Comparing two population means

Four models
- Independent Sampling
 - Large Sample or known variances
 - Z-test
 - The 2 population variances are equal
 - Pooled variance t-test
 - The 2 population variances are unequal
 - t-test for unequal variances
- Dependent Sampling
 - Matched Pairs t-test

Independent Sampling

Population 1
- \(\mu_1, \sigma_1 \)
- \(\bar{x}_1, s_1 \)

Population 2
- \(\mu_2, \sigma_2 \)
- \(\bar{x}_2, s_2 \)
Dependent sampling

Difference of Two Population means

- $\bar{x}_1 - \bar{x}_2$ is Random Variable
- $\bar{x}_1 - \bar{x}_2$ is a point estimator for $\mu_1 - \mu_2$
- The standard deviation is given by the formula $\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}$
- If n_1 and n_2 are sufficiently large, $\bar{x}_1 - \bar{x}_2$ follows a normal distribution.

Difference between two means - large sample Z test

- If both n_1 and n_2 are over 30 and the two populations are independently selected, this test can be run.
- Test Statistic:
 \[Z = \frac{(\bar{x}_1 - \bar{x}_2) - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} \]
Example 1

- Are larger houses more likely to have pools?
- The housing data square footage (size) was split into two groups by pool (Y/N).
- Test the hypothesis that the homes with pools have more square feet than the homes without pools. Let $\alpha = .01$

Example 1 - Design

$H_0: \mu_1 \leq \mu_2 \quad H_a: \mu_1 > \mu_2$

$H_0: \mu_1 - \mu_2 \leq 0 \quad H_a: \mu_1 - \mu_2 > 0$

$\alpha = .01$

$Z = (\bar{X}_1 - \bar{X}_2) / (\sqrt{\sigma_1^2 / n_1 + \sigma_2^2 / n_2})$

H_0 is rejected if $Z > 2.326$

Example 1 - Data

- Population 1
 - Size with pool
 - Sample size = 130
 - Sample mean = 26.25
 - Standard Dev = 6.93
- Population 2
 - Size without pool
 - Sample size = 95
 - Sample mean = 23.04
 - Standard Dev = 4.55
EXAMPLE 1 - DATA

\[Z = \frac{(26.25 - 23.04) - 0}{\sqrt{\frac{6.93^2}{130} + \frac{4.55^2}{95}}} = 4.19 \]

- Decision: Reject Ho
- Conclusion: Homes with pools have more mean square footage.

EXAMPLE 1 - p-value method

- Using Technology
 - Reject Ho if the p-value < \(\alpha \)

<table>
<thead>
<tr>
<th></th>
<th>Sq ft with pool</th>
<th>Sq ft no pool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>26.25</td>
<td>23.04</td>
</tr>
<tr>
<td>Std Dev</td>
<td>6.93</td>
<td>4.55</td>
</tr>
<tr>
<td>Observations</td>
<td>130</td>
<td>95</td>
</tr>
<tr>
<td>Hypothesized Mean Difference</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Z</td>
<td>4.19</td>
<td></td>
</tr>
<tr>
<td>p-value</td>
<td>0.0000137</td>
<td></td>
</tr>
</tbody>
</table>

EXAMPLE 1 - Results/Decision

- Test Statistic = 4.19
- p-value = 0.0000137
- Critical Value = 2.326
- Decision: Reject Ho
To conduct this test, three assumptions are required:
- The populations must be normally or approximately normally distributed (or central limit theorem must apply).
- The sampling of populations must be independent.
- The population variances must be equal.

Pooled Sample Variance and Test Statistic

- Pooled Sample Variance:
 \[s_p^2 = \frac{(n_1 - 1)s_1^2 + (n_2 - 1)s_2^2}{n_1 + n_2 - 2} \]
- Test Statistic:
 \[t = \frac{(\bar{X}_1 - \bar{X}_2) - (\mu_1 - \mu_2)}{s_p \sqrt{\frac{1}{n_1} + \frac{1}{n_2}}} \]
 \[df = n_1 + n_2 - 2 \]

EXAMPLE 2

A recent EPA study compared the highway fuel economy of domestic and imported passenger cars.
- A sample of 12 imported cars revealed a mean of 35.76 mpg with a standard deviation of 3.86.
- A sample of 15 domestic cars revealed a mean of 33.59 mpg with a standard deviation of 2.16 mpg.
- At the .05 significance level can the EPA conclude that the mpg is higher on the imported cars? (Let subscript 2 be associated with domestic cars.)
EXAMPLE 2

- $H_0 : \mu_1 \leq \mu_2$
- $H_a : \mu_1 > \mu_2$
- $\alpha = 0.05$
- $t = (\bar{X}_1 - \bar{X}_2) / (s_p \sqrt{1/n_1 + 1/n_2})$
- H_0 is rejected if $t > 1.708$, $df=25$
- $t=1.85$ H_0 is rejected. Imports have a higher mean mpg than domestic cars.

EXAMPLE 2

- $H_0 : \mu_1 \leq \mu_2$
- $H_a : \mu_1 > \mu_2$
- $\alpha = 0.05$
- t test
- H_0 is rejected if $t > 1.746$, $df=16$
- $t'=1.74$ H_0 is not rejected. There is insufficient sample evidence to claim a higher mpg on the imported cars.
Using Technology

- Decision Rule: Reject H_0 if p-value $< \alpha$
- Megastat: Compare Two Independent Groups
- Use Equal Variance or Unequal Variance Test
- Use Original Data or Summarized Data

```plaintext
domestic: 29.8 33.3 34.7 37.4 34.4 32.7 30.2 36.2 35.5 34.6 33.2 35.1 33.6 31.3 31.9
import: 39.0 35.1 39.1 32.2 35.6 35.5 40.8 34.7 33.2 29.4 42.3 32.2
```

Megastat Result – Equal Variances

```plaintext
domestic:
35.76
33.59

import:
39.0
35.1
39.1
32.2
35.6
35.5
40.8
34.7
33.2
29.4
42.3
32.2

2.17000 difference (import - domestic)
9.18858 pooled variance
3.02956 pooled std. dev.
1.17273 standard error of difference
0 hypothesized difference
1.85 t
0.0381 p-value (one-tailed, upper)
```

Megastat Result – Unequal Variances

```plaintext
domestic:
35.76
33.59

import:
39.0
35.1
39.1
32.2
35.6
35.5
40.8
34.7
33.2
29.4
42.3
32.2

16 df
2.17000 difference (import - domestic)
1.24606 standard error of difference
0 hypothesized difference
1.74 t
0.0594 p-value (one-tailed, upper)
```
Hypothesis Testing - Paired Observations

- Independent samples are samples that are not related in any way.
- Dependent samples are samples that are paired or related in some fashion.
 - For example, if you wished to buy a car you would look at the same car at two (or more) different dealerships and compare the prices.
- Use the following test when the samples are dependent:

Hypothesis Testing Involving Paired Observations

\[t = \frac{\bar{X}_d - \mu_d}{s_d / \sqrt{n}} \]

- where \(\bar{X}_d \) is the average of the differences
- \(s_d \) is the standard deviation of the differences
- \(n \) is the number of pairs (differences)

EXAMPLE 3

- An independent testing agency is comparing the daily rental cost for renting a compact car from Hertz and Avis.
- A random sample of 15 cities is obtained and the following rental information obtained.
- At the .05 significance level can the testing agency conclude that there is a difference in the rental charged?
Example 3 - continued

Data for Hertz

<table>
<thead>
<tr>
<th>City</th>
<th>Hertz</th>
<th>Avis</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miami</td>
<td>43</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Boston</td>
<td>51</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td>46</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>44</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Orlando</td>
<td>50</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Atlanta</td>
<td>57</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Los Angeles</td>
<td>51</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Kansas City</td>
<td>45</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>San Diego</td>
<td>41</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>44</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Salt Lake City</td>
<td>49</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>46</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Washington DC</td>
<td>44</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

Data for Avis

<table>
<thead>
<tr>
<th>City</th>
<th>Hertz</th>
<th>Avis</th>
<th>Avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miami</td>
<td>43</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Boston</td>
<td>51</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Chicago</td>
<td>46</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>44</td>
<td>49</td>
<td></td>
</tr>
<tr>
<td>Orlando</td>
<td>50</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Atlanta</td>
<td>57</td>
<td>52</td>
<td></td>
</tr>
<tr>
<td>Los Angeles</td>
<td>51</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>Kansas City</td>
<td>45</td>
<td>48</td>
<td></td>
</tr>
<tr>
<td>San Diego</td>
<td>41</td>
<td>36</td>
<td></td>
</tr>
<tr>
<td>New York</td>
<td>44</td>
<td>42</td>
<td></td>
</tr>
<tr>
<td>Salt Lake City</td>
<td>49</td>
<td>43</td>
<td></td>
</tr>
<tr>
<td>Seattle</td>
<td>46</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>Washington DC</td>
<td>44</td>
<td>43</td>
<td></td>
</tr>
</tbody>
</table>

Example 3 - continued

By taking the difference of each pair, variability (measured by standard deviation) is reduced.

\[\bar{d} = 1.80 \]

\[s_d = 2.513 \]

\[n = 15 \]

EXAMPLE 3 continued

\[H_0: \mu_d = 0 \]

\[H_1: \mu_d \neq 0 \]

\[\alpha = 0.05 \]

Matched pairs t test, \(df = 14 \)

\[H_0 \] is rejected if \(t < -2.145 \) or \(t > 2.145 \)

\[t = \frac{(1.80) - (2.513)}{\sqrt{15}} = 2.77 \]

Reject \(H_0 \).

There is a difference in mean price for compact cars between Hertz and Avis. Avis has lower mean prices.
Megastat Output – Example 3
Hypothesis Test - Paired Observations

<table>
<thead>
<tr>
<th>Hypothesized Value</th>
<th>Mean Hertz</th>
<th>Mean Hertz (Hertz - Avgs)</th>
<th>Std. Dev.</th>
<th>Std. Error</th>
<th>N</th>
<th>Df</th>
<th>T</th>
<th>P-Value (two-tailed)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>46.667</td>
<td>1.600</td>
<td>2.513</td>
<td>0.649</td>
<td>15</td>
<td>14</td>
<td>2.77</td>
<td>0.0149</td>
</tr>
</tbody>
</table>

Characteristics of F-Distribution

- There is a "family" of F Distributions.
- Each member of the family is determined by two parameters: the numerator degrees of freedom and the denominator degrees of freedom.
- F cannot be negative, and it is a continuous distribution.
- The F distribution is positively skewed.
- Its values range from 0 to ∞. As $F \to \infty$, the curve approaches the X-axis.

Test for Equal Variances

- For the two tail test, the test statistic is given by:
 $$F = \frac{S_i^2}{S_j^2}$$
- S_i^2 and S_j^2 are the sample variances for the two populations.
- There are 2 sets of degrees of freedom: $n_i - 1$ for the numerator, $n_j - 1$ for the denominator.
EXAMPLE 4

A stockbroker at brokerage firm, reported that the mean rate of return on a sample of 10 software stocks was 12.6 percent with a standard deviation of 4.9 percent.

The mean rate of return on a sample of 8 utility stocks was 10.9 percent with a standard deviation of 3.5 percent.

At the .05 significance level, can the broker conclude that there is more variation in the software stocks?

Test Statistic depends on Hypotheses

<table>
<thead>
<tr>
<th>Hypotheses</th>
<th>Test Statistic</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_0 : \sigma_1 \geq \sigma_2)</td>
<td>(F = \frac{s_1^2}{s_2^2}) use a table</td>
</tr>
<tr>
<td>(H_a : \sigma_1 < \sigma_2)</td>
<td>(F = \frac{s_2^2}{s_1^2}) use a table</td>
</tr>
<tr>
<td>(H_0 : \sigma_1 \leq \sigma_2)</td>
<td>(F = \frac{s_1^2}{s_2^2}) use a table</td>
</tr>
<tr>
<td>(H_1 : \sigma_1 > \sigma_2)</td>
<td>(F = \frac{s_1^2}{s_2^2}) use a table</td>
</tr>
<tr>
<td>(H_0 : \sigma_1 = \sigma_2)</td>
<td>(F = \frac{\max(s_1^2, s_2^2)}{\min(s_1^2, s_2^2)}) use a / 2 table</td>
</tr>
<tr>
<td>(H_a : \sigma_1 \neq \sigma_2)</td>
<td>(F = \frac{\max(s_1^2, s_2^2)}{\min(s_1^2, s_2^2)}) use a / 2 table</td>
</tr>
</tbody>
</table>

EXAMPLE 4 continued

- \(H_0 : \sigma_1 \leq \sigma_2 \)
- \(H_a : \sigma_1 > \sigma_2 \)
- \(\alpha = 0.05 \)
- F-test
- \(H_0 \) is rejected if \(F > 3.68, \ df = (9, 7) \)
- \(F = \frac{4.9^2}{3.5^2} = 1.96 \) → Fail to Reject \(H_0 \).

There is insufficient evidence to claim more variation in the software stock.
Excel Example

- Using Megastat – Test for equal variances under two population independent samples test and click the box to test for equality of variances
- The default p-value is a two-tailed test, so take one-half reported p-value for one-tailed tests
- Example - Domestic vs Import Data
- $H_0: \sigma_1 = \sigma_2$ $H_a: \sigma_1 \neq \sigma_2$
- $\alpha = .10$
- Reject Ho means use unequal variance t-test
- FTR Ho means use pooled variance t-test

Excel Output

F-test for equality of variance
14.064 variance import
4.654 variance domestic
3.29 F
.0438 p-value
p-value <.10, Reject Ho
Use unequal variance t-test to compare means.

Compare Two Means Flowchart

Two Populations:
- Dependent sampling
- Independent sampling
- Small, n_1 and n_2 large
- n_1 or n_2 small
- $G_1 = G_2$
- $G_1 \neq G_2$
- Pooled variance t-test
- Unequal variance t-test