Minitab Procedure for One Factor ANOVA - 1. Enter Factor in one column and Response in another column ---> - 2. Open the Procedure Stat>ANOVA>One Way - 3. (Optional) Select any **Graphs** you want. - 4. (Optional) Under **Comparisons**, select Tukey Test for valid pairwise comparisons of means. - 5. Run the Test # One-way ANOVA: Units versus Major | Source | DF | SS | MS | F | P | |--------|----|--------|-------|------|-------| | Major | 2 | 84.00 | 42.00 | 9.26 | 0.002 | | Error | 15 | 68.00 | 4.53 | | | | Total | 17 | 152.00 | | | | $$S = 2.129$$ R-Sq = 55.26% R-Sq(adj) = 49.30% | | | | | Individual 95% CIs For Mean Based on
Pooled StDev | | |--------------|---|--------|-------|--|--| | Level | N | Mean | StDev | | | | Anthropology | 6 | 5.000 | 1.789 | (*) | | | Business | 6 | 10.000 | 2.366 | (*) | | | | | | | (*) | | | Mathematics | 6 | 9.000 | 2.191 | (*) | | | Mathematics | 6 | 9.000 | 2.191 | (*) | | Pooled StDev = 2.129 Grouping Information Using Tukey Method Major N Mean Grouping Business 6 10.000 A Mathematics 6 9.000 A Anthropology 6 5.000 B Means that do not share a letter are significantly different. | C1-T | C2 | |--------------|-------| | Major | Units | | Anthropology | 6 | | Anthropology | 8 | | Anthropology | 4 | | Anthropology | 5 | | Anthropology | 3 | | Anthropology | 4 | | Mathematics | 8 | | Mathematics | 12 | | Mathematics | 9 | | Mathematics | 11 | | Mathematics | 6 | | Mathematics | 8 | | Business | 13 | | Business | 9 | | Business | 11 | | Business | 8 | | Business | 7 | | Business | 12 | # Post-hoc Analysis – Tukey's Honestly Significant Difference (HSD) Testⁱ. When the Null Hypothesis is rejected in one factor ANOVA, the conclusion is that not all means are the same. This however leads to an obvious question: Which particular means are different? Seeking further information after the results of a test is called post-hoc analysis. ### The problem of multiple tests One attempt to answer this question is to conduct multiple pairwise independent same t-tests and determine which ones are significant. We would compare μ_1 to μ_2 , μ_1 to μ_3 , μ_2 to μ_3 , μ_1 to μ_4 , etc. There is a major flaw in this methodology in that each test would have a significance level of α , so making Type I error would be significantly more than the desired α . Furthermore, these pairwise tests would NOT be mutually independent. There were several statisticians who designed tests that effectively dealt with this problem of determining an "honest" significance level of a set of tests; we will cover the one developed by John Tukey, the Honestly Significant Difference (HSD) test. ## The Tukey HSD test **Tests:** $H_o: \mu_i = \mu_j \qquad H_a: \mu_i \neq \mu_j$ where the subscripts i and j represent two different populations Overall significance level of α . This means that all pairwise tests can be run at the same time with an overall significance level of α . Test Statistic: $$HSD = q \sqrt{\frac{MSE}{n_c}}$$ q = value from studentized range table MSE = Mean Square Error from ANOVA table n_c = number of replicates per treatment. An adjustment is made for unbalanced designs. **Decision:** Reject Ho if $\left| \overline{X}_i - \overline{X}_j \right| > HSD$ critical value Computer software, such as Minitab, will determine which pairs are significantly different. Lowry, Richard. One Way ANOVA – Independent Samples. Vassar.edu, 2011