, and the suspended particles acquire the same mean kinetic

energy as the molecules of the fluid.

The suspended particles are extremely large compared to the mole-

cules of the fluid and are being continually bombarded on all sides

by them. If the particles are sufficiently large and the number of mole-

cules is sufficiently great, equal numbers of molecules strike the

particles on all sides at each instant. For smaller particles and fewer

molecules the number of molecules striking various sides of the par-

ticle at any instant, being merely a matter of chance, may not be equal;

that is, fluctuations occur. Hence the particle at each instant suffers

an unbalanced force causing it to move this way or that. The particles

therefore act just like very large molecules in the fluid, and their mo-
tions should be qualitatively the same as the motions of the fluid mole-

cules. If Avogadro's number were infinite, there would be no statistical

unbalance (fluctuations) and no Brownian motion. If Avogadro's num-
ber were very small, the Brownian motion would be very large. Hence
we should be able to deduce the value of Avogadro's number from

observations of the Brownian motion. Deeply ingrained in this picture

is the idea of molecular motion and the smallness of molecules. The
Brownian motion therefore offers a striking experimental test of the

kinetic theory hypotheses.

The suspended particles are under the influence of gravity and

would settle to the bottom of the fluid were it not for the molecular

bombardment opposing this tendency. Since the suspended particles

behave like gas molecules we are not surprised to learn that, as for

molecules in the atmosphere, their density drops off exponentially with

respect to height in the fluid; they form a "miniature atmosphere"; see

Example 1, Chapter 17; Problem 26, Chapter 23; and Problem 21, this

chapter, fean Perrin, a French physical chemist, confirmed this predic-

tion in 1908 by determining the numbers of small particles of gum resin

suspended at different heights in a liquid drop (Fig. 24-7, left). From his

data he deduced a value of Avogadro's number N (l
= 6 x 1023 particles/

mol. Perrin also made measurements of the displacements of Brownian

particles during many equal time intervals and found that they have

the statistical distribution required by kinetic theory and the root-

mean-square displacement predicted by Einstein (Fig. 24-7, right).

Among the many subsequent experiments was that of Kappler, in 1931. who
observed the Brownian motion of a rather gross object, a small mirror (area

0.77 mm 2
], mounted on a fine torsion tiber with light reflected from the mirror

Einstein's theo is an article in the same volume of thi derPhysik

which com,lined Ins famous papei mi the theor) oi relativity .mil also Ins papei on the

theory of the photoelectric effect It was !'" Ins work on the photoelectril elicit thai

he won the Nohel prize in 1^21.
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(a) (ft)

figure 2 1-7

(a) A gum resin suspension contained in a glass vessel viewed in a

microscope by Perrin in 1909. At first the distribution of particles was

uniform, but in time they settled to the steady state distribution shown.

The particles have a diameter of 0.6 x 10 -3 cm and the horizontal lines are

10 x 10~3 cm apart, (b) Sketch by V. Henri in 1908 from his cinematographic

study of Brownian movement. Henri used a microscope with a motion-

picture camera which ran 20 frames/s, each exposure being 3-2? s. The zigzag

lines show the position of five rubber particles as recorded by successive

frames. The lines do not represent the actual paths of the particles for

between exposures the particles may have traveled a similar erratic path.

The scale at the bottom is divided into micrometers (abbr. /xm, value 10 6 m).

to a moving photographic film. The mirror is mounted in a chamber with gas

at low pressure (10
-2 mm-Hg); the record on the moving film yields the func-

tion 8{t) (angular displacement as a function of time). This shows clearly the

rotational Brownian motion of the mirror which consists of a series of angular

displacements produced by unbalanced impacts from the molecules. As the

gas pressure is lowered, there is a gradual decrease in the motion. From the

photographic record we can find the angular displacement and the angular

velocity w. The equipartition of energy principle requires that

i/cU2 = }k¥ = ikT,

for jIoj2 is the average rotational kinetic energy of the system and \k&2
is the

average potential energy of the system. Here / is the rotational inertia of the

system and k the torsion constant of the fiber. From his observations Kappler

could calculate Boltzmann's constant k and from the relation N» = R/k he
could obtain Avogadro's number. His values were k = 1.36 x 10 23 f/molecule

K±3% (the accepted value today of 1.380 x 10~ 23 f/molecule-K being within the

limits of error) and JV„ = 6.1 x 1023 particles/mole.

In the preceding chapter we discussed the behavior of an ideal gas. On 24-5
the macroscopic scale its fundamental relationship is the equation of THE VAN DER WAALS
state EQUATION OF STATE

pV=nRT.



From this equation and the principles of thermodynamics we can show
that the internal energy U of a gas depends only on the temperature.

Real gases obey these relations fairly well at low densities, but their

behavior may become markedly different as the density increases. We
cannot neglect these deviations from ideal behavior in accurate scien-

tific work. For example, to establish the Kelvin thermodynamic scale

in the laboratory we must know how to make the necessary corrections

to the scale of a constant-volume gas thermometer. We must therefore

know the behavior of real gases rather accurately. Even more impor-

tant, perhaps, is the fact that the behavior of real gases gives us informa-

tion on the nature of intermolecular forces and the structure of mole-

cules.

Kinetic theory provides the microscopic description of the behavior

of an ideal gas. We have already suggested how the assumptions of

kinetic theory could become invalid if applied to a real gas. Under some
conditions we may not be justified in neglecting the facts that the mole-

cules occupy a fraction of the volume available to the gas and that the

range of molecular forces is greater than the size of the molecule. At

high densities we cannot ignore these effects.

J. D. van der Waals (1837-1923) deduced a modified equation of state

which takes these factors into account in a simple way. Let us imagine

the molecules to be hard spheres of diameter d. The diameter of such a

sphere would correspond to the distance between the centers of mole-

cules at which strong collision forces come into play. During its motion
the center of a molecule cannot approach within a distance d/2 from a

wall or a distance d from the center of another molecule. Hence the

actual volume available to a molecule is smaller than the volume of the

containing vessel. Just how much smaller depends on how many mole-

cules there are. Let us represent the volume per mole, V/n, by v. Then
the "free volume" per mole would be less than this by the "covolume"
b. Hence we modify the equation of state from the ideal relation

pv= RT to

p[v-b) = RT

to allow for this. Because of the reduced volume, the number of impacts

on the wall increases, thereby increasing the pressure; this relationship

was first derived by Clausius.

We can also allow for the effect of attractive forces between mole-

cules in a simple way. Imagine a plane passed through a gas and con-

sider, at any instant, the intermolecular forces which act across it. Each

molecule on the left, say, will attract and be attracted by some small

number n of those on the right. Now compare this situation with an-

other similar in every way except that the number of molecules per unit

volume is doubled. Here any particular molecule on the left will inter-

act on the average with In of those on the right, for the range of the

molecular force is the same, and twice as many molecules now fall into

this range. Since there also are twice as many molecules on the left as

before which attract in this way, it is clear that the number of attractive

pairs across the plane has increased fourfold. Therefore, the effect of

these forces varies as the square of the number of particles per unit vol-

ume "i inversely as the square of the volume per mole, that is, as (1/v)2 .

I'n ause ill these intermolecular force bonds, the gas should, tor a given

mi.iI pressure occupy a volume less than the volume it would oc-

cupy as an ideal gas, m which there are no such attractive forces. Or,



equivalently, the gas acts as though it is subject to a pressure in excess

of the externally applied pressure. This excess pressure is proportional

to (1/v) 2
, or equal to a/v2 where a is a constant. Hence, we obtain the

van der Waals equation of state of a gas,

^ b) = RT. (24-5)

The values of a and b are to be found from experiment, and in this

respect the equation is empirical. We must realize that these correc-

tions to the ideal gas equation of state are of the simplest kind, and that

failure of the van der Waals equation in any particular case is evidence

that our assumptions are oversimplified for that case. No one simple

formula is known which applies to all gases under all conditions.*

We have seen that real gases do not follow the ideal gas law exactly.

Our discussion suggests also that for real gases the internal energy U
depends on the volume as well as on the temperature. For if there are

(long range) attractive forces between molecules, the potential energy

increases as the average distance between molecules increases. Hence,

we would expect the internal energy of most real gases to increase

slightly with the volume at ordinary temperatures, and this is found to

be the case. Of course, collisions can be regarded as arising from repul-

sive forces. If the molecules move rapidly so as to make many collisions,

the potential energy of the (short range) repulsive forces may be more
important than that of the attractive forces and the internal energy

could decrease as the volume increases. This is true for hydrogen and

helium at ordinary temperatures. In either case, however, the internal

energy U is not a function of temperature alone but depends also on the

volume. The dependence of the internal energy of a gas on the volume
can be deduced readily from the observed results of the free expansion

experiment, discussed in Chapter 22.

On a pressure-volume diagram compare the behavior of an ideal gas at constant

temperature to that of a van der Waals gas.

In Fig. 24-8a we draw the isotherms (curves of constant T) according to the

law pv = RT. Figure 24-8t» shows the isotherms according to the law

EXAMPLE 4

[p + a/v2 ){v -b) = RT.

400

300-

200-

100

0.1 0.2 0.3

Volume/mole, liter/mole

(a)

0.4 b v{, 0.1 0.2 0.3

Volume/mole, liter/mole

(b)

0.4

*For an interesting discussion of these and related matters see 'Liquids -

In-between' by J. G. Powles, in Contemporary Physics. September 1974.

The Awkward

figure 24-8
(a) Isotherms for an ideal gas. (b)

Isotherms for a van der Waals gas.

We have assumed a = 3.59

liter2atm/mole2 and b = 0.0427

liter/mole in Eq. 24.4. These values

give the best fit of this equation to

p-V-T data for the real gas C02 .

Tcr (= 304 K) is the critical

temperature.



The ideal gas isotherms are each one branch of a rectangular hyperbola, pv =
constant. For the van der Waals gas the pressure varies with volume as

P = : n~~i' l24
"6

|v — b) v1

As the volume per mole v decreases from large values, the pressure rises, but the

a/v2 term, which diminishes the pressure, climbs rapidly so that for sufficiently

low T the pressure passes through a maximum at A. As v is further decreased,

the RT/\v — b) term climbs more rapidly so that the pressure goes through a

minimum at B and then rises rapidly without bound as v tends to the value b.

At neighboring higher temperatures, the maxima and minima are less pro-

nounced and are closer to the inflection point that lies between them. At the

so-called critical temperature \T= Tcr ), they coincide in a horizontal inflection

point called the critical point. For temperatures sufficiently higher than the

critical temperature T„ the van der Waals isotherms have no inflection point

and approach the rectangular-hyperbola behavior of the ideal-gas isotherms. For

carbon dioxide the critical temperature is 304 K and the pressure at the critical

point is 72.9 atm.

We can obtain the pressure p„, the molar volume v,. r , and the temperature

Tcr of the critical point quite generally from the conditions that the tangent to

the isotherm is horizontal, dp/dv = when T= constant, and that the point is

an inflection point, d2p/dv2 = when T = constant. We obtain

dp

dv

RT la

[v - b) 2 v3 ~ (T= constant

and
d2p _
dv2

" 2RT 6a

[v-bY v4
(T= constant

This gives us vCT
= 3b

and T.-Jf

Putting these in Eq. 24-6, we obtain

Per
=

27b 2

The isotherms suggest the actual experimental behavior of liquids and gases.

The maxima and minima of the isotherms below the critical temperature are

not usually observed experimentally. At some point x the gas begins to con-

dense. As the volume is decreased, the pressure remains constant (dotted line)

until at y all the gas has been transformed into liquid. Beyond y, as we decrease

the volume, we are compressing a liquid, with the consequent sharp rise in pres-

sure needed to make even small volume changes. Actually the portions xA and

By of the isotherms can be obtained experimentally by using very pure gases and

liquids. We call these supersaturated vapors and supercooled liquids, * and they

are in metastable states. The portion AB cannot be reproduced experimentally

and is unstable.

The constants a and b in van der Waals equation can be calculated

from the experimental values of the critical quantities. The term a/v2
is

called an internal pressure. Some values for air are of interest. For air at

0° C and external pressure p of 1.00 atm, the internal pressure is 0.0028

atm
;
at 0° C and external pressure p of 100 atm, the internal pressure is

26 atm. For air at —75° C the corresponding values of the internal pres-

sing are 0.0056 atm and 84.5 atm. When a gas expands under pressure

The Undercooling of Liquids" by David Turnbull in Si ientifit [merit an [anuary

1965.



and does work against outside compressing forces, it must also do work
gj

against these internal forces. For air at —75° C and 100 atm, the work w

done against internal forces is nearly as great as that done against ex- ^
ternal forces. There is an important distinction between internal and C

external work, however. In the case of external work, energy is trans- ^
ferred from the body to an outside body

;
in the case of internal work,

there is merely a transfer from one kind of energy to another within the

body, as from potential to kinetic. The constant b varies from gas to gas,

but is usually of the order of 30 cm3/mol. Hence the covolume is about *
0.15% of the free volume available to a gas at standard conditions. ^

Although the van der Waals formula is a good qualitative guide, the IS

quantitative experimental data cannot be matched everywhere with

constant values for a and b. The reason is that the model on which the

formula is based is still an oversimplification. Instead of assuming that

the molecules always have a well-defined diameter, for example, we
must use the actual intermolecular force (Fig. 23-3). In this way a more
accurate correction to the ideal gas law can be made. Van der Waals

knew this would be necessary for accurate quantitative work.

1. Consider the case in which the mean free path is greater than the longest

straight line in a vessel. Is this a perfect vacuum for a molecule in this

vessel ?

2. List effective ways of increasing the number of molecular collisions per

unit time in a gas.

3. Give a qualitative explanation of the connection between the mean free

path of ammonia molecules in air and the time it takes to smell the ammo-
nia when a bottle is opened across the room.

4. Consider Archimedes' principle applied to a gas. Isn't it true that once we
accept a kinetic theory model of a gas, we need a new explanation for this

principle" For example, suppose the mean free path of a gas molecule is

comparable to the depth of the body immersed in the gas, or greater; what is

the origin of the buoyant force then? (See "Archimedes' Principle in Gases"

by Alan J. Walton in Contemporary Physics, March 1969.)

5. The two opposite walls of a container of gas are kept at different tempera-

tures. Describe the mechanism of heat conduction through the gas.

6. A gas can transmit only those sound waves whose wavelength is long com-
pared with the mean free path. Can you explain this? Where might this

limitation arise?

7. If molecules are not spherical, what meaning can we give to d in Eq. 24-1

for the mean free path? In which gases would the molecules act the most
nearly as rigid spheres?

8. Suppose we dispense with the hypothesis of elastic collisions in kinetic

theory and consider the molecules as centers of force acting at a distance.

Does the concept of mean free path have any meaning under these circum-

stances?

9. Since the actual force between molecules depends on the distance between
them, forces can cause deflections even when molecules are far from "con-

tact" with one another. Furthermore, the deflection caused should depend
on how long a time these forces act and hence on the relative speed of the

molecules, [a] Would you then expect the measured mean free path to de-

pend on temperature, even though the density remains constant? \b) If so,

would you expect 1 to increase or decrease with temperature? (c) How does

this dependence enter into Eq. 24-1?

10. Justify qualitatively the statement that, in a mixture of molecules of dif-

ferent kinds in complete equilibrium, each kind of molecule has the same

questions



Maxwellian distribution in speed that it would have if the other kinds were

not present.

11. What observation is good evidence that not all molecules of a body are

moving with the same speed at a given temperature!
1

12. The Maxwellian distribution of speeds among molecules in a gas is shown
in Fig. 24-4. How would you expect the Maxwellian distribution of veloci-

ties to look' What would the average velocity be?

13. The fraction of molecules within a given range Av of the root-mean-square

speed decreases as the temperature of a gas rises. Explain why.

14. [a] Do half the molecules in a gas in thermal equilibrium have speeds

greater than v,, :
. Than v? Than vrms ?

[b] Which speed, v,,, v, or vrms , corresponds to a molecule having average

kinetic energy ?

15. The slit system in Fig. 24-5 selects only those molecules moving in the

+x-direction. Does this destroy the validity of the experiment as a measure

of the distribution of speeds of molecules moving in all directions?

16. Why did Rainwater and Havens, in their investigation of the speed distri-

bution of neutrons (page 528), select paraffin as a material to bring fast

neutrons rather quickly into thermal equilibrium?

17. List examples of the Brownian motion in physical phenomena.

18. Would Brownian motion occur in gravity-free space?

19. A golf ball is suspended from the ceiling by a long thread. Explain in detail

why its Brownian motion is not readily apparent.

20. We have defined n, to be the number of molecules per unit volume in a gas.

If we define n» for a very small volume in a gas, say one equal to ten times

the volume of an atom, then n, fluctuates with time through the range of

values zero to some maximum value. How then can we justify a statement

that n v has a definite value at every point in the gas?

21. Show that as the volume per mole of a gas increases, the van der Waals

equation tends to the equation of state of an ideal gas.

22. The covolume b in van der Waals equation is often taken to be four times

the actual volume of the gas molecules themselves. What factors would
have to be taken into account to obtain such a result?

23. Keeping in mind that internal energy of a body consists of kinetic energy

and potential energy of its particles, how would you distinguish between

the internal energy of a body and its temperature?

SECTION 24-1

1. The mean free path of nitrogen molecules at 0° C and 1 atm is 0.80 x 10 5

cm. At this temperature and pressure there are 2.7 x 10 19 molecules/cm 3
.

What is the molecular diameter? Answer: 3.2 x 10 8 cm.

2. In a certain particle accelerator the protons travel around a circular path of

diameter 75 ft in a chamber of 10 8 mm-Hg pressure and 273 K temperature.

[a] Estimate the number of gas molecules per cubic centimeter at this pres-

sure, [b] What is the mean free path of the gas molecules under these condi-

tions if the molecular diameter is 2.0 x 10 H cm?

3. At what frequency would the wavelength of sound be of the order of the

mean free path in oxygen at 1-atm pressure and 0° C? Take the diameter

of the oxygen molecule to be 3.00 x 10 H cm. Answer: 3.5 x 10 s' Hz.

4. What is the mean free path for 15 spherical jelly beans in a bag that is vigor

ously shaken? Take the volume ot the bag to be 1.0 1 and the diameter of a

jelly bean to be I cm.

5. At 2500 km above the earth's surface the density isaboui one molecule/c ma

{a) What mean tree path is predicted by Eq. 24-1 and \b) wli.it is its signifi

« .mi c under these conditions?

Answei a\ 7 • LO9 km. (b) The answer to a) has little significance because

problems



at this altitude, nearly all molecules would follow collisionless

ballistic paths in the earth's gravitational field, and many would

escape from the atmosphere.

The mean free path 1 of the molecules of a gas may be determined from

measurements (e.g., from measurement of the viscosity of the gas). At 20° C
and 75 cm-Hg pressure such measurements yield values of I, (argon) =
9.9 x 10~ 6 cm and lNi (nitrogen) = 27.5 x 10~ 6 cm. [a) Find the ratio of the

effective cross-section diameters of argon and nitrogen, [b) What would the

value be of the mean free path of argon at 20° C and 15 cm-Hg? (c) What
would the value be of the mean free path of argon at —40° C and 75 cm-Hg"

A molecule of hydrogen (diameter 1.0 x 10 -8 cm) escapes from a furnace

(T = 4000 K) with the root-mean-square speed into a chamber containing

atoms of cold argon (diameter 3.0 x 10 -8 cm) at a density of 4.0 x 10 19

atoms/cm3
, {a) What is the speed of the hydrogen molecule- (£>) If the mole-

cule and an argon atom collide, what is the closest distance between their

centers, considering each as spherical' (c) What is the initial number of col-

lisions per unit time experienced by the hydrogen molecule?

Answer: [a] 7.1 km/s. [b] 2.0 x 10~ 8 cm. (c) 5.0 x 10 10 collisions/s.

The mean free path of a molecule is J. Prove that the probability that a mole-

cule will go at least a distance x before having its next collision is e~ xl '.

For a gas in which all molecules travel with the same speed v, show that

vTe i
= iv rather than Vl v (which is the result obtained when we consider

the actual distribution of molecular speeds). See p. 523.

SECTION 24-2

10. It is found that the most probable speed of molecules in a gas at an equilib-

rium temperature T> is the same as the root-mean-square speed of the mole-

cules in this gas when its equilibrium temperature is Ti. Find T2/T1.

11. You are given the following group of particles (N, represents the number of

particles which have a speed v,).

12

13

IS

N, v,-(cm/s

2 1.00

4 2.00

6 3.00

8 4.00

2 5.00

[a) Compute the average speed v. [b] Compute the root-mean-square speed

vrms . (c) Among the five speeds shown, which is the most probable speed v,,

for the entire group? Answer: [a] 3.2 cm/s. [b) 3.4 cm/s. (c) 4.0 cm/s.

Consider the distribution of speeds shown in Fig. 24-9. (a) List vrms; v, and

v,, in the order of increasing speed, (b) How does this compare with the

Maxwellian distribution?

A gas consists of N particles, (a) Show that v,.ms s= y regardless of the form of

the distribution of speeds, [b] When does the equality hold?

Answer: [b] When all the speeds are the same.

14. A hypothetical gas of N particles has the speed distribution shown in Fig.

24-10. [Nr = for v > 2v .) [a] Evaluate a in terms of N and v . [b] Find the

number of particles with speeds between 1.5v and 2.0v . (c) Find the average

speed of the particles.

A container of volume 1000 cm3 contains argon at a pressure of 3.0 x 10s Pa

and a temperature of 300 K. The atomic weight of argon is 40. (a) How many
argon atoms are in the container? [b] What is the average speed of these

atoms? (c) How many atoms strike an area of 1.0 x 10~ 3 cm2 on one of the

container walls in one second? \d) If this area is a hole, and all the atoms
striking the hole leave the container, how long will it take for the number
of atoms in the container to fall to 1/e of its initial value?

Answer: [a) 7.2 x 1022
. [b] 400 m/s. (c) 7.2 x 1020 . [d] 100 s.

N(v)

figure 24-9
Problem 12

figure 24-10
Problem 14



SECTION 24-3

16. In the apparatus of Miller and Kusch (Fig. 24-5) the length / of the rotating

cylinder is 20.4 cm and the angle <t> is \2ttI1A.7) rad. What rotational speed

corresponds to a selected speed v of 200 m/s :

SECTION 24-4

1 7. Calculate the root-mean-square speed of smoke particles of mass 5.0 x 10 14

g in air at 0° C and 1.0-atm pressure. Answer: 1.5 cm/s.

18. Particles of mass 6.2 x 10 14 g are suspended in a liquid at 27° C and are ob-

served to have a root-mean-square speed of 1.4 cm/s. Calculate Avogadro's

number from the equipartition theorem and these data.

19. The average speed of hydrogen molecules at 0° C is 1694 m/s. Compute the

average speed of colloidal particles of "molecular weight" 3.2 x 106 g/mol.

Answer: 1.3 m/s.

20. Very small solid particles, called grains, exist in interstellar space. They
are continually bombarded by hydrogen atoms of the surrounding inter-

stellar gas. As a result of these collisions, the grains execute Brownian

movement in both translation and rotation. Assume the grains are uniform

spheres of diameter 4.0 x 10 -6 cm and density 1.0 g/cm 3
, and that the tem-

perature of the gas is 100 K. Find [a] the root-mean-square speed of the grains

between collisions and \b) the approximate rate (rev/s) at which the grains

are spinning.

2 1

.

Colloidal particles in solution are buoyed up by the liquid in which they are

suspended. Let p be the density of liquid and p the density of the particles.

If V is the volume of a particle, show that the number of particles per unit

volume in the liquid varies with height as

n,. = n,„ exp -— V[p - p )gh

This equation was tested by Perrin in his Brownian motion studies.

SECTION 24-5

22. The constant a in van der Waals equation is [a] 0.37 N • m4/mol2 for C0 2 and

[b] 0.025 N • m 4/mol 2 for hydrogen. Compute the internal pressures for these

gases for values of v/v (where v = 22.4 1/mol) of 1, 0.01, and 0.001.

23. [a] The constant b in van der Waals equation is 43 cmVmol for C02 . Using

the value for a in the previous problem, compute the pressure at 0° C for a

specific volume of 0.55 1/mol, assuming van der Waals equation to be

strictly true, [b] What is the pressure under these same conditions, assum-

ing CO2 behaves as an ideal gas'

Answer: [a] 3.3 x 106 Pa. (b) 4.1 x 106 Pa.

24. Van der Waals b for oxygen is 32 cm'/mol. Assume b is four times the actual

volume of a mole of "billiard-ball" O2 molecules and compute the diameter

of an O2 molecule.

25. Calculate the work done in an isothermal expansion of one mole of a van

der Waals gas from specific volume v, to v/.

Answer: RT\n——T + a[\lv{ - 1M).
Vi — b

26. The constants a and b in the van der Waals equation are different for dif-

ferent substances. Show, however, that if we take v,
, , />, ,., and T,. r as the units

of specific volume, pressure, and temperature, the van der Waals equation

becomes identical for all substances.
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entropyand

the second law of

thermodynamics
The first law of thermodynamics states that energy is conserved. How-
ever, we can think of many thermodynamic processes which conserve

energy but which actually never occur. For example, when a hot body

and a cold body are put into contact, it simply does not happen that the

hot body gets hotter and the cold body colder. Or again, a pond does not

suddenly freeze on a hot summer day by giving up heat to its environ-

ment. And yet neither of these processes violates the first law of

thermodynamics. Similarly, the first law does not restrict our ability to

convert work into heat or heat into work, except that energy must be

conserved in the process. And yet in practice, although we can convert

a given quantity of work completely into heat, we have never been able

to find a scheme that converts a given amount of heat completely into

work. The second law of thermodynamics deals with this question of

whether processes, assumed to be consistent with the first law, do or do

not occur in nature. Although the ideas contained in the second law

may seem subtle or abstract, in application they prove to be extremely

practical.

25-1
INTRODUCTION

Consider a typical system in thermodynamic equilibrium, say a massM
of a (real) gas confined in a cylinder-piston arrangement of volume V,

the gas having a pressure p and a temperature T. In an equilibrium state

these thermodynamic variables remain constant with time. Suppose
that the cylinder, whose walls are an (ideal) heat insulator but whose
base is an (ideal) heat conductor is placed on a large heat reservoir main-
tained at this same temperature T, as in Fig. 22-9. Now let us change the

system to another equilibrium state in which the temperature T is the

25-2
REVERSIBLE AND
IRREVERSIBLE
PROCESSES

539



same but the volume V is reduced by one-half. Of the many ways in

which we could do this we discuss two extreme cases.

I. We depress the piston very rapidly; we then wait for equilibrium

with the reservoir to be re-established. During this process the gas is

turbulent and its pressure and temperature are not well defined; we can-

not plot the process as a continuous line onap-V diagram because we
would not know what value of pressure (or temperature) to associate

with a given volume. The system passes from one equilibrium state i to

another f through a series of nonequilibrium states (Fig. 25- la).

II. We depress the piston (assumed to be frictionless) exceedingly

slowly — perhaps by adding sand to the top of the piston — so that the

pressure, volume, and temperature of the gas are, at all times, well-

defined quantities. We first drop a few grains of sand on the piston. This

will reduce the volume of the system a little and the temperature will

tend to rise,- the system will depart from equilibrium, but only slightly.

A small amount of heat will be transferred to the reservoir and in a short

time the system will reach a new equilibrium state, its temperature

again being that of the reservoir. Then we drop a few more grains of sand

on the piston, reducing the volume further. Again we wait for a new
equilibrium state to be established, and so forth. By many repetitions of

this procedure we finally reduce the volume by one-half. During this

entire process the system is never in a state differing much from an

equilibrium state. If we imagine carrying out this procedure with still

smaller successive increases in pressure, the intermediate states will

depart from equilibrium even less. By indefinitely increasing the num-
ber of changes and correspondingly decreasing the size of each change,

we arrive at an ideal process in which the system passes through a

continuous succession of equilibrium states, which we can plot as a

continuous line on a p-V diagram (Fig. 25- lb). During this process a

certain amount of heat Q is transferred from the system to the reservoir.

Processes of type I are called irreversible and those of type II are called

reversible. A reversible process is one that, by a differential change in

the environment, can be made to retrace its path. Thus as we cause the

piston to move slowly downward, in II, the external pressure on the

piston exceeds the pressure exerted on it by the gas by only a differential

amount dp. If at any instant we reduce the external pressure ever so

slightly (by removing a few sand grains), so that it is less than the in-

ternal gas pressure by dp, the gas will expand instead of contracting and

the system will retrace the equilibrium states through which it has just

passed.* In practice all processes are irreversible, but we can approach

reversibility arbitrarily closely by making appropriate experimental

refinements. The strictly reversible process is a simple and useful ab-

straction that bears a similar relation to real processes that the ideal gas

abstraction does to real gases.

The process described in II is not only reversible but isothermal, be-

Nut .ill processes carried out very slowly are reversible. For example, if the piston in our

example exerted a frictional force against the cylinder walls, it would not reverse its

motion if we made only a ditfcrenti.il change dp in the external pressure. We would have

to make a change A/) that mighl be an appreciable fraction ol p. Thus oui criterion foj

reversibility, which involves a response "I the system to .1 JimiriUni! change in the en

vironment is not met. The word quasi static is used todescribe processes thai are 1 arried

out slowly enough bo that the system passes through .1 continuous sequence ol equi

Librium st.m-s .1 quasi smih pro< ess ma) 01 ma) not be reversible See I hermodynamics

ol an Irreversible Quasi Static Process by fohn S I nomsen imerit an Journal o) i'h\ sics,

28, I 19, I960



Ti = T
f

T = a constant

(a) (b)

cause we have assumed that the temperature of the gas differs at all

times by only a differential amount dTfrom the (constant) temperature

of the reservoir on which the cylinder rests.

We could also reduce the volume adiabatically by removing the

cylinder from the heat reservoir and putting it on a nonconducting

stand. In an adiabatic process no heat is allowed to enter or to leave the

system. An adiabatic process can be either reversible or irreversible —
the definition does not exclude either. In a reversible adiabatic process

we move the piston exceedingly slowly — perhaps using the sand-loading

technique; in an irreversible adiabatic process we shove the piston down
quickly.

The temperature of the gas will rise during an adiabatic compression

because, from the first law, with Q — 0, the work W done in pushing

down the piston must appear as an increase AU in the internal energy of

the system. W will have different values for different rates of pushing

down the piston, being given by J p dV— that is, by the area under a

curve on a p-V diagram — only for reversible processes (for which p has

a well-defined value). Thus AU and the corresponding temperature

change AT will not be the same for reversible and irreversible adiabatic

processes.

figure 25-1

We cause a real gas to go from an

initial equilibrium state i

described by p„ V„ T, to a final

equilibrium state / described by

Pf, Vf (= i Vi), and Tf (= T,). We
carry out the process (a) irreversibly,

and (b) reversibly.
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Suppose that we have a system (a real gas, say) in an equilibrium state

in a cylinder-piston arrangement. By using our ability to make changes

in the environment of the system we can carry out, at our pleasure, a

wide variety of processes. We can let the gas expand or we can compress

it; we can add or subtract energy in the form of heat; we can do these

things and others irreversibly or reversibly. We can also choose to carry

out a sequence of processes such that the system returns to its original

equilibrium state; we call this a cycle. If the processes involved are all

reversible, we call it a reversible cycle.

Figure 25-2 shows a reversible cycle on a p-V diagram. Along the

curve abc we allow the system to expand, and the area under this curve

represents the work done by the system during the expansion. Along the

curve cda, which returns the system to its original state, we compress

the system, and the area under this curve represents the work we must
do on the system during the compression. Hence, the net work done by

the system is represented by the area enclosed by the curve and is posi-

tive. If we decided to traverse the cycle in the opposite sense, that is,

expanding along adc and compressing along cba, the net work done by

the system would be the negative of that of the previous case.

An important reversible cycle is the Carnot cycle, introduced by

Sadi Camot in 1824. We shall see later that this cycle will determine the

25-3
THE CARNOT CYCLE

a{ W \i

figure 25-2
A p-V diagram of a gas undergoing

a reversible cycle. The shaded area

W represents the net work done by

the gas in the cycle.
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limit of our ability to convert heat into work. The system consists of a

"working substance," such as a gas, and the cycle is made up of two
isothermal and two adiabatic reversible processes. The working sub-

stance, which we can think of as an ideal gas for concreteness, is con-

tained in a cylinder with a heat-conducting base and nonconducting
walls and piston. We also provide, as part of the environment, a heat

reservoir in the form of a body of large heat capacity at a temperature

T), another reservoir of large heat capacity at a temperature T2 , and a

nonconducting stand. We carry out the Carnot cycle in four steps, as

shown in Fig. 25-3. The cycle is shown on the p-V diagram of Fig. 25-4.

figure 25-3
A Carnot cycle. The points a, b, c,

and d correspond to the points so

labeled in Fig. 25-4. The
cylinder-piston arrangements show
intermediate steps in the processes

that connect adjacent points. The
arrows on the pistons suggest

expansions (caused by removing

sand) and compressions (caused by

adding sand).

Step 1 .
The gas is in an initial equilibrium state represented by p 1; Vi,

T, [a, Fig. 25-4). We put the cylinder on the he.u reservoir .it

temperature 7',, and allow the ^as to expand slowly to p%, V-2 , T\



[b, Fig. 25-4). During the process heat energy Q l is absorbed by

the gas by conduction through the base. The expansion is iso-

thermal at T\ and the gas does work in raising the piston and its

load.

Step 2. We put the cylinder on the nonconducting stand and allow the

gas to expand slowly further (by reducing the piston load) to

Ps, V3 , T-2 [c, Fig. 25-4). The expansion is adiabatic because no

heat can enter or leave the system. The gas does work in raising

the piston and its temperature falls to T2 .

Step 3. We put the cylinder on the (colder) heat reservoir T2 and com-

press the gas slowly top-i, Va, T2 (d. Fig. 25-4). During the process

heat energy Q 2 is transferred from the gas to the reservoir by

conduction through the base. The compression is isothermal at

T2 and work is done on the gas by the piston and its load.

Step 4. We put the cylinder on the nonconducting stand and compress

the gas slowly to the initial condition pi, Vh Ti. The compres-

sion is adiabatic because no heat can enter or leave the system.

Work is done on the gas and its temperature rises to TV
The net work W done by the system during the cycle is repre-

sented by the area enclosed by path abed of Fig. 25-4. The net

amount of heat energy received by the system in the cycle is

Qi — Q 2 , where Qi is the heat absorbed in Step 1 and Q 2 is that

given up in Step 3. The initial and final states are the same so

that there is no net change in the internal energy U of the sys-

tem. Hence, from the first law of thermodynamics,

W=Q l
-Q-

2 (25-1)

for the cycle, in which Qi and Q 2 are taken as positive quanti-

ties. The result of the cycle is that heat has been converted into

work by the system. Any required amount of work can be ob-

tained by simply repeating the cycle. Hence, the system acts

like a heat engine.
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figure 25-4
The Carnot cycle illustrated in the

previous figure, plotted on a p-V

diagram for an ideal gas as the

working substance.

We have used an ideal gas as an example of a working substance. The
working substance can be anything at all, although the p-V diagrams for

other substances would be different. Common heat engines use steam

or a mixture of fuel and air, or fuel and oxygen as their working sub-

stance. Heat may be obtained from the combustion of a fuel such as

gasoline or coal, or from the annihilation of mass in nuclear fission

processes in nuclear reactors. Heat may be discharged at the exhaust or

to a condenser. Although real heat engines do not operate on a reversible

cycle, the Carnot cycle, which is reversible, gives useful information

about the behavior of any heat engine. It is especially important be-

cause, as we shall see, it sets an upper limit to the performance of real

engines and thereby gives us a goal to work toward.

The efficiency e of a heat engine is the ratio of the net work done by

the engine during one cycle to the heat taken in from the high tempera-

ture source in one cycle.* Hence,

W _ Q,~ Q 2 _ _Q2
Q. Q. Q,

(25-2)

* The definition reflects the economic importance of engines. Work W is the desirable out-

put; the heat Qi, is the input that must be paid for in the form, say, of a fuel bill. An
efficient engine has a large ratio of W to Qi.



Equation 25-2 shows that the efficiency of a heat engine is less than one

il009f) so long as the heat Q 2 delivered to the exhaust is not zero. Expe-

rience shows that every heat engine rejects some heat during the ex-

haust stroke. This represents the heat absorbed by the engine that is not

converted to work in the process.

We may choose to carry out the Carnot cycle by starting at any point,

such as a in Fig. 25-4, and traversing each process in a direction opposite

to that of the arrowheads in that figure. Then an amount of heat Q 2 is

removed from the lower temperature reservoir at T>, and an amount of

heat Qi is delivered to the higher temperature reservoir at T[; work
must be done on the system by an outside agency. In this reversed cycle

work must be done on the system which extracts heat from the lower

temperature reservoir. Any amount of heat can be removed from this

reservoir by simply repeating the reverse cycle. Hence, the system acts

like a refrigerator, transferring heat from a body at a lower temperature

(the freezing compartment) to one at a higher temperature (the room) by

means of work supplied to it |the electric power input).

Show that the efficiency of a Carnot engine using an ideal gas as the working EXi\MJ*IjE ]
substance is e = (Ti - T2)/7V

Along the isothermal path ab, the temperature, and hence the internal energy

of the ideal gas, remains constant. From the first law, the heat Qi absorbed by

the gas in its expansion must be equal to the work Wi done in this expansion.

From Example 2, Chapter 23, we have,

Q, = W 1
= nRTi In (WV,).

Likewise, in the isothermal compression along the path cd, we have

Q,= W, = nRT2 In (V3/V4).

On dividing the first equation by the second, we obtain

q, = t, in [vyv.)

Q 2 T2 ln(VyV.,)'

From the equation describing an isothermal process for an ideal gas we obtain

for the paths ab and cd

p I V,=p 2V2 ,

p3V3 = PtVi.

From the equation describing an adiabatic process for an ideal gas we have for

paths be and da

p.,V-2r= p 3 VV,

P4VV - PiVV.

Multiplying these four equations together and canceling the factor /'i/'./»i/>,

appearing on both sides, we obtain

V 1 VSV:i V.,-' = V2VVV,W,
from which

(V2 V.,)v 'HVaVi]
and

v,/v, = vyv,.

Using this result in our expression for Q t /Q>, we sec that

Q./Q2 - TJT,, |25-3|

so that

e=l Qi/Qt = 1 - TzITx



or

e = Qi -Qi T, - To

Q. T,

The temperatures T\ and T2 are those measured on the ideal gas scale described

in Chapter 21.

The first heat engines constructed were very inefficient devices. Only
a small fraction of the heat absorbed at the high-temperature source

could be converted to useful work. Even as engineering design improved,

a sizable fraction of the absorbed heat was still discharged at the lower-

temperature exhaust of the engine, remaining unconverted to mechani-

cal energy. It remained a hope to devise an engine that could take heat

from an abundant reservoir, like the ocean, and convert it completely

into useful work. Then it would not be necessary to provide a source of

heat at a higher temperature than the outside environment by burning

fuels (Fig. 25-5). Likewise, we might hope to be able to devise a refrigera-

tor that simply transfers heat from a cold body to a hot body, without

requiring the expense of outside work (Fig. 25-6). Neither of these hope-

ful ambitions violates the first law of thermodynamics. The heat en-

gine would simply convert heat energy completely into mechanical

energy, the total energy being conserved in the process. In the refrig-

25-4
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System

boundary

W
(=Qi-Q2)

' W(=Q)

figure 25-5
In an actual heat engine, some of

the heat Qi taken in by the engine

is converted into work W, but the

rest is rejected as heat Q 2 . In a

"perfect" heat engine all the heat

input would be converted into work

output.

Actual heat engine "Perfect" heat engine

Heat reservoir at

high temperature T\

W=Qi-Q2

Heat reservoir at

low temperature T-z

Actual refrigerator

Heat reservoir at

high temperature T\

\ /

Heat reservoir at

low temperature T%

"Perfect" refrigerator

figure 25-6
In an actual refrigerator, work W is

needed to transfer heat from a

low-temperature to a

high-temperature reservoir. In a

"perfect" refrigerator, heat would
flow from the low-temperature to

the high- temperature reservoir

without any work being done on

the engine.



erator, the heat energy would simply be transferred from cold body to

hot body without any loss of energy in the process. Nevertheless neither

of these ambitions has ever been achieved, and there is reason to be-

lieve they never will be.

The second law of thermodynamics, which is a generalization of

experience, is an assertion that such devices do not exist. There have

been many statements of the second law, each emphasizing another

facet of the law, but all can be shown to be equivalent to one another.

Clausius stated it as follows: It is impossible for any cyclical machine
to produce no other effect than to convey heat continuously from one

body to another at a higher temperature. This statement rules out our

ambitious refrigerator, for it implies that to convey heat continuously

from a cold to a hot object it is necessary to supply work by an outside

agent. We know from experience that when two bodies are in contact,

heat energy flows from the hot body to the cold body. The second law

rules out the possibility of heat energy flowing from cold to hot body

in such a case and so determines the direction of transfer of heat. The
direction can be reversed only by an expenditure of work.

Kelvin (with Planck) stated the second law in words equivalent to

these: A transformation whose only final result is to transform into

work heat extracted from a source which is at the same temperature

throughout is impossible.* This statement rules out our ambitious heat

engine, for it implies that we cannot produce mechanical work by ex-

tracting heat from a single reservoir without returning any heat to a

reservoir at a lower temperature.

To show that the two statements are equivalent we need to show
that, if either statement is false, the other statement must be false also.

Suppose Clausius' statement were false so that we could have a re-

frigerator operating without needing a work input. We could use an

ordinary engine to remove heat from a hot body, to do work and to

return part of the heat to a cold body. But by connecting our "perfect"

refrigerator into the system, this heat would be returned to the hot body

without expenditure of work and would become available again for use

by the heat engine. Hence, the combination of an ordinary engine and

the "perfect" refrigerator would constitute a heat engine which violates

the Kelvin-Planck statement. Or we can reverse the argument. If the

Kelvin-Planck statement were incorrect, we could have a heat engine

which simply takes heat from a source and converts it completely into

work. By connecting this "perfect" heat engine to an ordinary refrig-

erator, we could extract heat from the hot body, convert it completely

to work, use this work to run the ordinary refrigerator, extract heat from

the cold body, and deliver it plus the work converted to heat by the re-

frigerator to the hot body. The net result is a transfer of heat from cold

to hot body without expenditure of work and this violates Clausius'

statement.

The second law tells us that many processes are irreversible. For

example, Clausius' statement specifically rules out a simple reversal

*This statement needs to be supplemented il we extend thermodynamics to the region

of negative Kelvin temperatures All other formulations ot the second law and indeed,

all other laws oi thermodynamics apply to negative temperatures without revision see

an article, "Thermodynamics and Statistical Mechanics at Negative Absolute tempera

tures" by N. F. Ramsr\ m Temperature, //•- Measurement and Control in Scienci

Vol 3, Pari I Reinhold Publishing Co New York, 1962 01 Negative Tem-

peratures and Negative Dissipation" by Stefan Machlup, in American Journal of Physics,

November 1975.



of the process of heat transfer from hot body to cold body. Not only will

some processes not run backward by themselves, but no combination

of processes can undo the effect of an irreversible process without caus-

ing another corresponding change elsewhere. In later sections we shall

develop these ideas more fully and formulate the second law quanti-

tatively.

Carnot first wrote scientifically on the theory of heat engines. In 1824 25-5
he published Reflections on the Motive Power of Heat. By then the THE EFFICIENCY OF
steam engine was commonly used in industry. Carnot wrote: ENGINES
In spite of labor of all sorts expended on the steam engine, and in spite of the

perfection to which it has been brought, its theory is very little advanced. . . .

The production of motion in the steam engine is always accompanied by a

circumstance which we should particularly notice. This circumstance is the

passage of caloric from one body where the temperature is more or less elevated

to another where it is lower. . . .

The motive power of heat is independent of the agents employed to develop

it; its quantity is determined solely by the temperature of the bodies between

which, in the final result, the transfer of the caloric occurs.

Hence, Carnot directed attention to the facts that the difference in tem-

perature was the real source of "motive power," that the transfer of

heat played a significant role, and that the choice of working substance

was of no theoretical importance.

Carnot's achievement was remarkable when we recall that the me-

chanical equivalence of heat and the conservation of energy principle

were not known in 1824. In his later papers, published posthumously

in 1872, it became clear that Carnot had foreseen the principle of the

conservation of energy and had made an accurate determination of the

mechanical equivalent of heat. He had planned a program of research

which included all the important developments in the field made by

other investigators during the following several decades. However, he

died during a cholera epidemic in 1832 at the age of 36, leaving it to

others to extend his work. It was William Thomson (later Lord Kelvin)

who modified Carnot's reasoning to bring it into accord with the

mechanical theory of heat, and who, together with Clausius, success-

fully developed the science of thermodynamics.

Carnot developed the concept of a reversible engine and the re-

versible cycle named after him. He stated a theorem of great practical

importance: The efficiency of all reversible engines operating between
the same two temperatures is the same, and no irreversible engine

working between the same two temperatures can have a greater

efficiency than this. Clausius and Kelvin showed that this theorem was
a necessary consequence of the second law of thermodynamics. Notice
that nothing is said about the working substance, so that the efficiency

of a reversible engine is independent of the working substance and de-

pends only on the temperatures. Furthermore, a reversible engine oper-

ates at the maximum efficiency possible for any engine working be-

tween the same two temperature limits. The proof of this theorem
follows.

Let us call the two reversible engines H and H' . They operate between the tem-

peratures Ti and T2 where T t > T2 . They may differ, say, in their working sub-

stance or in their initial pressures and lengths of stroke. We choose H to run
forward and H' to run backward (as a refrigerator). The forward-running engine



H takes in heat energy Qi at T, and gives out heat energy Q 2 at TL>. The back-

ward-running engine (refrigerator) H' takes in heat Q-/ at T> and gives out heat

Qi' at 7\. We now connect the engines mechanically and adjust the stroke

lengths so that the work done per cycle by H is just sufficient to operate H'

iFig. 25-7). Suppose the efficiency e of H were greater than the efficiency e' of

H'. Then

or
Q1-Q2

e > e' ,
(assumption)

Qi'

•

Since the work per cycle done by one engine equals the work per cycle done on

the other engine,

W= W,

or Qi-Qz = Qi-Q2.

Comparing these relations, we see that (since Qi — Q 2 > 0)

J_ J_
Q.

>
Q.'

or

Hence (from the work equality),

Q. < Q.'

Q2 < Q 2

Thus, the hot source gains heat Q,' — Qi (positive) and the cool source loses

heat Q>' — Q> (positive). But no work is done in the process by the combined

system H+ H' so that we have transferred heat from a body at one temperature

to a body at a higher temperature without performing work — in direct contra-

diction to Clausius' statement of the second law. Hence, we conclude that e

cannot be greater than e . Likewise, by reversing the engines we can use the

same reasoning to prove that e cannot be greater than e. Hence,

proving the first part of Carnot's theorem.

Now suppose that H is an irreversible engine. Then by the exact same pro-

cedure we can prove that e ir cannot be greater than e . But H cannot be reversed,

so we cannot prove that e' cannot be greater than e ir . Therefore, e jr is either

equal to or less than e' . Since e' = e = e,,. vl ., M hi,., we have

^Irreversible "* ^reversible*

thus proving the second part of Carnot's theorem.

figure 25-7
Proof of Carnot's theorem.

A steam engine takes steam from the boiler at 200° C (225 lb/in. 2 pressure) and EXAJflPLE 2
exhausts directly into the air (14 lb/in. 2 pressure) at 100° C. What is its max-

imum possible efficiency-
1

Using the result of Example 1 (which applies to this case by virtue of Carnot's

theorem, which we have just proved) we have

T, - Tz 473 K - 373 K

T, 473 K
x 100% =21.1%.

Actual efficiencies of about 15 f
/f are usually realized. Energy is lost by friction

turbulence, and heat conduction. Lower exhaust temperatures on more com-

plicated steam engines may raise the maximum possible efficiency to 35 f
'>'< and

the actual efficiency to
' M Hie efficiency oi an ordinary automobile engine

is about .

11 '' and that of a large Diesel oil engine about 409?

.



The efficiency of a reversible engine is independent of the working substance 2«>B6
and depends only on the two temperatures between which the engine works.

Since e = 1 — Q2/Q1, then Q2/Q1 can depend only on the temperatures. This led

Kelvin to suggest a new scale of temperature. If we let 0i and 6> represent these

two temperatures, his defining equation is

0i/02 = QJQt.

That is, two temperatures on this scale are to each other as the heats absorbed

and rejected, respectively, by a Carnot engine operating between these tem-

peratures. Such a temperature scale is called the thermodynamic (or Kelvin)

temperature scale.

To complete the definition of the thermodynamic scale, we assign the arbi-

trary value of 273.16 to the temperature of the triple point of water. Hence,

6t r
= 273.16 K. Then for a Carnot engine operating between reservoirs at the

temperatures and dtr , we have

Q_
Q„-

or = 273.16 K^--
Qtr

(25-4)

If we compare this with the corresponding equation for the ideal gas tempera-

ture T, namely

THE THERMODYNAMIC
TEMPERATURE SCALE

T = 273.16 K lim — -

p„->0 Ptr
(25-5)

we see that on the thermodynamic scale Q plays the role of a thermometric

property. However, Q does not depend on the characteristics of any substance

because a Carnot engine is independent of the nature of the working substance.

Therefore, we obtain a scale of temperature which is free of the objection we
can raise to the ideal gas scale of Chapter 21, and in fact we arrive at a funda-

mental definition of temperature.

The definition of thermodynamic temperature enables us to rewrite the equa-

tion for the efficiency of a reversible engine as

Qx - Q 2 0i - e-i

Qx 0!
(25-6)

But we have shown (Example 1) that the efficiency of a Carnot engine using an

ideal gas as working substance is

Qx - Qi Tx T2

Qx Tx
(25-7)

where T is the temperature given by the constant-volume thermometer con-

taining the ideal gas. Hence, QxIQi = TJT2 and Qx/Q> = 0i/02 . Since 0,r = T„ =
273. 16 and 0/0/r = T/Ttr , it follows that = T. Hence, if an ideal gas were avail-

able for use in a constant-volume thermometer, the thermometer would yield

the thermodynamic (or Kelvin) temperature. We have seen that, although an
ideal gas is not available, measurements made using the limiting process of

Eq. 25-5 with real gases correspond to ideal gas behavior. We shall treat the ideal

gas scale and the thermodynamic scale as identical and we shall use the desig-

nation K interchangeably for each, as in fact we have already done.

In practice, we cannot have a gas below 1 K. One of the methods used in

measuring temperature below 1 K employs the thermodynamic scale directly.

The ratio of two thermodynamic temperatures is the ratio of two heats trans-

ferred during two isothermal processes bounded by the same two adiabatics

(Fig. 25-8). The location of the adiabatic boundaries (on the p-V diagram) can
be found experimentally, and the heats transferred during two nearly reversible

isothermal processes can be measured with great precision.



Isotherms

rAdiabatics

figure 25-8
A series of Carnot cycles tending

toward absolute-zero temperature,

as used in establishing the

thermodynamic scale of

temperature. The difference in slope

between isothermals and adiabatics

has here been exaggerated for

clarity.

From the equations

T= 273.16 K _Q_ or
T_

Ttr

Q_

Qtr

it is clear that the heat Q transferred in an isothermal process between two

given adiabatics decreases as the temperature T decreases. Conversely, the

smaller Q is the lower the corresponding temperature T is. Now the smallest

possible value of Q is zero and the corresponding T is absolute zero. That is, if

a system undergoes a reversible isothermal process with no transfer of heat,

the temperature at which this process takes place is the absolute zero. Hence,

at absolute zero, an isothermal and an adiabatic process are identical (Fig. 25-8).

This definition of absolute zero applies to all substances and is independent

of the properties of any one of them. Notice that no reference is made to mole-

cules or molecular energy and that we have obtained a purely macroscopic

definition of absolute zero.

The efficiency of a Carnot engine is

1

Ti

which is the maximum possible efficiency any engine can have operating be-

tween temperatures T\ and T-,. To obtain lOO'/f efficiency, T2 must be zero. Only

when the low-temperature reservoir is at absolute zero will all the heat absorbed

at the high-temperature reservoir be converted to work.

The fundamental feature of all cooling processes is that the lower the tem-

perature, the more difficult it is to go still lower. This experience has led to the

formulation of the third law of thermodynamics, which can be stated in one

form as follows: It is impossible by any procedure, no matter how idealized, to

reduce any system to the absolute zero of temperature in a finite number of

operations. Hence, because we cannot obtain a reservoir at absolute zero, a heat

engine with 100^ efficiency is a practical impossibility.

The zeroth law of thermodynamics is related to the concept of tempera-

ture T and the first law is related to the concept of internal energy U.

In this and the following sections we show that the second law of

thermodynamics is related to a thermodynamic variable called entropy.

S and that we can express the second law quantitatively in terms oi

this variable. We start by considering a Carnot cycle. For such a cycle

we have seen (Eq. 25-3) that

Ql
T, Tz'

25-7
ENTROPY- REVERSIBLE
PROCESSES



in which the Q's were taken as positive quantities, that is, we dealt

with the magnitudes, or absolute values, only of the Q's. // we now in-

terpret them again as algebraic quantities, Q being positive when heat

enters the system and negative when heat leaves the system, we can

write this relation as

This equation states that the sum of the algebraic quantities Q/T is

zero for a Carnot cycle.

As a next step, we assert that any reversible cycle is equivalent, to

as close an approximation as we wish, to an assembly of Carnot cycles.

Figure 25-9a shows an arbitrary reversible cycle superimposed on a

family of isotherms. We can approximate the actual cycle by connect-

ing the isotherms by suitably chosen adiabatic lines (Fig. 25-9 b), thus

forming an assembly of Carnot cycles. You should convince yourself

that traversing the individual Carnot cycles in Fig. 25-9b is exactly

equivalent, in terms of heat transferred and work done, to traversing

the jagged sequence of isotherms and adiabatic lines that approximates

the actual cycle. This is so because adjacent Carnot cycles have a com-
mon isotherm and the two traversals, in opposite directions, cancel

each other in the region of overlap as far as heat transfer and work done
are concerned. By making the temperature interval between the iso-

therms in Fig. 25-9b small enough we can approximate the actual cycle

as closely as we wish by an alternating sequence of isotherms and

adiabatic lines.

figure 25-9
(a) A reversible cycle superimposed

on a family of isotherms, (b) The
isotherms are connected by

adiabatic lines, forming an assembly

of Carnot cycles that approximates

the given cycle, (c) a and b are two
arbitrary points on the cycle and 1

and 2 are reversible paths

connecting them.

(c)



We can write, then, for the isothermal-adiabatic sequence of lines in

Fig. 25-9b,

or, in the limit of infinitesimal temperature differences between the iso-

therms of Fig. 25-9b*

~-=0, (25-8)

in which § indicates that the integral is evaluated for a complete tra-

versal of the cycle, starting (and ending) at any arbitrary point of the

cycle.

If the integral of a quantity around any closed path is zero, that quan-

tity is called a state variable, that is, it has a value that is characteristic

only of the state of the system, regardless of how that state was arrived

at. We call the variable in this case the entropy S and we have, from

Eq. 25-8,

dS =^ and § dS = 0. (25-9)

Common units for entropy are J/K or cal/K.

Gravitational potential energy Ug, internal energy U, pressure p, and
temperature Tare other state variables and equations of the form f dX=0
hold for each of them, where for X we substitute the appropriate sym-

bol. Heat Q and work W are not state variables and we know that,

in general, § ctQ ^ and
<f>
ctW ^ 0, as the student can easily show for

the special case of a Carnot cycle.

The property of a state variable expressed by § dX = can also be

expressed by saying that / dX between any two equilibrium states has

the same value for all (reversible) paths connecting those states. Let us

prove this for the state variable called entropy. We can write Eq. 25-9

(see Fig. 25-9c) as

l

b

dS+ f"dS = (25-10)
1 Ja 2 Jb

where a and b are arbitrary points and 1 and 2 describe the paths con-

necting these points. Since the cycle is reversible, we can write Eq.

25-10 as

f ds - r
1 Ja 2 Ja

" dS =

or

f dS= \" dS (25-11)

In Eq. 25-1 1 we have simply decided to traverse path 2 in the opposite

direction, that is, from a to b rather than from b to a. We do this by

changing the order of the limits in the second integral of Eq. 25-10,

which requires that we also change the sign of the integral, thus yielding

* See footnote on page 487. dQ represents an inexact differential because Q is not .1

function (it tin state "I the system. Tin central point of this section is tli.u although

3Q is an inexact differential ZfQ/T (= dS] is exact, so that S likepM I etc [but not like

Q or W), is a state variable.



Eq. 25-1 1. This latter equation tells us that the quantity dS between

any two equilibrium states of the system, such as a and b, is inde-

pendent of the path connecting those states, for 1 and 2 are quite arbi-

trary paths. Recall our almost identical discussion in Section 8-2, where

we introduced the concept of a conservative force.

The change in entropy between a and b in Fig. 25-9c is, then

» dQ
TSb -Sa=\ dS=\ ^ (reversible process), (25-12)

where the integral is evaluated over any reversible path connecting

these two states.

In Section 25-7 we spoke only of reversible processes. However, en-

tropy, like all state variables, depends only on the state of the system

and we must be able to calculate the change in entropy for irreversible

processes, provided only that they begin and end in equilibrium states.

Let us consider two examples.

1. Free Expansion. As in Section 22-7 (see Fig. 22-14) let a gas double

its volume by expanding into an evacuated enclosure. Since no work

is done against the vacuum, W — and, since the gas is enclosed by

nonconducting walls, Q = 0. From the first law, then AU = or

Ui = Uf (25-13)

where i and / refer to the initial and final (equilibrium) states. If the

gas is an ideal gas, then U depends on temperature alone and not on

the pressure or the volume so that Eq. 25-13 implies T, = T/.

The free expansion is certainly irreversible because we lose con-

trol of the environment once we turn the stopcock in Fig. 22-14.

There is, however, an entropy difference S/ — Si between the initial

and final equilibrium states, but we cannot calculate it from Eq.

25-12 because that relation applies only to reversible paths; if we
tried to use that equation, we would have the immediate difficulty

that Q = for the free expansion and — further— we would not know
how to assign meaningful values of T to the intermediate, non-

equilibrium states.

How, then, do we calculate the difference Sj — Si between these

two states? We do so by finding a reversible path {any reversible

path) that connects the states i and / and we calculate the entropy

change for that path. In the free expansion a convenient reversible

path (assuming an ideal gas) is an isothermal expansion from V, to

Vf (= 2V,). This corresponds to the isothermal expansion carried out

between the points a and b of the Carnot cycle of Fig. 25-4. It repre-

sents quite a different set of operations from the free expansion and

has in common with it only the fact it connects the same set of

equilibrium states, i and f. From Eq. 25-12 and Example 1 we have

f
^- = nR In (Vf/Vi)

= nR In 2.

This is positive so that the entropy of the system increases in this

irreversible, adiabatic process.

25-8
ENTROPY

-

IRREVERSIBLE
PROCESSES



2. Heat Conduction. For another example consider two bodies that are

similar in every respect except that one is at a temperature Ti and

the other at temperature T%, where T\ > Ti. If we put both objects in

contact inside a box with nonconducting walls, they will eventually

reach a common temperature Tm , somewhere between T\ and T>.

Like the free expansion, the process is irreversible because we lose

control of the environment once we put the two bodies in the box.

Like the free expansion this process is also (irreversibly) adiabatic

because no heat enters or leaves the system during the process.

To calculate the entropy change for the system during this

process we must again find a reversible process connecting the same
initial and final states and calculate the system entropy change by
applying Eq. 25-12 to that process. We can do so if we imagine that

we have at our disposal a heat reservoir of large heat capacity whose
temperature T is at our control, by turning a knob, say. We first

adjust the reservoir temperature to T\ and put the first (hotter)

object in contact with the reservoir. We then slowly (reversibly)

lower the reservoir temperature from T\ to Tm , extracting heat from

the hot body as we do so. The hot body loses entropy in this process,

the amount being approximately

i l,m

where Ti.„, is the average of T\ and T,„ and Q is the heat extracted.

We then adjust our reservoir temperature to T-> and place it in

contact with the second (cooler) object. We then slowly (reversibly)

raise the reservoir temperature from T2 to Tm , adding heat to the cool

body as we do so. The cool body gains entropy in this process, the

amount being approximately

1 2.m

where T>.m is the average of T2 and Tm and Q is the heat added. Note
that the two Q's are identical.

The two bodies are now at the same temperature T,„ and the sys-

tem, which consists of these two bodies, is now in its final equilib-

rium state. The change in entropy for the complete system is

Sf - St = AS, + AS 2

= __Q_ + _g_.
Ti,m T-2.,11

Since Ti,m > T2 ,„, we have S/ > St. Again, as for the free expansion, the

entropy of the system has increased in this irreversible, adiabatic

process.

In each of these examples we must distinguish carefully between

the actual (irreversible) process (free expansion or heat conduction) and

the reversible process that we introduce just so that we can calculate

the entropy change in the actual process. We can choose any reversible

process, as long as it connects the same initial and final state as the

actual process; all such reversible processes will yield the same entropy

change because this depends only on the initial and final states and not

on the process connecting them -be it reversible or irreversible.



We are now ready to formulate the second law of thermodynamics in

terms of entropy. Since this law is a generalization from experience we
cannot prove it but can write it down and show that our statement is

in agreement with experiment and is equivalent to other formulations

of the second law that we have given earlier. In this spirit we assert that

the second law is: A natural process that starts in one equilibrium state

and ends in another will go in the direction that causes the entropy of

the system plus environment to increase.

Following our pattern for the zeroth law and the first law of thermodynamics

(see page 487) the essence of the second law, speaking loosely, is: There

exists a useful thermodynamic variable called entropy. The second law also

tells us how to use this variable to predict whether a particular process will

occur in nature.

25-9
ENTROPY AND THE
SECOND LAW

The two experiments of Section 25-8 (free expansion and heat con-

duction) are consistent with the second law. The entropy of the system

increased in each of these irreversible processes. Note that the entropy

of the environment in these two cases remains unchanged because,

both being carried out in adiabatic enclosures, there was no interchange

of heat with the environment. Thus, as required by our statement of

the second law, the entropy of the system plus environment increased

for each of these (natural) processes.

In the form that we have written it the second law applies only to

irreversible processes because only such processes have a "natural direc-

tion." Indeed (see Section 25-1) the understanding of the natural di-

rections of such processes is the main concern of the second law. Re-

versible processes can go equally well in either direction, however, and

for reversible processes the entropy of the system plus environment
remains unchanged. This is so because if heat ctQ is transferred from the

environment to the system, the entropy of the environment decreases

by dQ/T whereas that of the system increases by ctQIT, the net change

for the system plus environment being zero. The fact that the process is

reversible means that the environment and the system can differ in

temperature by only a differential amount dT when the heat transfer

takes place; this is in sharp contrast to our (irreversible) heat conduction

problem of the previous section, in which the temperature difference of

the two bodies placed in contact was large.

Another class of processes of particular interest are adiabatic pro-

cesses (reversible or irreversible); they involve no transfer of heat with

the environment so that the only entropy change possible is that of the

system. From our statement of the second law and from our remarks
about reversible processes in the paragraph above, we conclude that

and
S/= Si (reversible adiabatic process)

Sf > St (irreversible adiabatic process),

where Sf and S, are the final and initial entropies of the system.

Our statement of the second law is consistent with the Clausius statement
(page 546) which declares that there is no such thing as a "perfect" refrigerator

(see Fig. 25-6). If there were, the entropy of the lower temperature reservoir

would decrease by Q/T>> that of the upper temperature reservoir would increase

by Q/Ti; that of the system would remain unchanged because the system tra-

verses a cycle, returning to its starting point. Thus the net change in the entropy

of the system plus environment is a decrease, because T2 < T\. This violates the



statement of the second law that we have just given and, if we wish to retain the

statement, we must conclude (with Clausius) that there is no such thing as a

"perfect" refrigerator.

Our statement of the second law is also consistent with the Kelvin-Planck

statement (page 546) which declares that there is no such thing as a "perfect'

heat engine (see Fig. 25-5). If there were, the entropy of the reservoir at tempera-

ture T would decrease by Q/T-, that of the system would remain unchanged be-

cause the system traverses a cycle, returning to its starting point. Thus the net

change of entropy of the system plus environment is a decrease. This violates

the statement of the second law that we have just given and, if we wish to retain

the statement, we must conclude iwith Kelvin) that there is no such thing as a

perfect" heat engine.

Compute the entropy change of a system consisting of 1.00 kg of ice at 0° C
which melts (reversibly) to water at that same temperature. The latent heat of

melting is 79.6 cal/g.

The requirement that we melt the ice reversibly means that we must put it

in contact with a heat reservoir whose temperature exceeds 0° C by only a

differential amount; if we lower the reservoir temperature until it is a differ-

ential amount below 0° C, the melted ice will begin to freeze. Since the process

is reversible, we can use Eq. 25-12 to compute the entropy change of the system.

The temperature remains constant at 273 K. Therefore,

•Jwater J ice T ~ T I

~ Q,
T

But

or

Q = 103 g x 79.6 cal/g = 7.96 x 104 cal

7.96 x 10 4

•J water >^ic 273
cal/K = 292 cal/K

= 1220 J/K.

In this example of reversible melting the entropy change of the system plus

environment is zero, as it must be for all reversible processes. The entropy

change calculated above is the increase in entropy of the system; there is an

exactly equal decrease in entropy of the environment (—1220 J/K) associated

with the heat that leaves the reservoir (environment), at 273 K, to melt the ice.

In practice, melting is likely to be irreversible, as when we put an ice cube in

a glass of water at room temperature. This process has only one natural direc-

tion—the ice will melt. The entropy of the system plus environment will in-

crease in this process as required by the second law. The (irreversible) heat

conduction example of the previous section should make this understandable.

EXAMPLE 3

Calculate the entropy change that an ideal gas undergoes in a reversible iso- EXAMPLE 4
thermal expansion from a volume V, to a volume V/.

From the first law

dU = dQ-p dV.

But dU = 0, since U depends only on temperature for an ideal gas and the tem-

perature is constant. Hence,

#Q=p dV
and

dQ _p dV
,/s

Bui

so that

T T

pV = nRT,



dS = nR
dV

and

C v< dV Vt
Sf -Si= nR— = nRln-f

J v, V Vi
(25-14)

Since V; > Vi, Sf > Si and the entropy of the gas increases.

In order to carry out this process we must have a reservoir at temperature T
which is in contact with the system and supplies the heat to the gas. Hence, the

entropy of the reservoir decreases by / dQ/T[= nR In (V//V,)], so that in this

process the entropy of system plus environment does not change. As in the

previous example, this is characteristic of a reversible process.

Entropy is associated with disorder and the second law statement that

in natural processes the entropy of the (system + environment) tends to

increase is equivalent to saying that the disorder of the (system + en-

vironment) tends to increase.

There are two approaches to this point of view and we discuss each in

turn. The first approach is qualitative and provides an intuitive sense of

the equivalence of entropy and disorder. The second is quite formal and
provides the solid quantitative base for this equivalence.

From the qualitative point of view let us consider three examples, the

first two of which we have discussed in Section 25-8. All are "natural

processes" in that there is no doubt whatever as to the direction in

which, left to themselves, they will go. Let us now see qualitatively in

what sense the final (equilibrium) state is more disordered than the

initial state.

1. Free Expansion. In a free expansion (Section 22-7) the gas molecules con-

fined to one-half of a box are permitted to fill the entire box. By any reasonable

definition of the word disorder the system has become more disordered, in the

same sense that disorder increases if the litter on one vacant lot is spread over

two lots. More precisely, the disorder has increased because we have lost some
of our ability to classify molecules. The statement: "The molecules are in the

box" is weaker from this point of view than the statement: "The molecules are

in the left half of the box."

2. Heat Conduction. In this example two bodies of different temperatures

Ti and T2 come to a uniform intermediate temperature T when they are placed

in contact. Here again the system has become more disordered in this natural

process because we have lost some of our ability to classify molecules. The
statement: "All molecules in the system correspond, by way of Eq. 23-6, to tem-

perature T" is weaker from this point of view than the statement: "All mole-

cules in body A correspond to temperature T and all molecules in body B
correspond to temperature T>." It is clear that some order has been lost in this

process.

3. A Stirred Coffee Cup. Suppose that you stir a cup of coffee and then re-

move the spoon. In the initial state there is an ordered motion of the swirling

coffee. In the final equilibrium state there is random molecular motion. Surely

disorder is increased in this natural and irreversible process.

Let us now discuss the quantitative relationship between entropy and dis-

order. In statistical mechanics we give a precise meaning to disorder and we ex-

press its connection with entropy by the relation

S = k In w. (25-15)

Here, k is Boltzmann's constant, S is the entropy of the system, and w, which we
may call the disorder parameter, is the probability that the system will exist in

the state it is in relative to all the possible states it could be in. This equation

connects a thermodynamic or macroscopic quantity, the entropy, with a sta-

tistical or microscopic quantity, the probability.

25-10
ENTROPY AND
DISORDER



Let us illustrate by computing the change in entropy of an ideal gas in an iso-

thermal expansion. Here the number of molecules and the temperature do not

change, but the volume does. The probability that a given molecule may be

found in a region having a volume V is proportional to V; that is, the greater V is,

the greater the chance of finding it in V. Hence, the probability of finding a

single molecule in V is

w, = cV

where c is a constant. The probability of finding N molecules simultaneously in

the volume V is the N-fold product of w,. That is, the probability of a state con-

sisting of N molecules in a volume V is

w=wl"=[cVy. (25-16)

For example, if the probability of finding a single molecule in V is \ (that is,

there is a 50% chance of its being in V and a 50% chance of its being outside VI,

the probability of finding two molecules in V is |- There are four equally prob-

able states here (both in
;
both out; one in, the other out; one out, the other in),

and only one of them is a state with both molecules in V.

If we now combine Eq. 25-15 and Eq. 25-16, we obtain

S = kN (In c + In V).

Hence, the difference in entropy between a state of volume V>and a state of

volume V, (temperature and number of molecules remaining constant) is

Sf-Si= kN (In c + In Vf)
- kN (In c + In V,)

= kN In -f
= —- In -f

= nR In -f
V, N Vi Vi

in exact agreement with the strictly thermodynamic result of Eq. 25-14.

It is on the basis of Eq. 25-16 that we stated above that disorder increases dur-

ing a free expansion; that equation yields [cV)N for the disorder parameter before

expansion and (c2V*)
v for that parameter when the volume is doubled by the

expansion.

One must use care not to identify intuitive qualitative ideas of "disorder"

as mixed-up-ness with the quantitative meaning we have given the term here.

There is a correlation, of course, between the qualitative idea of "disorder" and

entropy defined either on the macroscopic or microscopic level, but the identity

exists only for the precise meaning we have given to disorder.*

The statistical definition of entropy, Eq. 25-15, connects the thermodynamic

and the statistical mechanical pictures and enables us to put the second law of

thermodynamics on a statistical basis. The direction in which natural processes

take place (toward higher entropy) is determined by the laws of probability (to-

ward a more probable state). The equilibrium state is the state of maximum
entropy thermodynamically and the most probable state statistically. We have

seen, however, that fluctuations may occur about an equilibrium distribution

(for example, the Brownian motion). From this point of view, then, it is not abso-

lutely certain that the entropy increases in every spontaneous process. The
entropy may sometimes decrease. If we waited long enough, even the most

improbable states might occur: the water in a pond suddenly freezing on a hot

summer day or a local vacuum occurring suddenly in a room. Although such

occurrences are possible, the probability of their happening, when computed

turns out to be incredibly small. Hence, the second law of thermodynamics

shows us the most probable course of events, not the only possible ones. But its

area of application is so broad and the chance of nature's contradicting it so

small that it occupies the distinction of being one of the most useful and general

laws in all sciences.

Poi samples set.- Entropy and Disorder by I' c, Wright m i ontemporarj

I'hysits. November l°7()



1. What requirements should a system meet in order to be in thermodynamic

equilibrium'

2. Are any of these phenomena reversible ? [a] breaking an empty soda bottle;

[b] mixing a cocktail; (c) melting an ice cube in a glass of iced tea
;
[d] burn-

ing a log of firewood; [e] puncturing an automobile tire
; (/) finishing the

"Unfinished Symphony"; [g] writing this book.

3. Give some examples of irreversible processes in nature.

4. In the irreversible process of Fig. 25- la can we calculate the work done in

terms of an area on a p- V diagram? Is any work done?

5. Can a given amount of mechanical energy be converted completely into

heat energy? If so, give an example.

6. Can you suggest a reversible process whereby heat can be added to a system?

Would adding heat by means of a Bunsen burner be a reversible process?

7. Give a qualitative explanation of how frictional forces between moving

surfaces produce heat energy. Does the reverse process (heat energy produc-

ing relative motion of these surfaces) occur? Can you give a plausible

explanation?

8. A block returns to its initial position after dissipating mechanical energy to

heat through friction. Is this process thermodynamically reversible?

9. To carry out a Carnot cycle we need not start at point a in Fig. 25-4, but may
equally well start at points b, c, or d, or indeed any intermediate point. Ex-

plain.

10. If a Carnot engine is independent of the working substance, then perhaps

real engines should be similarly independent, to a certain extent. Why then,

for real engines, are we so concerned to find suitable fuels such as coal,

gasoline, or fissionable material? Why not use stones as a fuel?

11. Couldn't we just as well define the efficiency of an engine as e = W/Q> rather

than as e = W/Qi? Why don't we?

12. Under what conditions would an ideal heat engine be 100% efficient?

13. What factors reduce the efficiency of a heat engine from its ideal value?

14. In order to increase the efficiency of a Carnot engine most effectively, would

you increase Ti, keeping T2 constant, or would you decrease T2 , keeping Ti

constant?

15. Can a kitchen be cooled by leaving the door of an electric refrigerator open?

Explain.

16. Is a heat engine operating between the warm surface water of a tropical

ocean and the cooler water beneath the surface a possible concept? Is the

idea practical? (See "Solar Sea Power" by Clarence Zener, Physics Today,

January 1973.)

17. Is there a change in entropy in purely mechanical motions?

18. Two samples of a gas initially at the same temperature and pressure are

compressed from a volume V to a volume
(
VII), one isothermally, the other

adiabatically. In which sample is the final pressure greater? Does the en-

tropy of the gas change in either process?

19. Suppose we had chosen to represent the state of a system by its entropy and

its absolute temperature rather than by its pressure and volume, [a] What
would a Carnot cycle look like on a T-S diagram? [b] What physical signifi-

cance, if any, can be attached to the area under a curve on a T-S diagram?

20. Consider a box containing a very small number of molecules, say five. It

must sometimes happen by chance that all of these molecules find them-

selves in the left half of the box, the right half being completely empty.

This is just the reverse of a free expansion, a process that we have declared

to be irreversible. What is your explanation?

21. Show that the total entropy increases when work is converted into heat by

friction between sliding surfaces. Describe the increase in disorder.

questions



22. Comment on the statement "A heat engine converts disordered mechanical

motion into organized mechanical motion."

23. When we put cards together in a deck or put bricks together to build a house,

for example, we increase the order in the physical world. Does this violate

the second law of thermodynamics-' Explain.

24. The process of human birth seems to involve an increase in order. Does this

process then violate the rule governing the entropy of a system" (See

"Thermodynamics of Evolution" by Prigogine, Nicolis, and Babloyantz in

Physics Today, November 1972.)

25. A rubber band feels warmer than its surroundings immediately after it is

quickly stretched; it becomes noticeably cooler when it is allowed to con-

tract rapidly; and a rubber band supporting a load contracts on being heated.

Explain these observations using the fact that the molecules of rubber con-

sist of intertwined and cross-linked long chains of atoms in roughly random
orientation.

26. Explain the statement "Cosmic rays continually decrease the entropy of the

earth on which they fall." Does this contradict the second law of thermo-

dynamics?

27. Heat energy flows from the sun (surface temperature 6000 K) to the earth

(surface temperature 300 K). Show that the entropy of the earth-sun system

increases during this process.

28. Is it true that the heat energy of the universe is steadily growing less avail-

able-' Is so, why-1

29. Can one use terrestrial thermodynamics, which is known to apply to

bounded and isolated bodies, for the whole universe? If so, is the universe

bounded and from what is the universe isolated?

30. The first, second and third laws of thermodynamics may be paraphrased

respectively as follows: (2) You can't win
; (2) You can't even break even

;

[3] You can't get out of the game. Explain in what sense these are permis-

sible restatements.

31. Discuss the following comment of Panofsky and Phillips: "From the stand-

point of formal physics there is only one concept which is asymmetric in

the time, namely entropy. But this makes it reasonable to assume that the

second law of thermodynamics can be used to ascertain the sense of time

independently in any frame of reference; that is, we shall take the positive

direction of time to be that of statistically increasing disorder, or increasing

entropy. . .
." (See, in this connection, "The Arrow of Time" by David

Layzer, in Scientific American, December 1975.)

SECTION 25-3

1

.

An ideal gas heat engine operates in a Carnot cycle between 227 and 1 27° C.

It absorbs 6.0 x 1Q4 cal at the higher temperature, {a) How much work per

cycle is this engine capable of performing-
1

\h) What is the efficiency of the

engine 7 Answer: [a] 1.2 x 10 4 cal. [b] 20%.

2. In a Carnot cycle, the isothermal expansion of an ideal gas takes place at

400 K and the isothermal compression at 300 K. During the expansion 500

cal of heat energy are transferred to the gas. Determine [a) the work per-

formed by the gas during the isothermal expansion, [b] the heat rejected

from the gas during the isothermal compression, (c) the work done on the

gas during the isothermal compression.

] It the Carnot cycle is run backward, we have an ideal refrigerator. A quan-

tity of heat Q: is taken in at the lower temperature Ta and a quantity of

heat Qi is >;iven out at the higher temperature T,. The difference is the work
W that must be supplied to run the refrigerator. \ci) Show that

Ti

problems



[b] The coefficient of performance K of a refrigerator is defined as the ratio

of the heat extracted from the cold source to the work needed to run the

cycle. Show that ideally

K =
T1-T2

In actual refrigerators K has a value of 5 or 6.

(c) In a mechanical refrigerator the low-temperature coils are at a tem-

perature of —13° C, and the compressed gas in the condenser has a tempera-

ture of 27° C. What is the theoretical coefficient of performance?

Answer: (c) 6.5.

4. How is the efficiency of a reversible ideal heat engine related to the coeffi-

cient of performance of the reversible refrigerator obtained by running the

engine backward?

5. [a] A Carnot engine operates between a hot reservoir at 320 K and a cold

reservoir at 260 K. If it absorbs 500 joules of heat at the hot reservoir, how
much work does it deliver? [b] If the same engine, working in reverse, func-

tions as a refrigerator between the same two reservoirs, how much work

must be supplied to remove 1000 f of heat from the cold reservoir?

Answer: {a) 94 J. [b] 230
J.

6. [a] How much work must be done to extract 1.0 J of heat from a reservoir

at 7° C and transfer it to one at 27° C by means of a refrigerator using a

Carnot cycle? [b] From one at—73° C to one at 27° C? (c) From one at —173°

C to one at 27° C? [d] From one at -223° C to one at 27° C?

7. [a) Plot accurately a Carnot cycle on a p-V diagram for 1.0 mol of an ideal

gas. Let point a correspond to p = 1.0 atm, T= 300 K, and let b correspond

to p = 0.50 atm, T= 300 K
;
take the low temperature reservoir to be at 100

K. Let y = 1.5. [b) Compute graphically the work done in this cycle, (c)

Compute the work analytically. Answer: (c) 1150 J.

8. In a two-stage Carnot heat engine a quantity of heat Qi is absorbed at a

temperature T\, work Wi is done, and a quantity of heat Q> is expelled at a

lower temperature T> by the first stage. The second stage absorbs the heat

expelled by the first, does work Wz, and expels a quantity of heat Q 3 at a

lower temperature T:) . Prove that the efficiency of the combination engine

is (T, - T,)/Ti.

SECTION 25-5

9. A combination mercury-steam turbine takes saturated mercury vapor from

a boiler at 876° F and exhausts it to heat a steam boiler at 460° F. The steam

turbine receives steam at this temperature and exhausts it to a condenser

at 100° F. What is the maximum efficiency of the combination?

Answer: 587r.

10. Apparatus that liquefies helium is in a room at 300 K. If the helium in the

apparatus is at 5 K, what is the minimum ratio of heat energy delivered to

the room to the heat energy removed from the helium?

1 1. Suppose a deep shaft were drilled in the earth's crust near one of the poles

where the surface temperature is —40° C to a depth where the temperature

is 800° C. [a] What is the theoretical limit to the efficiency of an engine

operating between these temperatures? [b] If all of the heat released into the

low temperature reservoir were used to melt ice that was initially at —40° C,

at what rate could water at 0° C be produced by a power plant having an

output of 100 MW? The specific heat of ice is 0.50 cal/g • C°
;
its heat of

fusion is 80 cal/g. Answer: [a) 78%. [b] 239 kg/s.

12. The motor in a refrigerator has a power output of 200 W. If the freezing com-
partment is at 270 K and the outside air is at 300 K, assuming ideal effi-

ciency, what is the maximum amount of heat that can be extracted from
the freezing compartment in 10 min?

13. In a heat pump, heat Qz is extracted from the outside atmosphere at T> and
a larger quantity of heat Qi is delivered to the inside of the house at T,,



with the performance of work W. [a] Draw a schematic diagram of a heat

pump, [b] How does it differ in principle from a refrigerator" In practical

use- (c) How are Q ]; Q>, and W related to one another" \d) Can a heat pump
be reversed for use in summer" Explain. \e) What advantages does such a

pump have over other heating devices-

14. In a heat pump, heat from the outdoors at —5° C is transferred to a room at

17° C, energy being supplied by an electric motor. How many joules of heat

will be delivered to the room for each joule of electric energy consumed,

ideally"

15. A gasoline internal combustion engine can be approximated by the cycle

shown in Figure 25-10. Assume an ideal gas and use a compression ratio of

4 : 1 (V4 = 4V|). Assume p2 = 3pi. [a] Determine the pressure and tempera-

ture of each of the vertex points of the p- V diagram in terms of p u Ti and

the ratio of specific heats of the gas. [b] What is the efficiency of this cycle?

Answer: [a] T> = 37"i

T3 = 3|4)»->t,

T4 = |4)'->T,

P-2
= 3p,

p3 = (3)14)-^,

p
4 = (4)Tp,.

|b)l-(4)^.

SECTION 25-6

16. Using the equation of state of an ideal gas and the equation describing an

adiabatic process for an ideal gas, show that the slope, dp/dV, on a p-V dia-

gram of an adiabatic can be written as —yp/V and of an isothermal can be

written as —p/V. From these results prove that adiabatics are steeper

curves than isothermals.

17. Suppose that we were to take as our measure of temperature — 1/T rather

than T. The unit of this new measure might be the Nivlek (Kelvin spelled

backwards) degree (°N). Write a sequence of temperatures in °N extending

from positive to negative values of T. (See footnote, page 464.)

SECTION 25-7

18. A mole of a monatomic ideal gas is taken from an initial state of pressure p
and volume V to a final state of pressure Ip and volume 2V by two different

processes. (I) It expands isothermally until its volume is doubled, and then

its pressure is increased at constant volume to the final state. (II) It is com-
pressed isothermally until its pressure is doubled, and then its volume is

increased at constant pressure to the final state.

Show the path of each process on a p-V diagram. For each process calcu-

late in terms of p and V [a] the heat absorbed by the gas in each part of the

process; \b) the work done by the gas in each part of the process; (c) the

change in internal energy of the gas Uf — Ur, [d) the change in entropy of

the gas S/— Si.

SECTION 25-8

19. Heat can be removed from water at 0° C and atmospheric pressure without

causing the water to freeze, if done with little disturbance of the water.

Suppose the water is cooled to —5.0° C before ice begins to form. What is

the change in entropy per unit mass occurring during the sudden freezing

that then takes place" Answer: —0.30 cal/g K.

20. In a specific heat experiment, 200 g of aluminum [c,, = 0.215 cal/g • C°) at

100° C is mixed with 50 g of water at 20° C. Find the difference in entropy

uf the system at the end from its value before mixing.

21. An 8.00 g ice cube at —10.0° C is dropped into a thermos flask containing

100 cm 1

of water at 20.0° C. What is the change in entropy of the system

when a final equilibrium state is reached' The specific heal of ice is >2

cal/g • C°. \nswer: +0.15 cal/K.
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22. A 10-g ice cube at — 10° C is placed in a lake whose temperature is + 15° C.

Calculate the change in entropy of the system as the ice cube comes to

thermal equilibrium with the lake.

SECTION 25-9

23. [a] Show that when a substance of mass m having a constant specific heat c

is heated from T\ to T2 the entropy change is

T>
Sz — Si = mc In —'-

i i

\b) Does the entropy of the substance decrease on cooling? (c) If so, does the

total entropy of the universe decrease in such a process'

Answer: [b] Yes. (c) No.

24. Four moles of an ideal gas are caused to expand from a volume Vi to a vol-

ume V2 (= 2Vi). {a) If the expansion is isothermal at the temperature T =

400 K, find the work done by the expanding gas. [b] Find the change in en-

tropy, if any. (c) If the expansion were reversibly adiabatic instead of iso-

thermal, would the change in entropy be positive, negative, or zero?

25. A brass rod is in contact thermally with a heat reservoir at 127° C at one

end and a heat reservoir at 27° C at the other end. {a) Compute the total

change in the entropy arising from the process of conduction of 1200 cal

of heat through the rod. [b] Does the entropy of the rod change in the

process- Answer: [a] +1.0 cal/K. [b) No.

26. One mole of hydrogen gas and 1.0 mole of nitrogen gas are in adjacent con-

tainers at the same pressure p and temperature T. The pressure and tem-

perature are such that both gases behave virtually ideally, {a) If the rms

speed of the H2 molecules is 1850 m/s at temperature T, what will the rms

speed be of the N2 molecules- [b] For which gas will a larger percentage or

fraction of the molecules have speeds within ±50 m/s of the rms speed?

(c) If the containers are connected so that the H2 and N 2 mix, will the

change in entropy be positive, negative, or zero?

27. An object of constant heat capacity C is heated from an initial temperature

Ti to a final temperature Tf, by being placed in contact with a heat reservoir

at Tf. Represent the process on a graph of C/T versus Tand [a) show graphi-

cally that the total change in entropy AS (object plus reservoir) is positive,

and [b] show how the use of heat reservoirs at intermediate temperatures

would allow the process to be carried out in a way that makes AS as small

as desired.

28. [a] A body of finite mass is originally at temperature T2 , higher than that of

a heat reservoir at a temperature Ti. An engine operates in infinitesimal

cycles between the body and the reservoir until it lowers the temperature

of the body from T2 to 7\. Prove that the maximum work obtainable from

the engine is Wmax = Q — Ti(S 2 — Si), where Si — S 2 is the entropy change in

the body and Q is the heat extracted from the body by the engine, [b] A body

of finite mass is originally at temperature Tu the same as that of a heat

reservoir. A refrigerator operates in infinitesimal cycles between the body

and reservoir until it lowers the temperature of the body from T\ to T .

Prove that the minimum amount of work which must be supplied to the

refrigerator is Wmin = Ti(Si — So) — Q, where S — Si is the entropy change in

the body and Q is the heat extracted from the body by the refrigerator.

SECTION 25-10

29. In general, the probability w v> of a complex event, which consists of two
unrelated simple events, is equal to the product of their respective proba-

bilities Wi, w 2 . The entropy Si 2 of a complex system which consists of two
simple systems is just the sum of their respective entropies, Si, S 2 . Show
that Eq. 25-15, which relates probability and entropy, is consistent with

the additive property of entropy and the multiplicative property of prob-

ability for a complex system.



* 30. {a} Compute the change in entropy of a deck of cards caused by taking the

w 52 cards of a particular randomly dealt bridge hand and stacking them into

a pile, the cards arranged in a specific, predetermined order. \b) Compare, in

order of magnitude, this entropy change with thermodynamic entropy

changes.
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supplementary

topics

In Section 1 1-6 we discussed the relations between the linear and angular kine-

matic variables for a particle moving in a plane but confined to move in a circle

about an axis at right angles to the plane. Such a particle might be any particle

in a rigid body rotating about a fixed axis. Here we relax the restriction and

allow the particle to move freely in the plane. A planet moving in an elliptical

orbit about the sun is an example.

We start from Eq. 11-11, r = u rr, in which, however, we now take both u,

and r to be variables; the particle is no longer confined to a circle of constant

radius. We find the velocity by differentiation, or

dt dr du r

dt dt dt

Equation 11-13 shows us that du r/dt = u Ba». Thus we can write

dr
V = U r

— + UgCJI,
dt

(HI

which shows that v has two components, a radial component v, = dr/dt and a

component at right angles, v» = cor. If we hold r constant, then dr/dt = and

Eq. 1-1 reduces to Eq. 11.14a, as it must.

To find the acceleration we differentiate Eq. I- 1 , remembering that all five

quantities on the right are variables. We obtain

d\ d2r dr du r

dt dt 2 dt dt

dr .
da>\

, ,
Jdu v \+ ^-^-+ (u« w— + r-

dt dt
)+'»"(*)•

Now dujdt = u ebj, du H/dt = —Uroj (see Eq. 11-16), and doj/dt = a. Substituting

and rearranging leads us finally to

(d2r , \ / „ dr
a = Ur

(dT2
~ 0)T

)
+ uTI + 2o)

Jt
(1-2)

SUPPLEMEI\TARY
TOPIC I
RELATION BETWEEN
LINEAR AND ANGULAR
KINEMATICS FOR A
PARTICLE MOVING IN
A PLANE

= u r [a r — w2
r) + u#(ar + 2wvr )



Once again, if r = a constant, then dr/dt = d2r/dt 2 = and Eq. 1-2 reduces to Eq.

11-17, which we derived especially for this case.

The two new terms in Eq. 1-2, u rd2r/dt 2 and u e2a> dr/dt, need a little explana-

tion. We can understand the first of these terms by imagining that the particle

moving in the plane is not rotating about the axis. If we put o> = a = in Eq. 1-2

this equation reduces to

d2r

which is just the familiar acceleration of a particle moving along a straight line.

Hence this term in Eq. 1-2 gives the radial acceleration due to the change in the

magnitude of r, the other radial acceleration term arising from the changing

direction of r as the particle rotates.

There are also two ^-directed acceleration terms. The first one, u tiar, arises

simply from the angular acceleration a of a particle in circular motion \r = con-

stant) and is the tangential acceleration of Section 11-5. To understand the

second term, u w2w dr/dt, consider a man walking outward along a radial line

painted on the floor of a merry-go-round. The merry-go-round is rotating with

constant angular velocity oi so that its angular acceleration a is now zero. If the

man were simply to stand still on the merry-go-round, {d2r/dt2 = dr/dt = 0, and

r = constant) his acceleration, as seen by an observer in a reference frame on

the ground (see Eq. 1-2), would be simply the familiar centripetal acceleration
—

u,.<D
2
r, directed radially inward. If he walks outward, however, dr/dt # and

then Eq. 1-2 predicts that the ground observer would also measure a ^-directed

acceleration given by u«2wv r , where vr = dr/dt. This is called a Coriolis accelera-

tion. It arises from the fact that even though the angular velocity of the man is

constant his speed increases as r increases. Let us convince ourselves that this

effect really exists.*

Figure I- la shows the walking man (point P) as he appears to the ground ob-

server at times t and t + At. We show at time t his radially directed velocity

vr(= u r dr/dt) and also a ^-directed velocity caused by the rotation of the merry-

go-round and given by v«f= u#(or). At a time Af later each of these velocities has

changed. The radial velocity has changed in direction, although its magnitude

remains dr/dt. The ^-directed velocity has not only changed direction (we have

learned to account for this as a centripetal acceleration), but, because the man
has moved outward to a point at which the floor is moving faster, its magnitude

has also changed, from a>r to w(r + Ar).

Figure Mfc> shows the change in velocity caused by the change in direction of

the radial line along which the man is walking. If Ad in the triangle shown is

small enough, we have

Avr = vr Ad.

Dividing by At and letting At approach zero yields

, dv,- de
a = —J— = Vr ~T = vrOi-

at dt

This is just half the term 2wvr in Eq. 1-2. However, we have considered only the

change in the radial velocity; there is also a change in the tangential velocity.

The change in tangential velocity, caused by the fact that the man is moving
radially outward, is

Av„ = w[r + Ar) — (ar — wAr.

Dividing by At and letting At approach zero yields

d\ i dr
a = —r- — ft) ~r — wvr .

dt dt

Now both a' and a" arc magnitudes ol vectors th.it point m the same direction,

The Coriolis Effect lames! McDonald Scientifii \mehcan M.n ls>52 ami also

Hi. thi Coriolis Force Malcolm Correll HI eachei |anuar) 1976



P(t + At)

(b)

(a)

figure 1-1

(a) A merry-go-round, rotating

about a fixed axis, is observed by

an observer in inertial reference

frame x, y. A man walks along a

radial line at constant speed v. In

a time interval At this line, as seen

by the ground observer, sweeps

through an angle A0 and the man
moves between the positions shown.

His i- and ^-directed velocities are

shown for each position, (b)

Showing the change Avr in the

walking man's r-directed velocity.

Note that, as At -» 0, Av r points in

the ^-direction at P.

namely the direction of increasing 6 at point P{t). The total acceleration in this

direction is then

a' + a" = vrQ) + wvr = 1(x)vT ,

which is just what we set out to prove.

If there is indeed an acceleration in the ^-direction in Fig. 1-1, there must be

a force in this direction. For a man walking outward along a radial line on a

rotating merry-go-round this force can only be provided by the friction between

his feet and the floor.

We remember that we can interpret classical mechanics most simply if we
always view events from an inertial frame. If we do so, we can always associate

accelerations with forces exerted by bodies that we can point to in the environ-

ment. We can still apply classical mechanics, however, if we select a noninertial

reference frame, such as a rotating frame. The small penalty that we must pay

is that we must introduce inertial forces, that is, forces that we cannot associate

with objects in the environment and which cannot be detected by an observer

in an inertial frame. In Section 6-4 we saw that centrifugal force is such an iner-

tial force.

Consider an observer on the rotating merry-go-round watching a man walk

along a radial line at a constant speed vr = dr/dt. He would say that the man is in

equilibrium because he has no acceleration. Yet the floor is exerting a (very real)

frictional force on the soles of the man's feet. This force has one component
(—

u

rFr ) that points radially inward and one (u«F«) that points in thefl-direction,

that is, in the direction of rotation.

From the point of view of the ground observer these forces are understandable

and, indeed, quite necessary. Fr is associated with the centripetal acceleration

(D
2r and F» with the Coriolis acceleration 2cuv>. The observer on the merry-go-

round does not see either of these accelerations however,- to him the walking

man is in equilibrium. How can this be, in view of the frictional forces that act

on the soles of the walking man's shoes" The man himself is well aware of these

forces; if he did not lean to compensate for their turning effect, they would
knock him off his feet!

The observer on the merry-go-round saves the situation by declaring that two
inertial forces act on the walking man, just canceling the (real) frictional forces.

One of these inertial forces, called the centrifugal force, has magnitude Fr and
acts radially outward. The other, called the Coriolis force, has magnitude F# and
acts in the negative ^-direction, that is, opposite to the direction of rotation. By
introducing these forces, which seem quite "real" to him although he cannot

point to any body in the environment that is causing them, the observer in the

rotating (noninertial) reference frame can apply classical mechanics in the usual

way. The ground observer, who is in an inertial frame, cannot detect these iner-



tial forces. Indeed there is no need for them — and no room for them — in his ap-

plications of classical mechanics.

Equations 1-1 and 1-2 are general kinematical descriptions for the motion of

a particle in two dimensions. An obvious extension, which we will not attempt

here, is to derive corresponding descriptions for motion in three dimensions;

this will require us to introduce a third unit vector to define the third dimen-

sion.*

Some vectors called axial vectors, such as to, a, t, and 1, differ in a rather impor-

tant way from other vectors called polar vectors, of which r, v, a, F, and p are

examples. Although we shall not need to take this difference into account in

this book, it may prove to be instructive and interesting to examine briefly what
the difference is.

Consider a typical polar vector such as r. If a student leaves his dormitory

and goes to a classroom, his displacement vector r points from the dormitory ro

the classroom; there is no question as to our choice of direction. This direction

is both "physical" and "natural." Similar remarks apply to the other typical

polar vectors listed, namely, v, a, F, and p.

If a student sees a wheel rotating about a fixed axis, he can assign an angular

velocity to to the wheel and can give direction to to by the right-hand rule (see

Section 1 1-4). This direction, however, is a convention only, based on this arbi-

trary rule. A left-hand rule would have given the opposite direction. The things

that are "physical" and "natural" about the wheel are the axis of rotation and

the sense of rotation, that is, is it going clockwise or counterclockwise as the

student looks at it from a particular end of the axis" Whether to is chosen to

point in one way or the other along the axis does not really matter as long as we
are consistent. The same remarks apply to the angular acceleration a and to the

other axial vectors listed, namely, t(= r x F) and 1(= r x p). It is for this reason

that we sometimes find it more comfortable to say "torque around an axis" than

"torque along an axis" although they mean the same thing. All vectors defined

as the vector product of two polar vectors are axial vectors because they all de-

pend for their direction assignment on the (arbitrary) right-hand rule.

We have stressed that the laws of physics remain the same no matter how
we change the inertial reference frame in which they are expressed. In Section

2-5 we discussed this for translations and rotations of the reference frame and

noted that laws expressed in vector form remained unchanged (that is, invari-

ant) under such transformations. We also noted that something special may
occur when we change the reference frame in another way, namely, by substi-

tuting a left-handed frame for a right-handed one. There is an easy way to make
such a transformation: Build a right-handed frame and look at its image in a

mirror; it will be converted to a left-handed frame (see Fig. II- 1) because of the

well-known property of a mirror to reverse right and left.

Figure II- la shows the vector displacement of a student from his dormitory

to each of three classrooms. In the mirror each displacement is still from the

dormitory D to a classroom C. In Fig. II- 1 b, however, we show a rotating wheel

in three orientations. If we establish the directions of to for both the wheels and

their mirror images by the right-hand rule, we see that the image vectors are

reversed in comparison to the corresponding image vectors in Fig. II- hi (toward

the origin rather than away from the origin). Polar vectors and axial vectors be-

have differently when we transform reference frames by mirror reflection! This

behavior of axial vectors under mirror reflection is not hard to understand. If we
imagine ourselves physically applying the right-hand rule to a real rotating

wheel, in the mirror, we shall seem to be applying a left-hand rule because the

image of our right hand is our left hand. A left-hand rule, of course, will give us

tin- opposite direction for to.

Hence an axial vector is a vector whose sense of direction depends on the

SUPPLEMEIVTARY
TOPIC II
POLAR VECTORS AND
AXIAL VECTORS
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handedness of the reference frame. It is sometimes called a pseudovector. A
polar vector is a vector that has a direction independent of the reference frame.

We mention these facts (1) to stress the arbitrary character of the direction as-

signed to axial vectors and (2) to stress the importance of testing experiments

and physical laws for invariance under translation, rotation, and mirror reflec-

tion of the inertial reference frame. In Section 2-5 we referred briefly to some
experiments that were nor invariant under a reflection transformation. This

fact, which constituted a violation under certain circumstances of a law of

physics previously thought to be well founded (the law of conservation of

parity), has posed some challenging problems and is leading us to an under-

standing of the physical world at a deeper level.*

figure II-

1

(a) Polar vectors, showing, on the

right, the displacements t,, r2 , and

r3 between a dormitory D and three

classrooms d, C>, and Ca . On the

left we have the mirror images of

D, Ci, C>, and C :i , along with the

corresponding displacements, (b)

Axial vectors, showing, on the

right, the angular velocities cju <*>i,

and to.) of three wheels rotating as

shown. On the left we have the

mirror images of these wheels, along

with the angular velocities

assigned using the usual right hand

rule.

Figure III- 1 shows a section of a long string which is under tension F. The string

has been pulled transversely in the y-direction so that a displacement wave
travels along the string in the x-direction. We consider a differential element of

the string dx and apply Newton's second law of motion to it in order to find

how the wave moves along the string.

Let (j. be the mass per unit length of the string, so that the mass of element

dx is /x dx. The net force in the y-direction acting on this element is

F sin dx+ dj-
— F sin 6X .

We consider only small transverse displacements of the string, so that the re-

storing force will vary linearly with displacement and the principle of super-

position will hold (see Section 19-4). This means that 6 in Fig. Ill- 1 will be small,

so that we may replace sin 6 by tan 0. Now tan 6 is simply the slope of the string,

that is, it equals dy/dx. We must use partial derivatives because the transverse

displacement y depends not only on x but also on r. The net force in the y-

direction is then

\dX \(>X

SUPPLEMEIVrARY
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which we may write as

pirn*
dx \dx/

F^dx.
dx2

The mass of the element of the string is fx dx and its transverse acceleration

is simply d*y/dt2 . Hence, Newton's second law, applied to the transverse mo-
tion of the string, is

^d 2y , , . d 2
y

dx2 F dt2

Equation III- 1 , called the wave equation, is the differential equation that

describes wave propagation in a string of mass per unit length /i. and tension F.

To prove this we show that Eqs. 19-2 and 19-3

y = f[x ± vt), (III-2)

which is the general equation representing a wave of any shape traveling along

x, is a solution of Eq. Ill- 1 . Recall that v in Eq. III-2 is the speed of the wave
disturbance and f is any reasonable function of (x ± vt).

Let us see whether Eq. III-2 is indeed a solution of Eq. Ill- 1 by substituting

the former equation into the latter. To do so we note that the two second partial

derivatives of y are

*W and ^=v-r
dx2

' dt 2

in which f" is the second derivative of the function / of Eq. III-2 with respect

to |x ± vt). Substitution of these derivatives into Eq. Ill- 1 yields

r=fvr,

which we may write as (see Eq. 19-121

IHI-3)

Thus we conclude that Eq. III-2 is indeed a solution of the partial differential

equation Eq. Ill- 1 if the speed of the wave disturbance described by this equa-

tion is given by Eq. HI-3.

In particular, let us check that Eq. 19-10

y = ym sin [kx ±wt) (19-10)

is a solution of Eq. Ill- 1 . We know that it must be because Eq. 19-10 is simply

a special case of the general relation Eq. III-2, which we have just shown to

be a solution. Even so it is instructive to test this important specific function

of (x± vt) by substitution into Eq. Ill- 1

.

The second derivatives of Eq. 19-10 are

r)
2V— = -k 2

y„, sin [kx ± cor)
(IX 2

i)
2y

and —- = —oj2
y„, sin [kx ± (ot).

dt1

Substitution into Eq. 1 1 1 - 1 yields

-k 2
y ± wt)= (p)[

—oPy™ sin kx ! tot)]



or

Since talk = v (see Eq. 19-11), this relation is identical with Eq. III-3, and Eq.

19-10, as we expect, is indeed a solution of Eq. Ill- 1

.

Boltzmann, in 1876, derived the Maxwell speed distribution law (see Eq. 24-2)

from this line of argument: Let a uniform gravitational field g act on an ideal

gas maintained at a fixed temperature T. The number of molecules per unit

volume n r will then decrease with altitude z according to the law of atmo-

spheres (see Example 1, Chapter 17). From what we know about the statistical-

mechanical interpretation of temperature, however, the speed distribution law

— whose form we assume that we do not yet know — must remain the same at

all altitudes because it depends only on the temperature. However, this law

determines the rate at which molecules move vertically in the atmosphere at

any altitude and must thus be intimately related to the decrease of n v with z.

By exploring this relationship in detail we can, in fact, deduce the speed dis-

tribution law.

The weight of gas per unit area between the levels z and z 4- dz in Fig. IV-

1

is n vmg dz in which m is the mass of a single molecule. For equilibrium, this

weight per unit area must equal the difference in pressure between z and

z + dz, or

ritjng dz = —dp (IV-1)

in which we have inserted a minus sign because p decreases as z increases.

We can write the equation of state of an ideal gas, pV = nRT, as

p = TiikT (IV-2)

because n = n vVIN , where Na (= R/k) is Avogadro's number, the number of

molecules per mole, and k is Boltzmann's constant. Combining Eqs. IV-1 and

IV-2 yields

dz.
dp _ dn r _ mg
p n r kT

For a constant temperature, we can integrate this relation to yield

riv = constant e-'"a!:lkT (IV-3)

which, in view of Eq. IV-2, agrees with the result of Example 1, Chapter 17.

We can find the change in n r as we go from z to z + dz by differentiating

Eq. IV-3, or

dn, -constant e-mBzlkT dz. (IV-4)

We associate this decrease in n, over the interval dz with the fact that, at z =
(which can be any level we choose) there are some upward-directed molecules

— we call them "special molecules" temporarily for convenience — whose ver-

tical velocity components lie in a particular range vz to vz + dvz such that

(neglecting collisions; see below) they can rise as high as z but not as high as

z + dz. Such molecules pass upward through the level z, reverse their direction

and pass downward again, as Fig. IV-1 shows. At this point we see more clearly

the relationship between Eq. IV-3 and the speed distribution law. Molecules

that pass through the interval dz (from above or below) or molecules that never

reach the interval cannot contribute to the decrease dn v of Eq. IV-4.

The rate per unit area at which "special molecules" leave level z = (and

arrive at level z) is Vzn v[vz ) dvz . Here n v[vz ) dvz is the number of molecules per

unit volume whose vertical velocity components lie between vz and vz + dvz .

Now the rate per unit area at which the "special molecules" arrive at level z,

but not as high as level z + dz, is proportional to the magnitude of the density

difference dn t
- between z and z + dz, or, from Eq. IV-4,

SUPPLEMEIVTARY
TOPIC FV
DERIVATION OF
MAXWELL'S SPEED
DISTRIBUTION LAW

z =

figure IV-1



vzn r{vz ) dvz = constant e m9zlkT dz, lIV-51

in which the constant is independent of z. Equation IV-5, which requires that

the change dn v be accounted for by the "special molecules" is, in fact, the

defining equation for n,\vz ).

From conservation of energy the special molecules have the property that*

imvz
2 — mgz

or mvz dvz = mg dz.

We use these two relations to eliminate z and dz from Eq. IV-5, obtaining, as

you should verify,

[vz ] dv, = constant e~mvxtl2kT dvz |IV-6a)

in which nv[vz ) dvz is the number of molecules per unit volume whose vertical

velocity components lie between vz and vz + dvz . Note that Eq. IV-6a does not

contain g or z. The gravitational field of Fig. IV- 1, introduced to allow us to

calculate the speed distribution, has served its purpose. We may apply Eq. IV-6a

to a gas for which g = or in which gravitational effects are negligible. In such

a case the vertical direction, which we have identified as the z-direction, no
longer has any special meaning. That is, the speed distribution for one com-
ponent of velocity should be the same for another component of velocity since

there is no special or preferred direction in a gas in equilibrium free of external

forces. Thus we can write

and

n,[vx ) dvx = constant e-mvx
2
l2kT dvT

n,{vu ) dvu
= constant e~mvv*l2kT dvy ,

IIV-6M

(IV-6c)

for the other two velocity components.

We now seek to find Maxwell's speed distribution (Eq. 24-2); it is expressed

in terms of the speed v, rather than in terms of the separate components vx,

vy , and vz . We are not concerned here with the direction of v, because we
assume it to be completely random. We can represent any velocity v as a vector

extending from the origin in Fig. IV- 2; the projections of the vector in the x-y-

and z-directions are vx, vu , and vz , respectively. We commonly say that the

axes of Fig. IV-2 define a "velocity space," which has many formal similarities

to ordinary (or coordinate) space, in which the axes are x, y, and z.

We also show in Fig. IV-2 a small "volume" element, whose sides are dvx ,

dv,„ and dvz; we say that this element has a volume dv.,- dvy dvz in velocity space.

A point in this element corresponds to a particle whose velocity components

lie between vx and vx + dvx ; vy and v„ + dvy} and vz and vz + dvz . We can regard

n,[vz ) in Eq. IV-6d as giving the probability that a given molecule will have a

velocity component in the specified range vz to vz + dvz , with similar interpre-

tations for n,\Vj) and n,\v y ). The probability that a given molecule will have

all three of its velocity components in the specified ranges, that is, the prob-

ability that the tip of the velocity vector v will lie inside the volume element

of Fig. IV-2, is the product of the three (independent) probabilities given in Eq.

IV-6, or

constant e "">2,2fcre- ikT dvx dvy dvz

which, since

wc may write as

v2 = Vj-
2 + vu

2 + Vz2 ,

constant e "" '''.dv, dvu dvz ).

ire IV-2

HV-7)

it we consider collisions, this result is still true on the average fbi the many molecules

that start at z - with ;i given value of v. and move to the interval z to z I dz having

v, = there, even though such molecules would follow very erratic paths because oi

the collisions



The quantity in parentheses above is a volume element in velocity space.

Since in Maxwell's speed distribution law we are not concerned with the direc-

tion of molecular velocities but only with their speeds, it is more convenient

to substitute a different volume element for the above, namely, one correspond-

ing to all molecules whose speeds lie between v and v + dv, regardless of direc-

tion. This volume element is not a "cube" but is the space between two con-

centric spheres, one of radius v and one of radius v + dv. The volume of this

element in velocity space is [4irv2 ){dv). Substituting this for the quantity en-

closed in parentheses in Eq. IV- 7 yields for the number of molecules per unit

volume whose speeds lie between v and v + dv,

n,(v) dv= constant e
-'" v2l2kT(4TTV2 dv)

or

n v [v) = Cv2e-""'2l2kT

in which C is a constant. If we sum up over all possible speeds, we simply

obtain the total number of molecules per unit volume, regardless of speed.

Hence, we can find C by requiring that

n v (v) dv = n v ,

Jo

where nv is the total number of particles per unit volume, regardless of speed.

Guided by the methods of Example 3 (Chapter 24), you should show that

so that

C = 47rn v[rri/2TrkT)
312

Brlv) = 4-nn v[ml2TrkT) 3i2v2e-m^2kT
. (IV-8)

Let us consider a finite number N of molecules contained in a box of volume V.

If we multiply each side of the above equation by V, we can replace n,V on the

right by N and n»(vjV on the left by N[v), which gives us Eq. 24-2.

Here we simply display in one place some conclusions drawn from the special

theory of relativity (hereafter, SR) proposed by Einstein in 1905. We omit all

proofs and make only a modest attempt to make the conclusions acceptable

in terms of "common sense."

SUPPLEMEJVTARY
TOPIC V
SPECIAL RELATIVITY-
A SUMMARY OF
CONCLUSIONS*

Einstein based his theory on two postulates and all of the conclusions of SR
derive from them.

a. The First Postulate. From the time of Galileo it was known that the laws

of mechanics were the same in all inertial frames (see Fig. V-l and p. 66).

This means that all inertial observers having relative motion, even though

they may measure different values for the velocities, momenta, etc., of the

particles involved in a given experiment (a game of pool, perhaps), would never-

theless agree on the laws of mechanics involved (conservation of linear mo-
mentum, etc.) and on the outcome of the experiment (who won).

Einstein took the bold step of extending this invariance principle to all of

physics, not only mechanics, including especially electromagnetism. Einstein's

first postulate is:

V-l
Introduction

V-2
The Postulates (RR, Section 1.9)

* For a fuller treatment, geared to the level of this book, see Introduction to Special

Relativity. Robert Resnick, [ohn Wiley and Sons, Inc., New York, 1968. References to

this work will be in the style RR, p. 187; RR, Section 1.9, etc.



The laws of physics are the same in all inertial frames. No preferred inertial

frame exists.

b. The Second Postulate. In pre-SR days a vexing question was this: Given
that the speed of light c is 2.988 x 10 8 m/s, with respect to what is this speed

measured" For sound waves in air the answer is simple — it is with respect to

the medium (air) through which the sound wave travels. Light, however, travels

through a vacuum. Even so, is there a tenuous medium (the luminiferous, or

light carrying, ether) that plays the same role for light that air does for sound"

If such an ether exists, can we detect it: Alternatively, should c be measured
with respect to the source that emits the light-

All attempts to make experimental verifications along these lines failed com-
pletely (see Section 45-8* and RR, Sections 1.5 through 1.8). Einstein made a

second bold postulate.

The speed of light is the same in all inertial frames.

Note that no ether is needed or involved. This second postulate means, for

example, that if you consider three light sources \a) one at rest with respect

to you, [b] one moving toward you at speed 0.9 c, say, and (c) one moving away
from you at speed 0.9 c, you would measure the same speed of light from all

three sources.

This second postulate has been tested directly (see RR, p. 34) using as a mov-
ing "light" source tt° mesons generated in a proton synchrotron at speeds of

0.99975 c. These mesons disintegrate by emitting y-rays which, like light, are

electromagnetic in character and travel with the same speed. The speed mea-

sured for the radiation emitted by these fast moving sources was, within ex-

perimental error, just c, as Einstein's second postulate predicts.

Many of the conclusions of SR simply don't seem reasonable on the basis of

everyday experience. Even Einstein's second postulate seems to violate com-

mon sense. If you catch a pitched baseball thrown by a pitcher [a] at rest with

respect to you, \b) moving toward you (in an automobile, say) at 30 mi/h and,

(c) moving away from you at this same speed, you expect a different baseball

speed in each case with respect to you. But if you extend this experience to a

source (the pitcher) emitting light (photons), you would contradict Einstein's

second postulate. And yet experiment shows that light does have the same speed

in each case, in support of Einstein's postulate.

The solution to this dilemma comes about when we realize that the basis

of our "common sense" experience is very limited indeed. It is restricted to

speeds v such that v « c, where c is the speed of light. For example, the speed

of a satellite in earth orbit may be about 8000 m/s, which seems fast to us, but

in terms of the speed of light (3.0 x 10 s m/s) it is only 0.000027 c. We simply

have no personal experience in regions of high relative velocity.

As an example, to accelerate an average person (to say nothing of a space-

ship) to 0.90 c would require no less than 13 percent of this country's 1971 total

energy consumption. However, the particles of physics (electrons, mesons,

protons, etc.) can readily be accelerated to high speeds. Electrons emerging

from the two-mile long linear accelerator at Stanford University have speeds

nt 0.999 < for example. In the arena of particle physics SR is absolutely neces-

sary for the solution of mechanical problems.

It turns out that in nature there is a certain finite speed that cannot be

exceeded and which we call the limiting speed. This limiting speed is the speed

V-3
Special Relativity and Newtonian
Mechanics (RR, Section 2.8)

I Ins bonk is published ill a combined volume [Chapters 1-50) and separate volumes

Pan l ( bapters I 25j Part II, Chapters 26-50). Whethei cited references are accessible

depends on which ol these three volumes you are reading.



of light, c, the greatest speed with which signals can be transmitted. Classical

physics assumes that signals can be transmitted with infinite speed, but nature

contradicts that assumption, and it really does seem fanciful that such a signal

could exist. Experiment confirms c as the limiting speed, so that in a sense

the speed of light plays the role in relativity that infinity does in classical

physics. It is then not difficult to understand — in fact, it becomes very plausible

— that the finite speed of the source of light cannot affect the measured value

of the speed of an emitted signal already having the limiting value.

The world in which we live and develop our sense perceptions is a world of

Newtonian mechanics, in which v « c. Newtonian mechanics is revealed as

a special case of SR for the limit of low speeds. Indeed, a test of SR is to allow

c —» °° (in which case v « c always holds true) and see that the corresponding

formulas of Newtonian mechanics emerge.

Newtonian mechanics, although a special case, is an all-important one. It

describes the essential motions of our solar system, the tides, our space ven-

tures, the behavior of baseballs and pinball machines, etc. It works beautifully

in the vastly important realm v « c. But it breaks down at speeds approaching

that of light.

Few theories have been subject to more rigorous experimental tests than

SR. Not the least among them is the fact that particle accelerators work. They
are designed using SR at the level of engineering and technology. An accelerator

designed on the basis of Newtonian mechanics simply would not work. Nuclear

reactors and, alas, nuclear bombs, are further proof that SR really works.

Einstein once said that no number of experiments could prove him right but

a single experiment could prove him wrong. To date this single experiment has

not been found.

The basic observation made in SR (or in Newtonian mechanics for that matter)

is this. Consider observers to be in different inertial frames, S and S' (Fig. V-l).

The corresponding axes of S and S' are parallel, the x-x' axes being common,
and S' moves to the right with speed v as seen by S; the two origins coincide

at t = t' = 0. Each observer, S and S', records the same event, which might be

the detonation of a tiny flashbulb, and assigns space and time coordinates to

the event, namely, x, y, z, t and x'
,
y', z', t'. What are the relations between

these two sets of numbers written down in the observers' notebooks?

Before SR the accepted relations were

x' = x — vt

t' = t

y =y
(V-l)

called the Galilean transformation equations (RR, Section 1.2). Though im-

pressively correct in the important region v « c they nevertheless fail asv-^c,

The corresponding equations used in SR, called the Lorentz transformation

equations, are (RR, Table 2-1)

vt

t'

Vl - (Wc) 2

t - [v/c2 )x

Vl - [vicY

y

(V-2)

Note certain things about these equations, (a) Space and time coordinates are

thoroughly intertwined. In particular, time is not the same for each observer;

t' depends on x as well as on t. (b) If we let c —> <*, the Lorentz equations reduce

to the Galilean equations, as promised! Finally, (c) We must have v < c or else

the quantities x' and t' become indeterminate [v = c) or imaginary [v > c). The
speed of light is an upper limit for the speeds of material objects.

The Lorentz equations, like everything else in SR, can be derived from
Einstein's two postulates (RR, Section 2.2).

V-4
The Transformation Equations

(RR, Section 2.2)

(r

4>v

S"

}{C An event

figure V-l
Two inertial frames with parallel

axes, the x — x' axis being common.
S' moves to the right with speed

v as seen by S. At t = t' = O the two
origins, O and O', coincide.



Let S' observe two events that occur at the same place in his reference frame.

They might be two successive positions of the hand of a clock located at a fixed

position, x'. Let S' measure the time interval At' between these events. S, for

whom the clock appears to be moving, observes the same two events and

measures a different time interval At, which is given by

At =
At'

VI - (v/c) 2
IV-3)

This fact, that At > At', is called time dilation, and we often verbalize it as

"moving clocks run slow." Observer S records a longer time interval than

shown to have transpired on the moving clock.

Equation V-3 has been tested experimentally and found to be correct. In one

test the "moving clocks" were fast particles called pions (77 ±). Pions are radio-

active, and their rate of radioactive decay is a measure of their time-keeping

ability. See RR, Example 3, p. 75.

Now let us consider a rod, parallel to the x — x' axes, to be at rest in the S'

frame. S' will measure a length Ax' for it. S, however, measuring the same rod,

which is moving with respect to him, would find a length Ax, which is given by

Ax = Vl - [v/c] 2 Ax' |V-41

This fact, that Ax < Ax', is called length contraction.

The length contraction has been verified in the design of, say, the linear

electron accelerator at Stanford University. At an exit speed of v = 0.999975c,

each meter of the accelerating tube seems like 7.1 mm to an observer moving
with the electron. If these length contraction considerations had not been taken

into account the machine simply would not work.

The simplest way to understand these results — the time dilation and the

length contraction — is to note that one observer, S', is at rest with respect to

what he is measuring (clock or rod) whereas for the other observer, S, the objects

are in motion. Relativity therefore asserts that motion affects measurement. If

we had interchanged frames, letting the clock and rod be at rest in S, for ex-

ample, we would have found the observers again disagreeing on the measured

values, but now we would have Ax' < Ax and At' > At. So the results are recip-

rocal, neither observer being "absolutely" right or wrong.

What both observers will agree on however, is the rest length of a given rod

(they will both measure the rod to have the same length when the rod is at rest

with respect to their measuring instruments! and the proper time interval of a

given clock (they will both measure the successive positions of the hand of the

clock to have taken the same elapsed time when the clock is at rest with respect

to their measuring instruments).

That motion should affect measurement is not a strange idea, even in classi-

cal physics. For example, the measured frequency of sound or of light depends

on the motion of the source with respect to the observer; we call this the Dop-

pler effect and everyone is familiar with it. And, in mechanics the measured

values of the speed, the momentum, or kinetic energy of moving particles are

different for observers on the ground than those on a moving train. However, in

classical physics measurements of space intervals and time intervals are abso-

lute whereas in SR such measurements are relative to the observer. Not only

does experiment contradict classical physics but only by adopting the relativity

of space and time do we arrive at the invariance (the absoluteness) of all of the

laws of physics for all observers. Surely, giving up the absoluteness of the laws

of physics (would they then be laws'), as classical notions of time and length

require, would leave us with an arbitrary and complex world. By comparison,

relativity is absolute and simple,

Let S observe a particle moving with speed u' parallel to the x'-axis. What speed

11 would S measure' From the Galilean transformation equations (Eq. V-l) we
can easily show that

u=u' + v (V-5)

I Ins relation whi< h seems to most of us to be intuitively obvious, is, alas not

V-5
Time Dilation and Length

Contraction (RR, Sections 2.3

and 2.4)

V-6
Relativistic Addition ol

Velocities and the Doppler Effect

[Sections 4.6, 6.5, 42.4. and 42.5;

RR, Sections 2.6 and 2.7)



true (except for the very important special case of v « c). The Lorentz trans-

formation equations lead us to

u' + v

1 + [u'v/c2
]

(V-6)

As we expect, for c -» °°, Eq. V-6 reduces to Eq. V-5. Prove that if u' < c and

v < c, then it must always be true that u < c. There is no way to generate

speeds ^ c by compounding velocities.

Using the relativistic velocity addition result (Eq. V-6), we can deduce the

Doppler effect for light. In relativity theory there is no difference between the

two cases, which are different in classical theory (namely, source at rest -ob-

server moving and observer at rest— source moving); only the relative motion v

of source and observer counts. This fact and the result

c± v
(V-7)

are in agreement with experiment. Here, v' is the frequency of the source at rest

in S' and v is the frequency observed in frame S with respect to which the source

moves at speed v
;
the upper signs refer to source and observer moving toward

one another and the lower signs refer to source and observer moving away from

one another. Equation V-7 is called the longitudinal Doppler effect, and v refers

to the relative velocity of source and observer along the line connecting them.

There is in relativity, however, an effect not predicted by classical physics,

namely a transverse Doppler effect; that is, if the relative velocity v is at right

angles to the line connecting source and observer, we find

v= i/Vl - v2/c2 (V-8)

This result, confirmed by experiment, can be interpreted simply as a time dila-

tion, moving clocks appearing to run slow.

We have seen that time and length measurements are functions of velocity v.

Should mass be any different? SR tells us that the relativistic mass m of a par-

ticle moving at speed v with respect to the observer is

m m„

Vl - (v/c) 2

(V-9)

in which m n is the rest mass, that is, the mass measured when the particle is at

rest (v = 0) with respect to the observer.

It is m and not m» that must be taken into account when designing magnets
to bend charged particles in arcs of circles. By these techniques, Eq. V-9 has been

thoroughly tested. Incidentally, the ratio m/m for electrons emerging from the

Stanford University linear accelerator at K = 30 GeV is the order of 60,000.

To preserve the law of conservation of linear momentum in SR, we redefine

the momentum of a particle of rest mass m n and speed v as,

p = mv = mov

Vl - (Wc) 2

As a result of the considerations above, in SR the kinetic energy of a particle is

no longer given by | m v2 but by

K = mc2 — m c2

V-7
Mass, Momentum, and Kinetic

Energy (Sections 8.9 and 9.3;

RR, Sections 3.3 and 3.5)

= m»c
1

Wl - [vie]
2

Can you show that K —
» | m v2 asc->«i?

1 . (V-10)



The best known result of SR is the so-called mass-energy equivalence. That is,

the conservation of total energy is equivalent to the conservation of relativistic

mass. Mass and energy are equivalent; they form a single invariant that we can

call mass-energy. The relation

mc- IV-11I

expresses the fact that mass-energy can be expressed in energy (£) units or equiv-

alently in mass [m = E/c2
)
units. In fact, it has become common practice to

refer to masses in terms of electron volts, such as saying that the rest mass of

an electron is 0.51 MeV, for convenience in energy calculations. Likewise enti-

ties of zero rest mass, such as photons, may be assigned an effective mass equiv-

alent to their energy. We associate mass with each of the various forms of

energy.

In classical physics we had two separate conservation principles: (1) the con-

servation of (classical) mass, as in chemical reactions, and (2) the conservation

of energy. In relativity, these merge into one conservation principle, that of the

conservation of mass-energy. The two classical laws may be viewed as special

cases that would be expected to agree with experiment only if energy transfers

into or out of the system are so small compared with the system's rest mass that

the corresponding fractional change in rest mass of the system is too small to

be measured.

For example, the rest mass of a hydrogen atom is 1.00797 u (= 938.8 MeV).

If enough energy (13.58 eV) is added to ionize hydrogen, that is, to break it up

into its constituent parts, a proton and an electron, the fractional change in rest

mass of the system is

13.58 eV

938.8 x 106 eV
1.45 x 10-"

or 1 .45 x 10" 6 percent, too small to measure. However, for a nucleus such as the

deuteron, whose rest mass is 2.01360 u (= 1876.4 MeV), one must add an energy

of 2.22 MeV to break it up into its constituent parts, a proton and a neutron. The
fractional change in rest mass of the system is

2.22 MeV
1876.4 MeV

= 1.18 x 10- 3

or 0.12 percent, which is readily measureable. This is characteristic of the frac-

tional rest-mass changes in nuclear reactions, so that one must use the rela-

tivistic law of conservation of mass-energy to get agreement between theory and

experiment in nuclear reactions. The classical (rest) mass is not conserved, but

total energy (mass-energy) is.

V-8
The Equivalence of Mass and

Energy (Section 8.9; RR, Section

3.6)



appendices
SI base units 2

Quantity Name Symbol Definition

length

mass

time

meter m "... the length equal to

1,650,763.73 wavelengths in

vacuum of the radiation cor-

responding to the transition

between the levels 2p !0 and
5d5 of the krypton-86 atom."

(1960)

kilogram kg "... this prototype [a cer-

tain platinum-iridium cylin-

der] shall henceforth be con-

sidered to be the unit of

mass." (1889)

second s "... the duration of 9,192,-

631,770 periods of the radia-

tion corresponding to the

transition between the two
hyperfine levels of the ground
state of the cesium- 133

atom." (1967)

APPENDIX A
THE INTERNATIONAL
SYSTEM OF UNITS (SI)'*

* Adapted from "The International System of Units (SI)," National Bureau of Standards

Special Publication 330, 1972 edition.

a The definitions of these base units were adopted by the General Conference of Weights
and Measures, an international body, on the dates shown. In this book we will not use the

candela.

ai:



SI base units (Continued!

Quantity Name Symbol Definition

electric current ampere

thermodynamic
temperature

kelvin

amount of substance mole

luminous intensity candela

A "... that constant current

which, if maintained in two
straight parallel conductors

of infinite length, of negli-

gible circular cross section,

and placed 1 meter apart in

vacuum, would produce be-

tween these conductors a

force equal to 2 x 10 7 newton
per meter of length." (1946)

K "... the fraction 1/273.16 of

the thermodynamic temper-

ature of the triple point of

water." |1967)

mol "... the amount of substance

of a system which contains

as many elementary entities

as there are atoms in 0.012

kilogram of carbon- 12."

(1971)

cd "... the luminous intensity,

in the perpendicular direc-

tion, of a surface of 1/600,000

square meter of a blackbody
at the temperature of freez-

ing platinum under a pres-

sure of 101,325 newton per

square meter." (1967)

Some SI derived units with special names

SI unit

Expression Expression

in terms in terms

of other of SI base

Quantity Name Symbol units units

frequency hertz Hz S" 1

force newton N m-kg/s2

pressure pascal Pa N/m'2 kg/m-s2

energy, work, quantity

of heat joule J N-m kg-m2
/s

2

power, radiant flux watt W I/s kg-m 2/s
3

quantity of electricity,

electric charge coulomb C A-s
electric potential,

potential difference,

electromotive force volt V W/A kg-m 2/A-s3

capacitance farad F C/V A 2 -s'/kg-m 2

electric resistance ohm n V/A kg-m :7A'-'-s
:i

conductance Siemens s A/V A 2
-s

:l/kgm-'

magnetic flux weber Wb V-s kg-m 2/A s

magnetic field tesla T Wb/m 2 kg/A-s'2

inductance- henry H Wb/A kgm-'/A s



Some symbols for units of physical quantities

Symbols other than

SI Symbols SI that are Commonly Used

Name Abbreviation Name Abbreviation

ampere A angstrom A
candela cd British thermal unit Btu

coulomb C calorie cal

farad F day d

henry H degree

hertz Hz dyne dyn
joule I

electron volt eV
kelvin K foot ft

kilogram kg gauss G
meter m gram g
mole mol horsepower hp
newton N hour h
ohm n inch in.

pascal Pa mile mi
radian rad minute (of arc)

'

second s minute (of time) min
Siemens S pound lb

steradian sr revolution rev

tesla T second (of arc)
"

volt V standard atmosphere atm
watt W unified atomic mass unit u
weber Wb year yr

ifc.

§



Over the years many hundreds of measurements of fundamental

physical quantities, alone and in combination, have been made by

hundreds of scientists in many countries. These measurements have

different precisions and, most important, they are interdependent. For

example, the direct measurements of e, e/m, h/e, etc., are obviously

interrelated. Sorting out the best values of e, m, h, etc., from a large

mass of overlapping data is not simple. t

For most problems in this book three significant figures will do, and

the computational (rounded) values may be used.

APPENDIX B
SOME FUNDAMENTAL
CONSTANTS OF
PHYSICS*

Symbol Computational value

Best (1973) Value

Constant Value3 Uncertainty 1 '

Speed of light in a vacuum c 3.00 x 108 m/s 2.99792458 0.004

Elementary charge e 1.60 x 10 19 C 1.6021892 2.9

Electron rest mass me 9.11 x 10 -•» kg 9.109534 5.1

Permitivity constant €o 8.85 x 10 12 F/m 8.854187818 0.008

Permeability constant /*0 12.6 x 10 7 H/m Air (exactly) -

Electron charge to mass ratio e/m e 1.76 x 10" C/kg 1.7588047 2.8

Proton rest mass m„ 1.67 x 10 27 kg 1.6726485 5.1

Ratio of proton mass to electron mass mp/m e 1840 1836.15152 0.38

Neutron rest mass m„ 1.68 x 10' 27 kg 1.6749543 5.1

Muon rest mass m? 1.88 x 10 28 kg 1.883566 5.6

Planck constant h 6.63 x 10 3" Js 6.626176 5.4

Electron Compton wavelength V 2.43 x 10 12 m 2.4263089 1.6

Molar gas constant R 8.31 J/mol-K 8.31441 31

Avogadro constant Na 6.02 x 1023/mol 6.022045 5.1

Boltzmann constant k 1.38 x 10 23 J/K 1.380662 32

Molar volume of ideal gas at STPr vm 2.24 x 10 2 m-Vmol 2.241383 31

Faraday constant F 9.65 x 104 C/mol 9.648456 2.8

Stefan-Boltzmann constant a 5.67 x 10 » W/m 2 -K 4 5.67032 125

Rydberg constant R 1.10 x 107m 1.097373177 0.075

Gravitational constant G 6.67 x 10 n m'Vs2 -kg 6.6720 615

Bohr radius a 5.29 x 10 " m 5.2917706 0.82

Electron magnetic moment Hv 9.28 x 10 24 J/T 9.284832 3.9

Proton magnetic moment fip 1.41 x 10 26
J/T 1.4106171 3.9

Bohr magneton Mis 9.27 x 10 24 J/T 9.274078 3.9

Nuclear magneton Mn 5.05 x 10 " J/T 5.050824 .^.9

' Same unit and power of ten as the computational value.
'' Parts per million.
r STP-standard temperature and pressure = 0° C and 1.0 atm.

* The values in this table were selected from a longer list developed by E. Richard (.'ohm

and B. N. Taylm Journal of Physical and ( hemical Referent e Data, vol, 2, no, 4 11973]

See A Pilgrim's Progress in Search of the Fundamental Constants," hy
J.
W. M Du

Mond, Physics Today. October 1965 and "The Fundamental Physical Constants by

rayloi Langenherg, and I'.nkei Scientifii American October, 1"



The sun

Mass
Radius
Mean density

Surface gravity

Surface temperature

Total radiation rate

The earth

Mass
Equatorial radius

Polar radius

Radius of a sphere of the same volume

Mean density

Acceleration of gravity 3

Mean orbital speed

Angular speed

Solar constant 1 '

Magnetic field (at Washington, D.C.)

Magnetic dipole moment
Standard atmosphere

Density of dry air at STPC

Speed of sound in dry air at STP

1.99 x 1030 kg
6.96 x 105 km
1,410 kg/m3

274 m/s2

6000 K
3.92 x 10 26 W

5.98 x 1024 kg
6.378 x 106 m
3963 mi
6.357 x 106 m
3950 mi
6.37 x 106 m
3600 mi
5522 kg/m3

9.80665 m/s2

32.1740 ft/s2

29,770 m/s
18.50 mi/s

7.29 x 10 * rad/s

1340 W/m 2

5.7 x 10- 5 T
8.1 x 1022 A-m2

1.013 x 105 Pa
14.70 lb/in. 2

760.0 mm-Hg
1.29 kg/m3

331.4 m/s
1089 ft/s

742.5 mi/h

a This value, adopted by the General Committee on Weights and Mea-
sures in 1901, approximates the value at 45° latitude at sea level.

" This is the rate per unit area at which solar energy falls, at normal in-

cidence, just outside the earth's atmosphere.
' STP = standard temperature and pressure = 0°C and 1 atm.

APPENDIX C
SOLAR, TERRESTRIAL
AND LUNAR DATA

The moon

Mass
Radius
Mean density

Surface gravity

Mean earth-moon distance

7.36 x 1022 kg
1738 km
3340 kg/m3

1.67 m/s2

3.80 x 105 km



APPENDIX D
THE SOLAR SYSTEM*

MERCURY VENUS EARTH MARS JUPITER SATURN URANUS NEPTUNE PLUTO

Maximum distance from sun
(10* km)

69.7 109 152.1 249.1 815.7 1,507 3,004 4,537 7,375

Minimum distance from sun

|106 km]
45.9 107.4 147.1 206.7 740.9 1,347 2,735 4,456 4,425

Mean distance from sun

(106 km)
57.9 108.2 149.6 227.9 778.3 1,427 2,869.6 4,496.6 5,900

Mean distance from sun

(astronomical unitsl
.387 .723 1 1.524 5.203 9.539 19.18 30.06 39.44

Period of revolution 88 d 224.7 d 365.26 d 687 d 11.86 y 29.46 y 84.01 y 164.8 y 247.7 y

Rotation period 59 d
-243 d

retrograde

23 h
56 min
4 s

24 h
37 min
23 s

9h
50 min
30 s

10 h
14 min

-11 h
retrograde

16 h
6d
9h

Orbital velocity

|km/s|
47.9 35 29.8 24.1 13.1 9.6 6.8 5.4 4.7

Inclination of axis <28° 3° 23°27' 23°59' 3°05' 26°44' 82°5' 28°48' ?

Inclination of orbit

to ecliptic
7° 3.4° 0° 1.9° 1.3° 2.5° .8° 1.8° 17.2°

Eccentricity of orbit .206 .007 .017 .093 .048 .056 .047 .009 .25

Equatorial diameter

[km]
4,880 12,104 12,756 6,787 142,800 120,000 51,800 49,500 6,000 (?)

Mass (earth = 1) .055 .815 1 .108 317.9 95.2 14.6 17.2 • 1|?|

Volume (earth = 1) .06 .88 1 .15 1,316 755 67 57 •HO

Density (water = 1) 5.4 5.2 5.5 4.0 1.3 .7 1.2 1.7 ?

Oblateness .003 .009 .06 .1 .06 .02 7

Atmosphere
(main components)

none
carbon

dioxide

nitrogen,

oxygen

carbon

dioxide,

argon

hydrogen,

helium
hydrogen,

helium

hydrogen,

helium,

methane

hydrogen,

helium,

methane

none
detected

Mean temperature at visible

surface (degrees Celsius)

S = solid, C = clouds

350(S) d

-170(S)

night

-33 (C)

480 (S)
22 (S) -23 (S) -150(C) -180(C) -210(C) -220 (C) -230(?)

Atmospheric pressure

at surface (millibars)
10 9 90,000 1,000 6 ? 7 ? ? ?

Surface gravity

(earth = 1)

.37 .88 1 .38 2.64 1.15 1.17 1.18 i

Mean apparent diameter

of sun as seen from planet
1°22'40" 44 '15" 31'59" 21' 6 09" 3'22" 1 41' 104" 49"

Known satellites 1 2 14 10

js rings) (pi

5

us riiu'.s

2

Reprinted by permission (with addition of latei discoveries) from "The Solar System," Carl Sagan, Scientific American. September

1975.



APPENDIX E
PERIODIC TABLE OF
THE ELEMENTS*
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APPENDIX F
THE PARTICLES OF PHYSICS*

Symbol
Spin Charge,

e

Strangeness Rest mass,

MeV
Mean life,

seconds

Typical

decay

mode
FaiTiny

name Particle name Particle Antiparticle

- Photon y y 1 Stable -

L

E
P

T
O
N
S

Electron e e
- i

2 + 1 0.5110 Stable -

Muon (i- m 4 1

2 ±1 105.7 2.197 x 10" e + v + v

Electron's

neutrino

ve ve
1

5 Stable -

Muon's
neutrino IV «v

1

5 Stable -

H

A

D

R

O

N

S

M
E

S

O
N
S

Pion

77° 77
°

±1 139.6

135.0

2.603 x 10-"

8.28 x 10-' 7

H + v

y + r

K-meson
K+ K7 ±1 ±1 493.7 1.237 x 10-" H + v

K° K° ±1 497.7
[8.930 x 10 "

[ 5.181 x 10-

7T* + ~

7T° + TT + T7°

Eta-meson T7° T)
n 548.8 ? y + r

B

A

R

Y

O

N

S

N
U
c
L

E
O
N

Proton P P
1

2 ±1 938.3 Stable -

Neutron n n 1

5 939.6 918 p+ e - r

Lambda
particle

A A°"
1

5 +1 1116 2.578 x 10 l0 p + -

Sigma

particle

S + I7 l

2 + 1 +1 1189 8.00 x 10" P + 7T°

£o p" 1

1 + 1 1192 <1.0 x 10 " A° + -y

1 IF 1

3 -1 + 1 1197 1.482 x 10 u n + tt-

Xi

particle

Z70 7To 1

5 +2 1315 2.96 x 10 'o \" * 7T°

— «—TT
i + 1 T2 1321 1.652 x 10 >o A + 77

Omega
particle

n TT § +1 +3 1672 1.3 x 10 'o ="+ rr

* See (1) "Review of Particle Properties," Reviews of Modern Physics, vol. 48, no. 2,

Part II, April (1976).

12) "Quarks with Color and Flavor," by Sheldon Lee Glashow, Scientific American,

October
1 1975).

(3) "The New Elementary Particles and Charm," by Lewis Ryder, Physics Education.

January (1976) for fuller information. Particle physics is one of the sharp cutting edges

of contemporary physics.



Conversion factors may be read off directly from the tables. For ex-

ample, 1 degree = 2.778 x 10"3 revolutions, so 16.7°= 16.7 x 2.778 x 10" 3

rev. The SI quantities are capitalized. The prefix "ab" refers to electro-

magnetic units (emu); "stat" refers to electrostatic units (esu). Adapted

in part from G. Shortley and D. Williams, Elements of Physics, Prentice-

Hall, Englewood Cliffs, N.J., 1965.

APPE1\DIX G
CONVERSION FACTORS

Plane angle

RADIAN rev

1 degree

=

1 minute=
1 second

=

1 RADIAN =
1 revolution =

1

1.667 x 10

2.778 x 10-

57.30

360

60
1

1.667 x 10-2

3438
2.16 x 10 4

3600
60

1

2.063 x 105

1.296 x 106

1.745 x lO" 2

2.909 x lO 4

4.848 x lO"6

1

6.283

2.778 x 10

4.630 x 10

7.716 x 10-

0.1592

1

Solid angle

1 sphere = Ait steradians = 12.57 steradians

Length

cm METER km in. ft mi

1 centimeter = 1 io- 2 io-5 0.3937 3.281

x IO 2

6.214
x IO" 6

1 METER = 100 1 io-3 39.3 3.281 6.214
x IO"4

1 kilometer = 10 5 1000 1 3.937
x IO 4

3281 0.6214

1 inch = 2.540 2.540 2.540 1 8.333 1.578

x 10-* x 10-5 x IO- 2 x IO"5

1 foot = 30.48 0.3048 3.048
x IO" 4

12 1 1.894

x IO" 4

1 mile = 1.609

x 10 5

1609 1.609 6.336
x IO4

5280 1

1 angstrom = 10~ 10 m
1 nautical mile = 1852 m
= 1.151 miles = 6076 ft

1 light-year = 9.4600 x IO 12 km 1 yard = 3 ft

1 parsec = 3.084 x IO 13 km 1 rod = 16.5 ft

1 fathom = 6 ft 1 mil = IO"3 in.

Area

METER 2 cm' ft
2 in. circ mil

1 SQUARE METER =

1 square centimeter =
1 square foot =
1 square inch=
1 circular mil =

1

IO 4

9.290 x IO 2

6.452 x IO 4

5.067 x IO- 10

IO4

1

929.0

6.452

5.067 x IO" 6

10.76

1.076 x 10-

1

6.944 x 10-

5.454 x 10-

1550

0.1550

144

1

7.854 x 10-

1.974 x IO9

1.974 x IO5

1.833 x IO8

1.273 x IO6

1

1 square mile = 2.788 X IO8
ft

2

1 barn = IO 28 m2

640 acres 1 acre = 43,600 ft
2



Volume

1 CUBIC METER =

1 cubic centimeter =

1 liter =
1 cubic foot =
1 cubic inch=

METER3

1

lO 6

1.000 x 10-

2.832 x 10-

1.639 x 10-

cm J

106

1

1000

2.832 x 104

16.39

li

1000
1.000 x 10-

1

28.32

1.639 x 10-

ft
3

35.31

3.531 xlO-
3.531 x 10-

1

5.787 x 10

in.-'

6.102 x 104

6.102 x lO" 2

61.02

1728

1

1 U. S. fluid gallon = 4 U. S. fluid quarts = 8 U. S. pints = 128 U. S. fluid ounces = 231 in.

1 British imperial gallon = 277.4 in.

'

1 liter = 10 3 m 3
.

Mass

Quantities in the shaded areas are not mass units but are often used as such.

When we write, for example, 1 kg "=" 2.205 lb this means that a kilogram
is a mass that weighs 2.205 pounds under standard condition of gravity

|g = 9.80665 m/s2
).

gm KG slug u oz lb ton

1 gram = 1 0.001 6.852
x 10 5

6.024
x 1023

3.527
x 10 2

2.205

x lO 3

1.102

x 10~ 6

1 KILOGRAM = 1000 1 6.852
x 10 2

6.024
x 1026

35.27 2.205 1.102

x lO 3

1 slug = 1.459

x 104

14.59 1 8.789

x 1027

514.8 32.17 1.609

x lO 2

1 u = 1.660

x 10 24

1.660

x lO" 27

1.137

x lO 28

1 5.855
x 10 26

3.660
x 10 27

1.829

x 10-30

1 ounce = 28.35 2.835
x lO" 2

1.943

x 10 -3
1.708

x 1025

1 6.250
x 10- 2

3.125
x 10 5

1 pound = 453.6 0.4536 3.108
x lO 2

2.732
x 1026

16 1 0.0005

1 ton = 9.072
x 105

907.2 62.16 5.465

x 1029
3.2

x 10"

2000 1

Density

Quantities in the shaded areas are weight densities and, as such, are dimen-
sionally different from mass densities. See note for mass table.

slug/ft3 KG/METER3 g/cm3 lb/ft3 lb/in. 3

1 slug per ft
3 =

1 515.4 0.5154 32.17 1.862 x 10 2

1 KILOGRAM per

METER3 = 1.940 x 10 3
1 0.00! 6.243 x 10 • 3.613 x 10 *

1 gram per cm3 = 1.940 1000 1 62.43 3.613 x 10 2

1 pound per ft
3 = 3.108 x 10 2 16.02 1.602 x 10 2

1 5.787 x 10 4

1 pound per in.
3 = 53.71 2.768 x 10 4 27.68 1728 1

Time

yr d h min SECOND

1 year =
1 day =
I hour=
i minute
1 SECOND =

1

2.7.^K • Id

1.141 x LO '

I 901 • m '

i 169 • Mi
-

365.2

1

4.167 x Ml '

6.944 x 10 >

1.157 Mi

8.766 x 10"

24

1

1 667 • in
'

2.778 x Ml i

5.259 x 10'

1440

60
1

1.667 x 10
-'

3.156 x 10 7

8.640 x 10"

3600
60

1



Speed

ft/s km/h
METER/
SECOND mi/h cm/s knot

1 foot per sec-

ond = 1 1.097 0.3048 0.6818 30.48 0.5925

1 kilometer per

hour = 0.9113 1 0.2778 0.6214 27.78 0.5400

1 METER per

SECOND =

1 mile per hour =
3.281

1.467

3.6

1.609

1

0.4470

2.237

1

100

44.70

1.944

0.8689

1 centimeter per

second

=

1 knot=
3.281 x 10- 2

1.688

3.6 x 10- 2

1.852

0.01

0.5144

2.237 x 10- 2

1.151

1

51.44

1.944 x 10-2

1

1 knot = 1 nautical mi/h 1 mi/min = 88.00 ft/s = 60.00 mi/h

Force

Quantities in the shaded areas are not force units but are often used as such.

For instance, if we write 1 gram-force "=" 980.7 dynes, we mean that a gram-

mass experiences a force of 980.7 dynes under standard conditions of gravity

[g = 9.80665 m/s2
).

dyne NEWTON lb pdl gf kgf

1 dyne = 1 10 5 2.248
x 10- 6

7.233
x 10-5

1.020

x 10- 3

1.020

x 10- 6

1 NEWTON = 10 5
1 0.2248 7.233 102.0 0.1020

1 pound = 4.448
x 10s

4.448 1 32.17 453.6 0.4536

1 poundal = 1.383

x 104

0.1383 3.108
x 10 2

1 14.10 1.410
x 10- 2

1 gram-force =

1 kilogram-force =

980.7 9.807

xlO"3

2.205
x 10" 3

7.093

xlO" 2

1 0.001

9.807
x 105

9.807 2.205 70.93 1000 1

Pressure

atm dyne/cm 2

inch of

water cm-Hg PASCAL lb/in. 2 lb/ft2

1 atmosphere =
1 1.013

x 106

406.8 76 1.013

x 105

14.70 2116

1 dyne per cm2 = 9.869
x 10'

1 4.015

x 10-<
7.501

x lO 5

0.1 1.450

x 10 5

2.089
x lO" 3

1 inch of water1 at

4°C =
2.458
x 10 :J

2491 1 0.1868 249.1 3.613
x 10 2

5.202

1 centimeter of mer-
cury" at 0° C =

1.316

x 10 2

1.333

x 10"

5.353 1 1333 0.1934 27.85

1 PASCAL = 9.869
x lO 6

10 4.015
x lO 3

7.501

x 10 <

1 1.450
x 10-"

2.089
x lO 2

1 pound per in. 2 = 6.805

x 10" 2

6.895

x 10 4

27.68 5.171 6.895

x 103

1 144

1 pound per ft
2 = 4.725

x 10-"
478.8 0.1922 3.591

x lO 2

47.88 6.944
x lO 3

1

a Where the acceleration of gravity has the

1 bar = 10" dyne/cm2 = 0.1 MPa

standard value 9.80665 m/s2
.

1 millibar = 103 dyne/cm2 = 10 2 Pa



Energy, work, heat

Quantities in the shaded areas are not properly

relativistic mass-energy equivalence formula E =
mass unit (u) is completely converted to energy.

energy units but are included for convenience. They arise from the

mc2 and represent the energy released if a kilogram or unified atomic

Btu erg ft -lb hph JOULE cal kWh eV MeV kg u

1 British thermal unit = 1 1.055

x 10 10

777.9 3.929
x 10 4

1055 252.0 2.930
x 10" 4

6.585

x 1021

6.585

x 10 15

1.174

x 10 14

7.074

x 1012

1 erg = 9.481

x 10"
1 7.376

x 10" 8

3.725
x 10 14

10 7 2.389
x 10" e

2.778

x 10' 4

6.242

x 10"
6.242
x 105

1.113

x 10" 24

670.5

1 foot-pound = 1.285

xlO" 3

1.356

xlO7

1 5.051

xlO 7

1.356 0.3239 3.766

xlO" 7

8.464
x 10 18

8.464

x 10 12

1.509

x 10 "
9.092
x 109

1 horsepower-hour = 2545 2.685

xlO13

1.980

xlO6

1 2.685

xlO6

6.414

xlO5

0.7457 1.676

x 1025

1.676

x 10 19

2.988

x 10"
1.800

x 1016

1 JOULE = 9.481

x 10" 4

107 0.7376 3.725

XlO" 7

1 0.2389 2.778

xlO" 7

6.242
x 10 18

6.242

xlO 12

1.113
x 10" 17

6.705
x 109

1 calorie = 3.968

xlO 3

4.186

xlO7

3.087 1.559

XlO" 6

4.186 1 1.163

xlO 6

2.613
x 10 19

2.613

x 10 13

4.659
x 10""

2.807

x 1010

1 kilowatt-hour = 3413 3.6

x 10 13

2.655

xlO6

1.341 3.6

x 106
8.601

xlO5

1 2.247
x 1025

2.247

xlO19

4.007
x 10 n

2.414
x 1016

1 electron volt = 1.519

x 10 22

1.602

x 10" 12

1.182

x 10" 19

5.967
x 10" 26

1.602

x 10 19

3.827
x 10" 20

4.450
x 10 26

1 lO 6 1.783

x 10 3«

1.074

x 10 9

1 million electron volts = 1.519

x 10" 16

1.602

x 10- 6

1.182

x 10 13

5.967
x 10" 20

1.602

x 10 13

3.827
x 10 14

4.450
x 10 20

106
1 1.783

x 10 30

1.074

xlO 3

1 kilogram =

1 unified atomic mass
unit =

8.521

xlO13

8.987

x 1023

6.629
x 10 16

3.348
x 10'°

8.987
x 10 16

2.147

x 10 16

2.497

x 10 10

5.610

x 1035
5.610

x 1029

1 6.025

x 1026

1.415

x 10-"
1.492

x 10 3

1.100

x 10 10

5.558
x 10 "

1.492
x 10-'°

3.564
x 10"

4.145

xlO 17

9.31

x 108
931.0 1.660

x 10 27

1

Power

Btu/h ft • lb/s hp cal/s kW WATT

1 British thermal 1 0.2161 3.929 7.000 2.930 0.2930

unit per hour = x 10 4 x 10" 2 x 10 4

1 foot-pound per 4.628 1 1.818 0.3239 1.356 1.356

second = x 10 3 x 10 *

1 horsepower = 2545 550 1 178.2 0.7457 745.7

1 calorie per 14.29 3.087 5.613 1 4.186 4.186

second = x 10"3 x 10 3

1 kilowatt = 3413 737.6 1.341 238.9 1 1000

1 WATT = 3.413 0.7376 1.341

x 10 3

0.2389 0.001 1

Charge

abcoul A • h COULOMB statcoul

1 abcoulomb
1 ampere-hour
1 COULOMB
I st;iti (iiilomb

1

360
(1 1

J.336X10-"

2.778 x 10 3

1

2.778 x 10 i

9.266 x l()
"

10

3600
1

3 $36 x 10 10

2.998 x 10 10

1.079 x 10"

2.998 x 10"

1

(•lit tronic t hargc I 602 l() ' coulomb



Current

abamp AMPERE statamp

1 abampere = 1

1 AMPERE = 0.1

1 statampere = 3.336 x 10~n

10

1

3.336 x 10~ 10

2.998 x 10 10

2.998 x 109

1

Potential, electromotive force

abvolt VOLT statvolt

1 abvolt = 1

1 VOLT = 108

1 statvolt = 2.998 x 10 10

10- 8

1

299.8

3.336 x 10" n

3.336 x 10" 3

1

Resistance

abohm OHM statohm

1 abohm = 1

1 OHM = 109

1 statohm = 8.987 x 1020

10 9

1

8.987 x 10"

1.113 x 10~ 21

1.113 x IO" 12

1

Capacitance

abf FARAD MF statf

1 abfarad = 1 109 10 15 8.987 x 1020

1 FARAD = IO" 9
1 106 8.987 x 10"

1 microfarad = 10 15 IO"6
1 8.987 x 105

1 statfarad = 1.113 x 10-" 1.113 x IO 12 1.113 x 10 6
1

Inductance

abhenry HENRY /xH mH stathenry

1 abhenry = 1 10-9 0.001 IO" 6 1.113 x IO" 21

1 HENRY = IO9
1 106 1000 1.113x10-"

1 microhenry = 1000 io-6
1 0.001 1.113 x 10""

1 millihenry = 106 0.001 1000 1 1.113X 10-"

1 stathenry = 8.987 x 1020 8.987 x 10n 8.987 X1017 8.987 x 10 14
1

Magnetic flux

maxwell WEBER

1 maxwell =
1 WEBER =

1

108

IO" 8

1

Magnetic field

gauss TESLA milligauss

1 gauss =
1 TESLA =
1 milligauss =

1

IO4

0.001

10 4

1

10 7

1000

IO7

1

1 tesla = 1 weber/meter2



Mathematical Signs and Symbols

= equals

= equals approximately

¥" is not equal to

= is identical to, is defined as

> is greater than (» is much greater than)

< is less than |« is much less than)

^ is more than or equal to (or, is no less than)

^ is less than or equal to (or, is no more than)

± plus or minus (V4 = ±2)
<* is proportional to (Hooke's law: F <* x, or F =

1 the sum of

x the average value of x

-Ax)

APPENDIX H
MATHEMATICAL
SYMBOLS AND THE
GREEK ALPHABET

The Greek Alphabet

Alpha A a Nu N V

Beta B P Xi ~
i

Gamma r y Omicron o

Delta A 8 Pi n IT

Epsilon E € Rho p P

Zeta Z i Sigma i a
Eta H V Tau T T

Theta e e Upsilon Y V

Iota i i Phi cD
<t>, <P

Kappa K K Chi X X

Lambda A X Psi ^ 4>

Mu M M Omega n a>

Geometry

Circle of radius r: circumference = lirr-, area = tti2 .

Sphere of radius r: area = 47jt2
;
volume = 777-r

3
.

Right circular cylinder of radius r and height h. area = Ittt2 + Inrh;

volume = wT2h.

APPENDIX I
MATHEMATICAL
FORMULAS

Quadratic Formula

If ax2 + bx + c = 0, then x = b±Vb2 -4ac
la

Trigonometric Functions of Angle

sin = -
r

y
tan &

sec =

cos 8 =

cot 6 =

esc =

Pythagorean Theorem

x2 + y2 = r2



Trigonometric Identities

sin 2 + cos 2 6 = 1 sec 2 6 - tan2 6 = 1 esc2 6 — cot2
i

sin 20 = 2 sin cos

cos 20 = cos2 - sin2 6 = 2 cos2 0-1 = 1-2 sin2 6

eW - e-W gifl + e -i6

sin = — cos 6 =

e ±ie — cos ± i s in g

sin (a ± j8)
= sin a cos B ± cos a sin B

cos (a ± B) = cos a cos /3 + sin a sin B

tan a ± tan B
tan a ± 8 = — ^^ 1 -t- tan a tan /3

sin a ± sin B = 2 sin l(a ± /3) cos |(a + /3)

Taylor's Series

X2 x3

f[x + x) = f[x ) + /' (xo)x + f ' (xo) — + f" '(x
)

3J
+ •

'

Binomial Expansion

nx n[n — 1) ., ,

(l + x)"=l+— +
2

,

' x2 + - •
•

Exponential Expansion

1 + X+
2^
+

3T

Logarithmic Expansion

ln(l +x)= x-lx2 + |x3 - • •
•

Trigonometric Expansions (0 in radians)

cos0=l--+-----

Derivatives and Indefinite Integrals

In what follows, the letters u and v stand for any functions of x, and a

and m are constants. To each of the integrals should be added an arbi-

trary constant of integration. The Handbook of Chemistry and Physics

(Chemical Rubber Publishing Co.) gives a more extensive tabulation.

1. ^= 1 1. / dx = x
dx

2. -j- [au\ = a —-
2. f au dx = a f u dx

dx dx

3. 4~ I" + v) = ^ +^ 3. / (u + v) dx = / u dx+ J v dx
dx dx dx

d f x"i+1

4. -r x'" = mx'" 1 4. \xm dx = [m ¥= -\)
dx J m + 1



a
?!

05

U
S

d 1

5. -r In x = -
dx x

d . , dv du
6

dx
iUV) = U

Tx
+ V

dx

7. -1- ex = e1

dx

dx
sin x = cos x

9. -5- cos x = — sin x
dx

10. ~r tan x = sec2 x
ax

11. T" cot x = —esc2 X
dx

12. -=- sec x = tan x sec x
dx

13. -=- esc x = — cot x esc x
ax

,„ d 1

14. -r- arctan x =
dx 1 + x2

K d 1

15. -3- arcsin x = .

dx VI -x2

iz d 1

16. -5- arcsec x =— ,

dx xVx2 - 1

— = In x
J x

6. u -j— dx = uv — v -j— dx

7. I ex dx = e-
1
*

8. / sin x dx = — cos x

9. / cos x dx = sin x

10. / tan x dx = In |sec x|

11. / cot x dx = In |sin x|

12. / sec x dx = In |sec x + tan x|

13. / esc x dx = In |csc x — cot x|

14.

15

16.

dx

[ -EL-
J 1 +x

J

h

arctan x

Vl -x2

dx

= arcsin x

Vx2 - 1

arcsec x

Vector Products

Let i, j, k be unit vectors in the x, y, z directions. Then

ii = jj = kk=l, i-j = j-k = k-i = 0,

ixi = jxj = kxk = 0,

i x j
= k, j

x k = i, k x i = j.

Any vector a with components ax , a u , a 2 along the x, y, z axes can be written

a = axi + a v \ + aM-

Let a, b, c be arbitrary vectors with magnitudes a, b, c. Then

ax(b + c) = axb + axc

|sa) x b = a x (sb) = s(a x b) [s = a scalar).

Let be the smaller of the two angles between a and b. Then

a • b = b • a = axbx + a ybu + d*i>, = ab cos

i j k

axb=-bxa= a x a„ a z

bx b u bz

\o ubz - b„a t )i + [a zbx - b tax )\

+ [oxb u
— bxa u )k

a X b| = ab sin 8

a • |b x c) = b (c x a) = c |a x b)

a x (b x c) = (a • c)b - |a • b)c



Degrees Radians Sine Tangent Cotangent Cosine

00 1.0000 1.5708 90

1 .0175 .0175 .0175 57.290 .9998 1.5533 89

2 .0349 .0349 .0349 28.636 .9994 1.5359 88

3 .0524 .0523 .0524 19.081 .9986 1.5184 87

4 .0698 .0698 .0699 14.301 .9976 1.5010 86

5 .0873 .0872 .0875 11.430 .9962 1.4835 85

6 .1047 .1045 .1051 9.5144 .9945 1.4661 84

7 .1222 .1219 .1228 8.1443 .9925 1.4486 83

8 .1396 .1392 .1405 7.1154 .9903 1.4312 82

9 .1571 .1564 .1584 6.3138 .9877 1.4137 81

10 .1745 .1736 .1763 5.6713 .9848 1.3963 80

11 .1920 .1908 .1944 5.1446 .9816 1.3788 79

12 .2094 .2079 .2126 4.7046 .9781 1.3614 78

13 .2269 .2250 .2309 4.3315 .9744 1.3439 11

14 .2443 .2419 .2493 4.0108 .9703 1.3265 76

15 .2618 .2588 .2679 3.7321 .9659 1.3090 75

16 .2793 .2756 .2867 3.4874 .9613 1.2915 74

17 .2967 .2924 .3057 3.2709 .9563 1.2741 73

18 .3142 .3090 .3249 3.0777 .9511 1.2566 72

19 .3316 .3256 .3443 2.9042 .9455 1.2392 71

20 .3491 .3420 .3640 2.7475 .9397 1.2217 70

21 .3665 .3584 .3839 2.6051 .9336 1.2043 69

22 .3840 .3746 .4040 2.4751 .9272 1.1868 68

23 .4014 .3907 .4245 2.3559 .9205 1.1694 67

24 .4189 .4067 .4452 2.2460 .9135 1.1519 66
25 .4363 .4226 .4663 2.1445 .9063 1.1345 65
26 .4538 .4384 .4877 2.0503 .8988 1.1170 64
27 .4712 .4540 .5095 1.9626 .8910 1.0996 63

28 .4887 .4695 .5317 1.8807 .8829 1.0821 62

29 .5061 .4848 .5543 1.8040 .8746 1.0647 61

30 .5236 .5000 .5774 1.7321 .8660 1.0472 60
31 .5411 .5150 .6009 1.6643 .8572 1.0297 59
32 .5585 .5299 .6249 1.6003 .8480 1.0123 58

33 .5760 .5446 .6494 1.5399 .8387 .9948 57
34 .5934 .5592 .6745 1.4826 .8290 .9774 56

35 .6109 .5736 .7002 1.4281 .8192 .9599 55
36 .6283 .5878 .7265 1.3764 .8090 .9425 54
37 .6458 .6018 .7536 1.3270 .7986 .9250 53

38 .6632 .6157 .7813 1.2799 .7880 .9076 52

39 .6807 .6293 .8098 1.2349 .7771 .8901 51

40 .6981 .6428 .8391 1.1918 .7660 .8727 50
41 .7156 .6561 .8693 1.1504 .7547 .8552 49
42 .7330 .6691 .9004 1.1106 .7431 .8378 48

43 .7505 .6820 .9325 1.0724 .7314 .8203 47
44 .7679 .6947 .9657 1.0355 .7193 .8029 46
45 .7854 .7071 1.0000 1.0000 .7071 .7854 45

Cosine Cotangent Tangent Sine Radians Degrees

APPENDIX J
TRIGNOMETRIC
FUNCTIONS

1901 Wilhelm Konrad Rontgen 1845-1923

1902 Hendrik Antoon Lorentz 1853-1928
Pieter Zeeman 1865-1943

1903 Antoine Henri Becquerel 1852-1908

for the discovery of the remark-

able rays subsequently named
after him

for their researches into the

influence of magnetism upon
radiation phenomena

for his discovery of spontaneous
radioactivity

*See Nobel Lectures, Physics, 1901-1970, Elsevier Publishing Company, for the Nobel
presentations, lectures and biographies. The attributions are, almost without exception,

quotations from the Nobel Prize citations.

APPENDIX K
NOBEL PRIZES
IN PHYSICS*
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Pierre Curie 1859-1906
Marie Sklowdowska-Curie 1867-1934

1904 LordRayleigh 1842-1919

(John William Strutt)

1905 Philipp Eduard Anton 1862-1947
von Lenard

1906 Joseph John Thomson 1856-1940

1907 Albert Abraham Michelson 1852-1931

1908 Gabriel Lippmann 1845-1921

1909 Guglielmo Marconi 1874-1937
Carl Ferdinand Braun 1850-1918

1910 Johannes Diderik 1837-1923

van der Waals

1911 Wilhelm Wien 1864-1928

1912 Nils Gustaf Dalen 1869-1937

1913 Heike Kamerlingh Onnes 1853-1926

1914 Max von Laue 1879-1960

1915 William Henry Bragg 1862-1942
William Lawrence Bragg 1890-1971

1917 Charles Glover Barkla 1877-1944

1918 Max Planck 1858-1947

1919 Johannes Stark 1874-1957

1920 Charles-Edouard Guillaume 1861-1938

1921 Albert Einstein IS79-1955

1922 Niels Bohr 1885-1962

1923 Robert Andrews Millikan 1868-1953

1924 Karl Manne Georg Siegbahn 1886-1954

1925 James Franck 1882-1964
Gustav Hertz 1887-1975

for their joint researches on the

radiation phenomena discovered

by Professor Henri Becquerel

for his investigations of the

densities of the most important
gases and for his discovery of

argon

for his work on cathode rays

for his theoretical and experi-

mental investigations on the

conduction of electricity by gases

for his optical precision instru-

ments and metrological investi-

gations carried out with their aid

for his method of reproducing

colors photographically based on
the phenomena of interference

for their contributions to the

development of wireless teleg-

raphy

for his work on the equation of

state for gases and liquids

for his discoveries regarding the

laws governing the radiation of

heat

for his invention of automatic
regulators for use in conjunction

with gas accumulators for

illuminating lighthouses and
buoys

for his investigations of the

properties of matter at low
temperatures which led, inter

alia, to the production of liquid

helium

for his discovery of the diffrac-

tion of Rontgen rays by crystals

for their services in the analysis

of crystal structure by means of

Rontgen rays

for his discovery of the charac-

teristic Rontgen radiation of the

elements

for his discovery of energy quanta

for his discovery of the Doppler
effect in canal rays and the

splitting of spectral lines in

electric fields

for the service he has rendered

to precision measurements in

Physics by his discovery of

anomalies in nickel steel alloys

for his services to Theoretical

Physics, and especially for his

discovery of the law of the

photoelectric effect

tor the investigation of the struc-

ture of atoms, and of the radia-

tion emanating from them

for his work on the elementary

charge of electricity and on the

photoelec trie effect

li'i Ins discoveries and research

in the field of x-ray spectroscopy

tin theii discovery of the laws

1 ning the Lmpa< t of an

ele< tron upon an atom



1926 Jean Baptiste Perrin 1870-1942

1927 Arthur Holly Compton 1892-1962

Charles Thomson Rees 1869-1959

Wilson

1928 Owen Willans Richardson 1879-1959

1929 Prince Louis- Victor de Broglie 1892-

1930 Sir Chandrasekhara Venkata 1888-1970

Raman

1932 Werner Heisenberg 1901-1976

1933 Ei-win Schrodinger 1887-1961

Paul Adrien Maurice Dirac 1902-

1935 James Chadwick 1891-1974

1936 Victor Franz Hess 1883-1964

Carl David Anderson 1905-

1937 Clinton Joseph Davisson 1881-1958

George Paget Thomson 1892-1975

1938 Enrico Fermi 1901-1954

1939 Ernest Orlando Lawrence 1901-1958

1943 Otto Stern 1888-1969

1944 Isidor Isaac Rabi

1945 Wolfgang Pauli 1900-1958

1946 Percy Williams Bhdgman 1882-1961

1947 Sir Edward Victor Appleton 1892-1965

1948 Patrick Maynard Stuart 1897-1974
Blackett

for his work on the discontinuous

structure of matter, and espe-

cially for his discovery of

sedimentation equillibrium

for his discovery of the effect

named after him

for his method of making the

paths of electrically charged

particles visible by condensation

of vapor

for his work on the thermionic

phenomenon and especially for

the discovery of the law named
after him

for his discovery of the wave
nature of electrons

for his work on the scattering of

light and for the discovery of the

effect named after him

for the creation of quantum
mechanics, the application of

which has, among other things,

led to the discovery of the

allotropic forms of hydrogen

for the discovery of new produc-

tive forms of atomic theory

for his discovery of the neutron

for his discovery of cosmic
radiation

for his discovery of the positron

for their experimental discovery

of the diffraction of electrons by
crystals

for his demonstrations of the

existence of new radioactive

elements produced by neutron

irradiation, and for his related

discovery of nuclear reactions

brought about by slow neutrons

for the invention and develop-

ment of the cyclotron and for

results obtained with it, espe-

cially with regard to artificial

radioactive elements

for his contribution to the de-

velopment of the molecular ray

method and his discovery of the

magnetic moment of the proton

for his resonance method for

recording the magnetic proper-

ties of atomic nuclei

for the discovery of the Exclu-

sion Principle, also called the

Pauli Principle

for the invention of an apparatus

to produce extremely high pres-

sures, and for the discoveries he

made therewith in the field of

high-pressure physics

for his investigations of the

physics of the upper atmosphere,

especially for the discovery of

the so-called Appleton layer

for his development of the

Wilson cloud chamber method,
and his discoveries therewith in

the fields of nuclear physics and
cosmic radiation
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1949 Hideki Yukawa

1950 Cecil Frank Powell

1951 Sir John Douglas Cockcroft

Ernest Thomas Sinton Walton

1952 Felix Bloch

Edward Mills Purcell

1953 Frits Zernike

1954 Max Born

Walther Bothe

1955 Willis Eugene Lamb

Polykarp Kusch

1956 William Shockley

John Bardeen

Walter Houser Brattain

1957 Chen Ning Yang
Tsung Dao Lee

1958 Pavel Aleksejevic Cerenkov
II' ja Michailovic Frank

Igor' Evgen'evic Tamm
1959 Emilio Gino Segre

Owen Chamberlain

1960 Donald Arthur Glaser

1961 Robert Hofstadter

Rudolf Ludwig Mossbauer

1962 Lev Davidovic Landau

1963 Eugene P. Wigner

Man. i ( ioeppert Mayer
| Hans I ) lensen

1907- for his prediction or the exis-

tence of mesons on the basis of

theoretical work on nuclear

forces

1903-1969 for his development of the

photographic method of studying

nuclear processes and his dis-

coveries regarding mesons made
with this method

1897-1967 for their pioneer work on the

1903- transmutation of atomic nuclei

by artificially accelerated atomic

particles

1905- for their development of new
1912- methods for nuclear magnetic

precision methods and dis-

coveries in connection therewith

1888-1966 for his demonstration of the

phase-contrast method, espe-

cially for his invention of the

phase-contrast microscope

1882-1970 for his fundamental research in

quantum mechanics, especially

for his statistical interpretation

of the wave function

1891-1957 for the coincidence method and
his discoveries made therewith

1913- for his discoveries concerning the

fine structure of the hydrogen
spectrum

19 1 1 - for his precision determination

of the magnetic moment of

the electron

1910- for their researches on semi-

1908- conductors and their discovery

1902- of the transistor effect

1922- for their penetrating mvestiga-

1926- tion of the so-called parity laws

which has led to important dis-

coveries regarding the elementary
particles

1904- for the discovery and the

1908- interpretation of the Cerenkov
1895-1971 effect

1905- for their discovery of the

1920- antiproton

1926- for the invention of the bubble

chamber

1915- for his pioneering studies of

electron scattering in atomic
nuclei and for his thereby

achieved discoveries concerning

the structure of the nucleons

1929- for his researches concerning the

resonance absorption of y-

radiation and his discovery in

this connection of the effect

which bears his name
1908- tin his pioneering theories of

condensed matter, especially

liquid helium

1902- for his contributions to the

theory of the atomic nucleus
and the elementary particles

particularly through the dis

covery and application oi funda-

mental symmetry principles

1906-1972 foi theii discoveries concerning

190 ' 1973 run leai shell strut ture



1964 Charles H. Townes
Nikolai G. Basov
Alexander M. Prochorov

1965 Sin-Itiro Tomonaga
Julian Schwinger

Richard P. Feynman

1966 Alfred Kastler

1967 Hans Albrecht Bethe

1968 Luis W. Alvarez

1969 Murray Gell-Mann

1970 Hannes Alven

Louis Neel

1971 Dennis Gabor

1972 John Bardeen

Leon N. Cooper

J.
Robert Schrieffer

1973 Leo Esaki

Ivar Giaever

Brian D. Josephson

1974 Antony Hewish

Sir Martin Ryle

1975 Aage Bohr
Ben Mottelson

James Rainwater

1976 Burton Richter

Samuel Chao Chung Ting

1915-

1922-

1916-

1906-

1918-

1918-

1902-

1906-

1911-

1929-

1908-

1904-

1900-

1908-
1930-

1931-

1925-

1929-

1940-

1924-

1918-

1922-

1926-

1917-

1931-

1936-

for fundamental work in the

field of quantum electronics

which has led to the construc-

tion of oscillators and amplifiers

based on the maser-laser

principle

for their fundamental work in

quantum electrodynamics, with
deep-ploughing consequences

for the physics of elementary

particles

for the discovery and develop-

ment of optical methods for

studying Hertzian resonance in

atoms

for his contributions to the

theory of nuclear reactions, es-

pecially his discoveries concern-

ing the energy production in

stars

for his decisive contribution to

elementary particle physics, in

particular the discovery of a

large number of resonance states,

made possible through his de-

velopment of the technique of

using hydrogen bubble chamber
and data analysis

for his contributions and dis-

coveries concerning the classifi-

cation of elementary particles

and their interactions

for fundamental work and
discoveries in magneto-hydro-

dynamics with fruitful applica-

tions in different parts of plasma
physics

for fundamental work and dis-

coveries concerning antiferro-

magnetism and ferrimagnetism

which have led to important

applications in solid state physics

for his discovery of the prin-

ciples of holography

for their development of a theory

of superconductivity

for his discovery of tunneling in

semiconductors

for his discovery of tunneling in

superconductors

for his theoretical prediction of

the properties of a super-current

through a tunnel barrier

for the discovery of pulsars

for his pioneering work in

radioastronomy

for the discovery of the connec-

tion between collective motion
and particle motion and the

development of the theory of

the structure of the atomic
nucleus based on this connection

for their (independent) discovery

of an important fundamental
particle.





index
Absolute pressure, 377 Angular momentum, 233 Atwood's machine, 89

Absolute zero, 464, 550 and angular velocity, 245, 248, Avogadro's law, 521

Acceleration, 35-38 261, 264, 266 Avogadro's number, 479, 493
centripetal, 60, 61, 63 conservation of, 268 and Brownian motion, 530
coriolois, Suppl. Topic I of elementary particles, 273 Axial vector, Suppl. Topic II

due to gravity,43 and Kepler's second law, 351-352

of particle in plane, 64, Suppl. orbital, 274, 277 Babinet, J., 6

Topic I quantization of, 273, 277 Ballistic pendulum, 194

of projectile, 55 of rigid bodies, 261, 266, 267 Ballot, B., 445

radial, 60, 223, 224 in solar system, 273-274 Banking of curves, 105

tangential, 63, 223 spin, 273, 274, 277 Bar, 371

Action-at-a-distance, 353, 363 of system of particles, 236, 277 Barn, 203

Action force, 79 and torque, 234 Barometer, mercury, 377

Adhesion, surface, 99 Angular velocity, 220-223 Beam, 290

Adiabatic process, 489, 541 and angular momentum, 245, 248, Beams, J. W., 100

at absolute zero, 550 261, 264, 266 Bearing wobble, 268

entropy change in, 555 Antinode, 421 Beats, 420, 444
with ideal gas, 510 Apogee, 366 frequency of, 445

Air resistance, 44 Archimedes' Principle, 376, 535 Bernoulli, D., 389, 390, 497

Air-speed indicator, 392 Aristotle, 43, 47, 378 Bernoulli's equation, 390
Alpha-particle, 43, 173 Astronomical Unit, 13, 14 and nature of fluid, 39

1

Ammonia, 181 Atmosphere (unit), 371, 377 Betatron, 135

Amplitude, 301 Atmosphere of Earth, escape from, Billiard ball, 275, 278

Angle of attack, 393 357, 526 Binding energy, 154, 358, 359
Angular acceleration, 217, 218 mean free path in, 523 Binomial theorem, 153, 448

and tangential acceleration, 223 pressure in, 374, 375, 377, 519 Bohr, N., 277

and torque, 244 Atmospheres, law of, Suppl. Topic Bohr model, 69, 113

as vector, 222 IV Boltzmann, L., 498, 529, Suppl.

Angular frequency, 305 Atomic masses, some measured, 9 Topic IV
of wave, 409 Atomic mass unit, unified, 8, 205 Boltzmann constant, 505

Angular impulse, 276 Attenuated wave, 412 Boomerang, 398

A37



Born, M., 110

Boyle R., 378, 497
Boyle's law, 498, 518
Brahe, T., 337, 338
British Engineering Units, 5, 81, 82
British thermal unit, 477
and ft-lb, 483

Brown, R., 529
Brownian motion, 529
and Avogadro's number, 530
rotational, 531

Bubble chamber, 201

Bulk modulus of elasticity, 435
Buoyancy, 376

effect on solutions, 538

Calculus, 33, 339
Caloric, 475
Calorie, 477
and joule, 483
thermochemical, 483

Calorimeter, flow, 495
Carbon monoxide, 181

Carnot, S., 476, 541, 547

on efficiency of engines, 547

Carnot cycle, 542-543

efficiency of, 544
Carnot 's theorem, 547
Cavendish balance, 340
Cavendish, Lord, 339, 341
Cavitation, 402
Celsius, 464, 469
Celsius degree, 467

Celsius temperature, 464-465

and Fahrenheit, 465

and Kelvin, 465

Center of buoyancy, 376
Center of gravity, 167, 284
and center of mass, 284-285

Center of mass, 162, 284
and center of gravity, 284-285

experimental determination of,

285
motion of, 167, 216
and reference frame, 165

of rigid body, 165

and rotational dynamics, 236, 237
of symmetric bodies, 165

of three particles, 164

of triangular plate, 166

of two particles, 163

Center of oscillation, 314, 315
Center of percussion, 315
Centigrade temperature, 464
Centrifugal force, Suppl. Topic I

Centripetal acceleration, 60, 61, 63
Centripetal force, 103
work done by, 118

Cerenkov radiation, 450

Cgs units, 81, 82

Chadwick, (., 212
Charles and Gay-Lussac, law of, 498,

518
< in ill. ii m< itn hi nonunifoi m 63

uniform

Classical mechanics, limitations of,

108, 109

reference frames in, 106

rotating frame, Suppl. Topic I

Clausius, R., 498, 512, 532, 547
and second law of thermody-

namics, 546
Clocks, 10

Cloud chamber, 200, 201

Colding, L. A., 476
Collision, 187, 188

in center of mass frame, 195-

196

completely inelastic, 190, 193

conservation of momentum in,

189

elastic, 190

external forces in, 189-190

inelastic, 190, 193

invariants in, 197

multi-dimensional, 197-198

one-dimensional, 191-192

relative velocity in, 191

Collisions, molecular, 501

in air, 523
distance between, 523

Conical pendulum, 103

period of, 104, 114

Conservation, of angular momen-
tum, 268

in diving, 269-270

and fluid flow, 394
and rotation, 272-274

and rotational inertia, 269
of energy, 151, 154, 476, 482

as scalar relation, 171

of linear momentum, 170

in collisions, 189

and fluid flow, 394
as vector relation, 171

of mass, Suppl. Topic V-8

in fluid flow, 388
of matter, 152

of mechanical energy, 139, 148,

149

of parity, Suppl. Topic II

principles of, 170

of total energy, 205
Conservative force, 135, 136, 137

Continuity, equation of, 388
Conveyor belt, 178

Copernican system, 336
Copernicus, N., 336, 337, 338
Coriolis acceleration, Suppl. Topic I

force, Suppl. Topic I

Coulomb, C, 99
Coulomb's law, 83

Covolume, 532, 535, 536
Cross product, 22
Cross section, 202
and energy, 203
for molecular collisions, 522
units ot 203

Cycle, 300, 54 I

Carnot, 542-54 I

reversible, 541
as Carnot cycles, 551

Cycloid, 70

Daish, C. R., 207
DAlembert, 196

Dalton's law, 521

Damped harmonic motion, 322
mean lifetime, 323

da Vinci, Leonardo, 99
Day, solar, 229

sidereal, 229
Debye, P., 480
Debye temperature, 479
Deceleration, 42
Deferent, 336
Degree of freedom, 512
Density, 371

relative, 376
of some materials, 372
thermal variations in, 473
weight, 373

Derivative, 33
Descartes, R., 196, 378, 403
Deuteron, 154, 211

Diatomic molecule, potential energy

of, 146

Dicke, R. H., 344
Differential equation, 302, 304
Diffusion, 503, 505
Dimensions, 41

Dirac, P. A. M., 110

Disorder, and entropy, 557
Disorder parameter, 557
Dispersion, 412
Displacement, 15, 16

angular, 217

as vector, 220
Dissipative force, 149

Dissociation energy, 147

Distributed elements, 425
Doppler, C. J., 445
Doppler effect, for light, 445, 448

relativistic, Suppl. Topic V-6

transverse, Suppl. Topic V-6

for sound, 445
compared to light, 448
general case, 447
limitations of, 449-450

observer moving, 446
source moving, 447

Dot product, 22

Drumhead, vibration of, 442-443

Dry water, 386
Dulong, 474, 479
Dumbbell, 239, 267-268

Dynamics, 30, 72

rotational, 216, 231

Dyne 81

Earth, acceleration of, 360
density of, 34 1

determination oi mass, 341

as inertial reference frame, 360

variation in rotation 1 1



Eccentricity, 352
Efflux, speed of, 401

Eigenfrequency, 442
Eigenfunction, 443

Einstein, A., 108, 152, 360, 361, 529,

530, Suppl. Topic V-l, V-2

Elastic collision, 52, 190

Elastic limit, 303
Electron-volt, 126

Elementary particles, 273

Elevator, 90
Ellipse, 352
Energy, conservation of, 151

of configuration, 138

equivalence with mass, Suppl.

Topic V-8

of oscillation, 300
SI units of, 483

see also listings under various

types of energy

Entropy, 552
changes in, for adiabatic process,

555
free-expansion, 553
heat conduction, 554

in heating, 563
ideal gas, 556-557

irreversible process, 553

melting ice, 556
reversible process, 553

and disorder, 557, 558
and second law of thermody-

namics, 555
Environment, 72, 74, 457
entropy change of, 555

Eotvos, 344
Epicycle, 336
Equilibrium, 145

mechanical, 281

static, 281

applications of, 285-286

conditions for, 282
in gravitational field, 292-293

indeterminateness of, 290-291

neutral, 146, 291-292

and potential energy, 145, 291

stable, 145, 291, 292
unstable, 146, 291, 292

thermal, 458
Equipartition of energy, 512

in Brownian motion, 530, 531

Equipotential surface, 394
Equivalence of mass and energy,

153, Suppl. Topic V-8

in nuclear reactions, 206
Eratosthenes, 345
Erg, 119

Escape velocity, 357
Ether, Suppl. Topic V-2

Euler, L., 385
Evaporation, 519, 525
Explosion, of projectile, 171

Fahrenheit temperature, 465
Faraday, M., 353

Field, 353
of flow, 394
vector, 394

First integral, of Newton's laws, 139

First law of thermodynamics, 487,

540
for adiabatic processes, 489, 541

and Carnot cycle, 543
and change of phase, 488
for free-expansion, 490

Flettner ship, 392
Flow, fluid, centrifugal effects in,

402
compressible, 386
dipole, 396, 397
homogenous, 394, 395
incompressible, 386
irrotational, 386, 402
nonsteady, 386
nonviscous, 386
Poiseuille, 402
potential, 394, 402
rotational, 386, 395
steady, 386
turbulent, 386
viscous, 386
vortex, 395

Flow rate, 388, 391

Fluid, 370, 371
pressure in, 373
thermal expansion of, 468-469

measurement of, 474
Flywheel, 254
Foot-pound, 1 19

and Btu, 483
Force, 73, 76

action, 79

central, 352
centrifugal, 106, Suppl. Topic I

centripetal, 103

conservative, 135, 136, 137
Coriolis, Suppl. Topic I

as derived quantity, 81

dimensions, 82
dissipative, 149

impulsive, 187

inertial, 106, 107, Suppl. Topic I

laws of, 82
measure of, 196

moment of, 232
in nature, classification of, 106

nonconservative, 135, 136, 137

and potential energy, 139, 300
restoring, 122, 300, 302
static method of measuring, 85

in uniform circular motion, 103

as vector, 77

Force constant, 122, 302
Foucalt pendulum, 369
Fourier, J., 411
Fourier integral, 412
Fourier series, 411
Free-body diagram, 86
Free-expanison, 490, 557, 558

entropy change in, 553

Free-fall, 43

equations of, 44

and work-energy theorem, 126

Frequency, 300
natural, 323

of clamped string, 223, 421, 424
resonant, 223, 324

Friction, direction of, 98

effect of lubricants on, 100

force of, 83, 99

kinetic, 98

and moving reference frames, 155

as nonconservative force, 135, 136,

137

rolling, 100

sliding, 97

static, 98
theory of, 99-100

and work-energy theorem, 149

Fundamental frequency, 440

g,43
determination of, 311, 314, 346
effective, 353
as field strength, 353
and rotation of earth, 345, 346
variation with, altitude, 344-345

depth, 349, 365
latitude, 345

Galilean transformation, Suppl.

Topic V-4

of velocities, Suppl. Topic V-6

Galileo, 12, 43, 47, 68, 74, 337, 476
y- radiation, 154

Gardner, M., 297

Gas, 370
density in, 372
pressure versus depth in, 373-374

work done by, 485

Gas constant R, universal, 499
Gauge pressure, 377
Gaussian units, 5

Geiger, 204
General Conference on Weights

and Measures, 4, 5, 7, 10, 460,

464
General Theory of Relativity, 360
Geoid, 345
Gibbs, J. W., 498
Glaser, D., 201

Goddard, R., 180

Golden Gate Bridge, 474
Golf clubheads, 207
Gradient, 147

Grains, interstellar, 538
Gram, 81

Gram molecular weight, 479
Gravitation, Law of Universal, 338-

339
vector form, 339

Gravitational attraction, of sphere,

348
of spherical shell, 348

Gravitational constant, 338
determination of, 339-340
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Gravitational field, 353, 394
strength of, 353
uniform, 283

Gravitational potential, 356
Gravitational potential energy, 141,

174, 357
at all heights, 355
and force, 356
of many particles, 358
of planets and satellites, 359

Gravitational radius, 367
Gravity, force of, 353

as conservative force, 356
from potential energy, 356
on rigid body, 284

Gravity screens, 339
Group velocity, 408
Guericke, O. von, 378, 381

Halley, E., 335
Harmonic motion, 299

damped, 299, 322
equilibrium position in, 300
simple, 301

Harmonic oscillator, 142, 300
Harmonic series, 440
Havens, 528

Heat, 475, 476, 484
dependence on path, 486
units of, 477
and work, 482-483

Heat capacity, 477
and linear expansion, 491

Heat conduction, 480, 557
in compound slab, 482, 494
in cylindrical system, 494
entropy change in, 554
equation of, 481

in rod, 482
in spherical system, 494

Heat engine, 543
efficiency of, 543-544, 547

actual, 548
Heat pump, 561-562

Heisenberg, W., 110

Helmholtz, H. von, 476, 477
Hertz, 11, 300
Hertz, H., 300
Hooke, R., 303
Hooke's law, 122, 135, 303, 312
and superposition, 41

1

Horror vacui, 378
Horsepower, 127

Huygens, C, 31

1

Hydrogen atom, 276
Hydrostatic paradox, 379
Hyperbola, 431

Iceberg, 377
Ice point, 465
Ideal gas, 498, 499

adiabatic process in, 510, 562
entropy change of, 556-557

equation oi Btate, 499
Ik .n < apacities "i 509

compared to real gases, 513
internal energy of, 507
isotherms of, 510, 533, 534, 562,

microscopic description of, 500-

501

pressure of, 502
speed of sound in, 510-51

1

work done isothermally by, 500
Ideal gas temperature scale, 463, 549
Impact parameter, 197, 198

in atomic collisions, 202
Impulse, 188

angular, 276
Inertia, 73

law of, 75

moment of, 237
Initial conditions, 39

in harmonic motion, 305
Instantaneous axis of rotation, 248
Integral, 121

Intensity, in wave motion, 416, 429
Interference, 417, 418, 419, 444
Interferometer, 6

acoustic, 453
Intermolecular forces, 506-507
Internal energy, 149, 487

of ideal gas, 507
and quantum theory, 515
of real gases, 533

Internal forces, 167

International Bureau of Weights and
Measures, 4, 6

International Practical Temperature
Scale, 465, 466

International System of Units, see SI

System
Invariance, 25, Suppl. Topic II

Irreversible process, 540
entropy change of, 553, 555

Isobaric process, 488
Isolating the system, 286
Isotherm, 500, 510
Isotropic solid, 468

Joule, 119

and calorie, 483
Joule J., 476, 482, 483, 497

Kappler, 530
Kelvin, 460
Kelvin, Lord, 547, 549
and second law of thermody-

namics, 546
Kelvin temperature (scale), 464, 465,

549
and Celsius, 465
negative, 464

Kepler, J., 337, 338, 350
Kepler's first law, 337, 352
Kepler's second law, 337, 352
Kepler's third law, 337, 350
and determination of masses, 350-

351

Kepler's three laws, 337

Kilocalorie, 477

Kilowatt-hour, 127

Kinematics, 30
rotational, 216

vector description, 226
Kinetic energy, 124
and moving reference frames, 131,

140

relativistic, 153, 161, Suppl. Topic
V-7

of rotation, 237
in simple harmonic motion, 307
units, 125

and work, 125

Kinetic friction, laws of, 99
coefficient of, 99, 100, 101

Kinetic theory, 497
collisions in, 501, 507
limitations of, 515

Kronig, A., 498
Kundt's method, 454
Kusch, P., 527

Lagrange. J. L., 385
Lake, freezing of, 469
Laplace, 511

Lavoisier, A., 152

Lee, T. D., 25

Leibnitz, 196

Length, primary standard of, 6

secondary standard of, 7

Length contraction, Suppl. Topic V-5

Lengths, some measured, 8

Lift, dynamic, 392, 393
static, 392

Light, speed of, in inertial frames,

Suppl. Topic V-2

as limiting speed, Suppl. Topic V-3

measuring of, 228
Light-year, 13, 14

Limiting process, 34
Linear density, 413
Linear expansion, 466

coefficient of, 466
and heat capacity, 491

some values, 467
Linear motion, equations of, 41

Line integral, 123

Liquid, 370
compressibility of, 371, 373, 376
density of, 374
pressure versus depth in, 373
waves in, 376

Lissajous, J. A., 332
Lissajous figures, 332
Locke, J., 458
Lorentz transformation, Suppl. Topic

V-4

of velocities, Suppl. Topic V-6

Loschmitt number, 517
Lucretius, 152

Lumped elements, 425

Mach, E., 529

Mach numlx'i 450
Magnets force between, S3



Manometer, 378
Mariner probe, 184

Mardsen, 204
Mass, 73, 77

assigning of, 77-78

atomic unit of, 8

as derived quantity, 81

and equivalence principle, 343,

361
first moment of, 165

gravitational, 342
inertial, 342
relativistic, 152, 169, Suppl. Topic

V-7

rest, 152, 169, Suppl. Topic V-7

as scalar, 78

SI standard of, 8

as translational inertia, 237, 238,

244
variable, 174

and weight, 84

Mass-energy, Suppl. Topic V-8

Masses, some measured, 9

Mass flux, 387
Maxwell, J. C, 300, 498, 507, 512,

524, 527
Maxwellian distribution, 524, Suppl.

Topic IV
area under, 524, 525
for beam, 528
experimental verification, 527-528

variation with temperature, 525
Mayer, J. von, 476
Mean free path, 522, 523, 527

in air, 523
Mechanical energy, 139, 148

Mechanical equivalent of heat, 482,

483
Mechanics, 30

classical, 72

limitations of, Suppl. Topic V-3

Mercury, 352
Meter, atomic, 7

original, 6

standard bar, 6

Metric mile, 13

Miller, R. C, 527
Moderator, 193

Molar heat capacities, 479, 509
diatomic gas, 513
measured values, 513
monatomic gas, 509, 512
polyatomic gas, 513
and temperature, 479, 480, 514

Mole, 479
Moment arm, 232, 234
Moment of inertia, 237
Momentum, linear, 168, 233

conservation of, 170, 171, 189, 394
moment of, 234
relativistic, 169, Suppl. Topic V-7

total, 169

Month, lunar, 12

sidereal, 12

Moon, 181

acceleration of, 61, 334, 335
atmosphere of, 357, 526

Motion in one dimension, complete
solution, 145

oscillatory, 299
regions of motion in, 145

Muffler, automobile, 451
Musical instruments, sound from,

440, 441, 442

National Bureau of Standards, 4, 8,

10, 11

Natural oscillation, 323
Natural process, 555, 557
Natural state of bodies, 74

Negative kelvin temperature, 464
Neumann, J.

von, 386
Neutron, 154

discovery of, 212
moderation of, 192, 194

Neutron star, 69, 364
Newton, 76, 81

Newton, I., 72-75, 168, 334, 335,

337, 338, 343, 366, 403, 476,

511

Newton's first law, 75, 78, 106

Newton's law of cooling, 471
Newton's second law, 78, 116, 170

and fluid flow, 388
in relativity, 169

and simple harmonic motion, 302
with variable mass, 175, 176

Newton's third law, 79, 167

and airplane wings, 393
and conservation of momentum,

171, 189

first integral of, 139

and fluid flow, 394
and inertial forces, 107

for rocket, 177

strong form of, 236, 272
weak form of, 272

Node, 421

Noise, 434
Nonconservative forces, 135, 136,

137

and mechanical energy, 149

Normal force, 87, 98, 371
Nuclear reactions, 205
Nucleus, discovery of, 204

effective size of, 204

Organ pipe, closed, 441-442

open, 441

Oscillations, 299
forced, 323
amplitude of, 324-325

limits of, 301
natural, 323
two-body, 320

Ostwald, W., 529
Overtone, 440
Owens, J., 69

Pair annihilation, 154

Pair production, 154
Parabola, 40, 57

Parallax, 7

Parallel-axis theorem, 240-242

Parsec, 13

Partial derivative, 414
Particle, 30

in quantum mechanics, 109, 110

Pascal, 371

Pascal, B., 371, 376, 378
Pascal's principle, 376
Path independence and conservative

forces, 137

Pendulum, conical, 103

Foucalt, 369
physical, 313

period of, 314
thermal variations, 473

simple, 123, 310
and mass of cord, 327
mechanical energy of, 148

period of, 311, 354
as timekeeper, 311

torsional, 312
Per cent reflection, 431

Preigee, 366
Period, 300
Perrin, J., 530, 531, 538
Petit, 474, 479
Phase changes, 488
on reflection, 423

Phase constant, 410, 417
Phase velocity, 408, 410
Piano, sound from, 441

Piezoelectric effect, 433
Pitot tube, 392
Planck, M., 546
Planck's constant, 109, 276
Plane motion, equations of, 54

vector form, 55, Suppl. Topic I

Planets and satellites, motion of,

350-351
constants of motion, 359
energy of, 359
and Kepler's second law, 351-352

and Kepler's third law, 350
Plane wave, 407
Plasma, 370
Polar coordinates, 62
and uniform circular motion, 62-

63
Polar vector, Suppl. Topic II

Position, 53
Potential energy, 138, 142, 291

of diatomic molecule, 146

and equilibrium, 291-293

and force, 139, 300
of harmonic oscillator, 300
as property of system, 143

reference positions, 140

of simple harmonic oscillator, 301,

307
in three dimensions, 147

of two molecules, 506

-



Pound, 81

as unit of mass, 82
Power, average, 127

instantaneous, 127

in rotational motion, 243

units of, 127

in wave motion, 415-416

Poynting, J. H., 339
Precession, 260

frequency of, 262
vector equation for, 262, 265

Prefixes, SI, 5

Pressure, 371, 458
dynamic, 391

internal, 534
kinetic theory of, 501-502

measuring of, 377
static, 391

Pressure amplitude, 437
Pressure variation, in liquid, 373,

391
under acceleration, 382
in rotation, 382-383

Principal axes, 266, 273
Principia, 335
Principle of equivalence, 360
Processes, adiabatic, 489, 541

irreversible, 490, 540, 541

isobaric, 488
isothermal, 540-541

natural, 555, 557
quasi-static, 540
reversible, 540, 541

Projectile, 55
acceleration of, 55, 61

angle of velocity, 56
explosion of, 171

horizontal velocity of, 55

maximum height, 68

range of, 56, 58, 68

trajectory of, 57

vertical velocity of, 56

Proper time interval, Suppl. Topic

V-5

Proportional region, 303
Proton, 154

Pseudovector, Suppl. Topic II

Ptolemaic system, 335-336

Ptolemy, C, 335
Puck, dry ice, 75

Pulley, masseless, 88
nonzero mass, 90

Pulse, longitudinal, 434
speed of, 435

transverse, 406
speed of, 412-413

Quantities, basic, 3

defining of, 3

extensive and intensive, 517
macroscopic and microscopic, 457

Quantum mechanics, 110

Radial acceleration, 60
Radian, 217

Radioactive decay, recoil in, 173

Radius of gyration, 256
Rainwater, 528
Range, of projectile, 56, 58

Ratio of specific heats for gases, 512-

513
Ray, 407
Rayleigh, Lord, 505
Reaction force, 79

Reactions, 188

Reactor, fission, 192

Recoil, 173

Rectilinear motion, 33
Reduced mass, 321, 366
Reference frame, inertial, 75, 106

noninertial, 75, 106

and work-energy theorem, 131

Refrigerator, 544, 560
coefficient of performance of, 561

Relative acceleration, 66

Relative motion, 65, 66, 109

Relative velocities, addition of, 65
in relativity, 109, Suppl. Topic V-6

Relativity, Special Theory of, 108,

Suppl. Topic V
Resonance, 203, 324, 424, 426, 439,

440, 441, 443
Rest energy, 154, Suppl. Topic V-7

Reversible process, 540
entropy change in, 553, 555

Richter, J., 364
Right-hand rule, 22, 23, 222, 232,

234
Rigid body, 237, 244
angular momentum and velocity,

266
equations of motion for, 245
equilibrium of, 281-283

Rigid rotator, 277
Rocket, 174, 177

equation of, 178

multistage, 180

thrust of, 176, 394
Rolling motion, 248

energy of, 248-249

as rotation, 248-250

Root-mean-square-speed, 502
Rope, sag in, 93

tension in, 80, 81

Rotary motion, equations of, 273
Rotation, 215
analogy with translation, 218
with constant acceleration, 218-

219
Rotational inertia, 237

of annular cylinder, 240
and conservation of angular mo-

mentum, 269

of continuous body, 239
determination of, 312, 314

of dumbbell, 239

of hoop, 240

ol rectangular plate, 257

table ol 241

thermal variations of, 473

Rotor, 104
Rowland, H., 483
Rumford, C, 475, 482, 483, 495
Rutherford, E., 204

Saddle point, 292
Satellite, artificial, in measuring g,

346
motion of, 351
speed of, 61

synchronous, 366
Sawtooth curve, 411

Scalar, 16

Scalar product, 22, 118,

and commutative law, 29

in terms of components, 28

Scale height, 381
Schrodinger, E., 110

Scource, 396
Second, 10

Second law of thermodynamics, 539,

546
Clausius' form, 546, 555
and entropy, 555
Kelvin-Planck form, 546, 556

Shake, 14

Shakespeare, W., 335
Shock wave, 411, 450
SI system, base units, 5

derived units, 4

prefixes, 5

units, of energy, 483
flow rate, 388
frequency, 300
force, 76, 81

mass, 8

power, 127

pressure, 371

time, 10

work, 119

Simple harmonic motion, 301

angular, 312
combinations of, 317, 318-320

equation of motion for, 302
solution of, 304

importance of, 302-303

potential energy in, 301, 307

of two bodies, 320-322

kinetic energy of, 333
and uniform circular motion, 316

Simple harmonic oscillator, 301

Sink, 396
Siphon, 400
Skidding, 102

Skiing, 112, 254
Slater, J. C, 486
Slug, 82
Smithson I 475

Sound, 433

speed of, 435 503

dependence on temperature.

504, 511, 520
in g.is 436
m ideal gas 510 51 1 520



measurement of, 439, 443-444,

454
in solid, 436
and thermal motion, 438-439,

503
in various media, 436

Sound waves, standing, 439
nodes and antinodes, 439, 441

pressure and displacement, 439-

440
travelling, 405, 434

equation of, 436
intensity, 438, 453
pressure and displacement, 437-

438
simple harmonic, 437

Special Theory of Relativity, 108,

361, 448
kinetic energy in, Suppl. Topic V-7

length contraction in, Suppl. Topic

V-5

momentum in, Suppl. Topic V-7
and Newtonian mechanics, Suppl.

Topic V-3

postulates of, Suppl. Topic V-2

time dilation, Suppl. Topic V-5

velocity addition, 109, Suppl.

Topic V-6

Specific gravity, 376
Specific heat, 477, 478, 480

at constant pressure, 478
at constant volume, 480
per mole, 479-480

some values, 478
Speed, 33

average, 46
average angular, 217
instantaneous angular, 217
and radial acceleration, 224

molecular, average, 525, 526
distribution of, 524
most probable, 525, 527
root-mean-square, 502, 525, 527

Spherical wave, 407
intensity of, 416-417

Spring, effect of its mass, 331
force law, 83, 122

in gravitational field, 330
potential energy of, 141

work to stretch, 122
Spring balance, 85
Standard, 3

Standard kilogram, 8, 76
Standing wave ratio, 431
Star, variable, 454-455
State variable, 552
and path independence, 553

Static friction, coefficient of, 99
laws of, 98
method to determine coefficient,

101

and rolling motion, 250
Statics, 78

Statistical mechanics, 457, 497, 498
Steam point, 465

Stern, 281

Streamline, 386
and velocity of fluid, 387, 388

String, vibrating, 421, 424, 440, 443
equation of wave on, Suppl. Topic

III

Sun, 161, 357, 365
determination of mass, 350-351

Superposition, 410, 417
System, 457

Tacoma Bridge disaster, 325, 426
Tangential acceleration, 63
Teapot effect, 398
Temperature, 458

in kinetic theory, 504
negative Kelvin, 464
units of, 460

Temperature gradient, 481
Temperature scale, Celsius, 464-465

Fahrenheit, 465
ideal gas, 463
Kelvin, 464

Temperatures, some, 464
Tension, 80
Tensor, 23
Terminal velocity, 95
Thermal conductivity, 481
some values, 481

Thermal equilibrium, 458
caloric theory of, 475

Thermal expansion, 466
of fluids, 468-469

of isotropic solid, 468
linear, 466
microscopic description, 467-468
of water, 469

Thermodynamic temperature scale,

see Kelvin temperature scale

Thermodynamics, 457, 484, 497
first law of, 487
second law of, 546
third law of, 550
zeroth law of, 458, 459

Thermometer, 458, 461-462
constant volume gas, 462-463
resistance, 470
standard, 463

Third law of thermodynamics, 550
Thomson, 204
Tides, 327, 362
Time, civil, 10

standard of, 10

universal, 10

Time dilation, Suppl. Topic V-5
Time intervals, some measured, 9

Tippy-top, 274
Tolman, R. C, 458
Top, 260

precession frequency of, 262
Torque, 232
and angular acceleration, 244
and angular momentum, 234, 256,

261

around axis, 242
on rigid body, 242
system of particles, 236

Torricelli, E., 377, 378
Torricelli's law, 399
Torsional constant, 312
Translational motion, 31, 162, 215

and rolling, 249
Trimming, 274
Triple point, of water, 460
Triple-point cell, 460
Tube of flow, 387, 395
Turning points, 145

Uncertainty relation, Heisenberg,

109

Uniform circular motion, 59
acceleration in, 63
and simple harmonic motion, 316
work done in, 125

Unit force, 81

Unit vector, 18

in polar coordinates, 62
Uranium separation, 505-506

U-tube, liquid in, oscillations of, 383
pressure of, 375

Van der Waals,
J. D., 532, 535

Van der Waals gas, 533
constants of, 534-535

critical point of, 534
critical temperature of, 534
equation of state of, 533
internal pressure of, 534
isotherms, 533
work done by, 538

Vaporization, heat of, 488
Variable mass system, motion of,

174-176

Vector, 16

addition of, analytic, 19, 27

associative law of, 117

commutative law of, 17

geometrical, 16, 17

axial, Suppl. Topic II

components of, 17

multiplication of, 21

polar, Suppl. Topic II

pseudo, Suppl. Topic II

resolving of, 17, 18

subtraction of, 17

under reflection, Suppl. Topic II

vector components of, 19

Vector product, 22, 226
associative law of, 29

derivative of, 234
in unit vector notation, 28

Velocity, 31

average, 32
constant, 32
of escape, 357
instantaneous, 33
terminal, 95

variable, 35
Velocity space, Suppl. Topic IV

hi

X



X

Venturi meter, 391-392

Violin, sound from, 441

Vis viva, 196

Volume expansion, coefficient of,

468
Volume flux, 388, 391

von Guericke, O., 378, 381

von Helmholtz, H., 476, 477
von Mayer, }., 476
von Neuman, J., 386
Vortex, 395

Water, evaporation of, 519
freezing of, 516
pressure versus depth in, 375
specific heat of, 478
thermal expansion of, 469
triple point of, 460

Water waves, 404, 405, 411
Wave equation, Suppl. Topic III

Wavefront, 406
Wave number, 409
Waves, complex, 419

electromagnetic, 405
longitudinal, 405, 406
mechanical, 404, 405
periodic, 406
plane polarized, 428
train of, 406
transverse, 405, 406

longitudinal, see Sound waves
transverse simple harmonic, 406,

409
attenuated, 412

average power of, 416, 430
energy of, 430
intensity of, 416
interference of, 417
particle velocity in, 414
power transmitted, 415-416

velocity of, 410, 413
transverse standing, 421-422

energy in, 421, 422, 432
envelope of, 423
equation of, 421

nodes and antinodes of, 421
transverse traveling, 407

equation of, 407-408

frequency of, 413
at junctions, 424, 432
reflection of, 423
velocity of, 408, 413

Wave speed, longitudinal, see Sound,

speed of

Wave speed, transverse, 408, Suppl.

Topic III

derivation of, 412-413

and string density, 424
Watt, 127

Watt, J., 127

Weight, 80, 84, 343, 346
apparent, 346
and mass, 83, 84

Weightlessness, 91

Weighting factor, 163

White dwarf, 455
Wilson, C. T. R., 201

Wire, 290
Wood, R. W., 274

'

Work, as an area on p-V diagram,

485, 541

by centripetal force, 118

and colloquial usage, 119

by constant force, 117

dependence on path, 136, 137, 486
as energy, 483-484

by frictional force, 150

done by gas, 485, 488
and heat, 482-483

by ideal gas, 500
as line integral, 123

relativistic, 185

in rotation, 243
in round trip, 136

as scalar, 118

in stretching spring, 122

units of, 119

by variable force, 121, 130
Work-energy theorem, 125, 134, 138,

148, 149, 151

and fluid flow, 390
as law of mechanics, 127

and moving reference frames, 131

Yang, C. N., 25

Yard, 6

Young's modulus, 436
Yo-yo, 259
Yukawa potential, 157

Zero-point energy, 464
Zeroth law of thermodynamics, 458,

459













SOME USEFUL M'MHERS

V2= 1.414 V3 = 1.732 Vl0 = 3.162 tt = 3.142

n2 = 9.870 Vtt= 1.773 log tt = 0.4971 4tt= 12.57

e- 2.718 l/e = 0.3679 log e = 0.4343 In 2 = 0.6932

sin 30° - cos 60° = 0.5000 cot 30° = tan 60° = 1.7321

cos 30° = sin 60° = 0.8660 sin 45° = cos 45° = 0.7071

tan 30° = cot 60° = 0.5774 tan 45° = cot 45° - 1.0000

Change of Base

log x = In x/ln 10 = 0.4343 In x

In x = log x/log e = 2.303 log x



SOME CONVERSION FACTORS

(See Appendix G for a more complete list.)

Mass
1 kg = 2.21 lb (mass) = 6.02 x 1026 u
1 slug = 32.2 lb (mass) = 14.6 kg
1 u= 1.66 x 10-27 kg

Length

1 m = 39.4 in. = 3.28 ft

1 mi = 1.61 km = 5280 ft: 1 in. = 2.54 cm
1 m/x = 10"9 meter = 10 A

Time
1 d = 86,400 s

1 y - 365 d- 3.16 x 107 s

Angular measure

1 rad = 57.3° = 0.159 rev

77 rad = 180°= j rev

Speed

1 mi/h = 1.47 ft/s = 0.447 m/s

Electricity and Magnetism
1 C = 3.00 x 109 statcoul

1 A = 3.00 x 109 statamp

1 weber/meter2 = 1 tesla = 104 gauss

Force and Pressure

1 N = 105 dyne = 0.225 lb
;

1 lb = 4.45 N
1 N/m2 = 10 dyne/cm2 = 1.45 x 10"4 lb/in. 2 = 9.87 x 10 6 atm

= 7.50 x 10"4 cm-Hg

Energy and Power

1 cal = 4.19 I

1 J
= 10 7 erg = 0.239 cal = 0.738 ft-lb = 2.78 x 10 7 kwh

1 eV = 1.60 x 10- 19
J
= 1.60 x 10~ 12 erg

1 horsepower = 746 W = 550 ft-lb/s
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